Полное и неполное доминирование кратко. Аллель

Системой счисления называется совокупность приемов обозначения (записи) чисел. Или, в общем случае, это специальный язык, алфавитом которого являются символы, называемые цифрами, а синтаксисом - правила, позволяющие однозначно сформировать запись чисел. Запись числа в некоторой системе счисления называют кодом числа. Кратко число записывается следующим образом!

Отдельную позицию в изображении числа принято называть разрядом, а номер позиции - номером разряда. Число разрядов в записи числа называется разрядностью и совпадает с его длиной. В техническом аспекте длина числа интерпретируется как длина разрядной сетки. Если алфавит имеет различных значений, то разряд в числе рассматривается как -ичная цифра, которой может быть присвоено каждое из значений.

Каждой цифре данного числа А однозначно соответствует ее количественный (числовой) эквивалент - Количественный эквивалент числа А, заданного в определенной системе счисления, является некоторой функцией числовых эквивалентов всех его цифр,

Очевидно, что при любой конечной разрядной сетке количественный эквивалент числа А будет принимать в зависимости от количественных эквивалентов отдельных разрядов значения от до

Диапазон представления чисел в данной системе счисления - это интервал числовой оси, заключенный между максимальными и минимальными числами, представленными заданной разрядностью (длиной разрядной сетки):

Существует бесчисленное множество способов записи чисел цифровыми знаками. Однако любая система счисления, предназначенная для практического использования, должна обеспечивать:

1) возможность представления любого числа в а дан ном диапазоне чисел;

2) однозначность представления;

3) краткость и простоту записи чисел;

4) легкость овладения системой, а также простоту и удобство оперирования ею.

В зависимости от целей применения используются различные системы. Например, человеком для счета и выполнения действий над числами применяется десятичная система счисления, для исчисления времени - система счисления времени, для нумерации - римская система счисления, в вычислительной технике обычно используется двоичная система счисления и т. д. В зависимости от способа записи чисел и способа вычисления их количественного эквивалента системы счисления можно классифицировать следующим образом (рис. 2.1).

В основном системы счисления строятся по следующему принципу:

где - запись числа в системе с базисом - база или последовательность цифр системы счисления с -ичным алфавитом; - базис системы счисления (совокупность весов отдельных разрядов системы).

База системы счисления может быть положительной, и тогда в ней в качестве значений цифр используется набор цифр

Она может быть также смешанной и тогда в ней наряду с положительными цифрами имеются и отрицательные. Например, для симметричной базы с нулем число положительных значений цифр равно числу отрицательных. Значения цифр алфавита в этом случае при (т. е. при нечетном основании) составляют следующий ряд:

Основанием системы счисления называется количество различных символов (цифр), используемых в каждом из разрядов числа для его изображения в данной системе счисления.

Системы счисления со смешанной базой могут быть и при четном основании, но тогда возможно либо применение симметричных алфавитов без нуля (например, при возможен алфавит либо алфавитов, у которых число отрицательных значений цифр не равно числу положительных (например, при возможен алфавит -1, 0, 1,2).

Базис системы счисления - это совокупность весов отдельных разрядов системы счисления. Например, базис десятичной системы

представляет собой последовательность: Вес разряда числа в любой системе счисления - это отношение Поэтому цифру разряда с большим называют более значимой, чем цифру разряда с меньшим

Непозиционными называются такие системы счисления, алфавит которых содержит неограниченное количество символов (цифр), причем количественный эквивалент любой цифры постоянен и зависит только от ее начертания, но не от позиции в числе. Такие системы строятся по принципу аддитивности, т. е. количественный эквивалент числа определяется как сумма рядом стоящих цифр!

где - символы, образующие базис системы

Наиболее известными представителями непозиционных систем счисления являются иероглифические и алфавитные. Иероглифические - это такие системы счисления, у которых каждая цифра представлена своим символом, значком или иероглифом. Наиболее известной из них является римская система счисления.

Значение записанного числа в римской системе определяется как сумма записанных подряд цифр, причем, если слева от цифры стоит меньшая, то значение последней принимается со знаком минус, например, т. е. здесь существует отклонение от правила независимости значения цифры от положения в числе. В настоящее время римская система используется, в основном, для целей нумерации. Запись чисел в алфавитных системах строится по такому же принципу.

К основным недостаткам непозиционных систем счисления можно отнести:

1) отсутствие нуля;

2) необходимость содержания бесконечного количества символов;

3) сложность арифметических действий с числами.

Системы счисления - что это? Даже не зная ответа на этот вопрос, каждый из нас поневоле в своей жизни пользуется системами счисления и не подозревает об этом. Именно так, во множественном числе! То есть не одной, а несколькими. Прежде чем привести примеры непозиционных систем счисления, давайте разберемся в этом вопросе, поговорим и о позиционных системах тоже.

Потребность в счете

С древности люди имели потребность в счете, то есть интуитивно осознавали, что нужно каким-то образом выразить количественное видение вещей и событий. Мозг подсказывал, что необходимо использовать предметы для счета. Наиболее удобными всегда были пальцы на руках, и это понятно, ведь они всегда в наличии (за редкими исключениями).

Вот и приходилось древним представителям рода человеческого загибать пальцы в прямом смысле - обозначать количество убитых мамонтов, например. Названий у таких элементов счета еще не было, а лишь визуальная картинка, сопоставление.

Современные позиционные системы счисления

Система счисления - это метод (способ) преставления количественных значений и величин посредством определенных знаков (символов или букв).

Необходимо понимать, что такое позиционность и непозиционность в счете, прежде чем приводить примеры непозиционных систем счисления. Позиционных систем счисления множество. Сейчас используют в различных областях знаний следующие: двоичную (включает только два значимых элемента: 0 и 1), шестеричную (количество знаков - 6), восьмеричную (знаков - 8), двенадцатеричную (двенадцать знаков), шестнадцатеричную (включает шестнадцать знаков). Причем каждый ряд знаков в системах начинается с нуля. основаны на использовании двоичных кодов - двоичной позиционной системы счисления.

Десятичная система счисления

Позиционностью считается наличие в различной степени значимых позиций, на которых располагаются знаки числа. Лучше всего это можно продемонстрировать на примере десятичной системы счисления. Ведь именно ею мы привыкли пользоваться с самого детства. Знаков в этой системе десять: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Возьмем число 327. В нем имеются три знака: 3, 2, 7. Каждый из них расположен на своей позиции (месте). Семерка занимает позицию, отведенную под единичные значения (единицы), двойка - десятки, а тройка - сотни. Так как число трехзначное, следовательно, позиций в нем всего три.

Исходя из вышесказанного, такое трехзначное десятичное число можно описать следующим образом: три сотни, два десятка и семь единиц. Причем значимость (важность) позиций отсчитывается слева направо, от слабой позиции (единицы) к более сильной (сотни).

Нам очень удобно себя чувствовать в десятичной позиционной системе счисления. У нас на руках десять пальцев, на ногах - также. Пять плюс пять - так, благодаря пальцам, мы с детства легко представляем себе десяток. Вот почему бывает легко детям учить таблицу умножения на пять и на десять. А еще так просто научиться считать денежные банкноты, которые чаще всего кратны (то есть делятся без остатка) на пять и на десять.

Другие позиционные системы счисления

К удивлению многих, следует сказать, что не только в десятичной системе счета наш мозг привык делать некие расчеты. До сих пор человечество пользуется шестеричной и двенадцатеричной системами счисления. То есть в такой системе существует только шесть знаков (в шестеричной): 0, 1, 2, 3, 4, 5. В двенадцатеричной их двенадцать: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, А, В, где А - обозначает число 10, В - число 11 (так как знак должен быть один).

Посудите сами. Мы считаем время шестерками, не так ли? Один час - шестьдесят минут (шесть десятков), одни сутки - это двадцать четыре часа (два раза по двенадцать), год - двенадцать месяцев и так далее... Все временные интервалы легко укладываются в шести- и двенадцатеричные ряды. Но мы настолько к этому привыкли, что даже не задумываемся при отсчете времени.

Непозиционные системы счисления. Унарная

Необходимо определиться в том, что это такое - непозиционная система счисления. Это такая знаковая система, в которой нет позиций для знаков числа, или принцип "прочтения" числа от позиции не зависит. В ней также существуют свои правила записи или вычислений.

Приведем примеры непозиционных систем счисления. Вернемся к древности. Люди нуждались в счете и придумали наиболее простое изобретение - узелки. Непозиционной системой счисления является узелковая. Один предмет (мешок риса, бык, и пр.) отсчитывали, например, при покупке или продаже и завязывали узелок на веревочке.

В итоге на веревке получалось столько узелков, сколько мешков риса куплено (как пример). Но также это могли быть насечки на деревянной палочке, на каменной плите и т.д. Такая система счисления стала называться узелковой. У нее существует второе название - унарная, или единичная ("уно" на латыни означает "один").

Становится очевидным, что данная система счисления - непозиционная. Ведь о каких позициях может идти речь, когда она (позиция) всего одна! Как ни странно, в некоторых уголках Земли до сих пор в ходу унарная непозиционная система счисления.

Также к непозиционным системам счисления относят:

  • римскую (для написания чисел используются буквы - латинские символы);
  • древнеегипетскую (похожа на римскую, также использовались символы);
  • алфавитную (использовались буквы алфавита);
  • вавилонскую (клинопись - использовали прямой и превернутый "клин");
  • греческую (также относят к алфавитной).

Римская система счисления

Древняя римская империя, а также ее наука, была очень прогрессивной. Римляне дали миру множество полезных изобретений науки и искусства, в том числе свою систему счета. Две сотни лет назад римские числа использовали для обозначения сумм в деловых документах (таким образом избегали подделки).

Пример непозиционной системы счисления, она известна нам сейчас. Также римская система активно используется, но не для математических расчетов, а для узко направленных действий. Например, с помощью римских чисел принято обозначать исторические даты, века, номера томов, разделов и глав в книжных изданиях. Часто используют римские знаки для оформления циферблатов часов. А также римская нумерация является примером непозиционной системы счисления.

Римляне обозначали цифры буквами латиницы. Причем числа они записывали по определенным правилам. Существует перечень ключевых символов в римской системе счисления, с помощью них записывались все числа без исключения.

Правила составления чисел

Требуемое число получалось путем сложения знаков (букв латиницы) и вычисления их суммы. Рассмотрим, как символически записываются знаки в римской системе и как нужно их "считывать". Перечислим основные законы формирования чисел в римской непозиционной системе счисления.

  1. Число четыре - IV, состоит из двух знаков (I, V - один и пять). Оно получается путем вычитания меньшего знака из большего, если он стоит левее. Когда меньший знак расположен справа, необходимо складывать, тогда получится число шесть - VI.
  2. Необходимо складывать два одинаковых знака, стоящих рядом. Например: СС - это 200 (С - 100), или ХХ - 20.
  3. Если первый знак числа меньше второго, то третьим в этом ряду может быть символ, значение которого еще меньше первого. Чтобы не запутаться, приведем пример: CDX - 410 (в десятичной).
  4. Некоторые крупные числа могут быть представлены разными способами, что является одним из минусов римской системы счета. Приведем примеры: MVM (римская система) = 1000 + (1000 - 5) = 1995 (десятичная система) или MDVD = 1000 + 500 + (500 - 5) = 1995. И это еще не все способы.

Приемы арифметики

Непозиционная система счисления - это иногда сложный набор правил формирования чисел, их обработки (действий над ними). Арифметические операции в непозиционных системах счисления - дело непростое для современных людей. Не завидуем древнеримским математикам!

Пример сложения. Попробуем сложить два числа: XIX + XXVI = XXXV, это задание выполняется в два действия:

  1. Первое - берем и складываем меньшие доли чисел: IX + VI = XV (I после V и I перед X "уничтожают" друг друга).
  2. Второе - складываем большие доли двух чисел: X + XX = XXX.

Вычитание выполняется несколько сложнее. Уменьшаемое число требуется разбить на составные элементы, а после этого в уменьшаемом и вычитаемом сократить дублируемые символы. Из числа 500 вычтем 263:

D - CCLXIII = CCCCLXXXXVIIIII - CCLXIII = CCXXXVII.

Умножение римских чисел. Кстати, необходимо упомянуть, что у римлян не имелось знаков арифметичеких операций, они просто словами обозначали их.

Множимое число умножать нужно было на каждый отдельный символ множителя, получалось несколько произведений, которые необходимо было сложить. Таким способом производят умножение многочленов.

Что касается деления, то этот процесс в римской системе счисления был и остается наиболее сложным. Тут применялись древние римские счеты - абак. Чтобы работать с ним людей специально обучали (и не всякому человеку удавалось такую науку освоить).

О недостатках непозиционных систем

Как было сказано выше, в непозиционных системах счисления существуют свои недостатки, неудобства в использовании. Унарная достаточна проста для простого счета, но для арифметики и сложных вычислений она не годится вовсе.

В римской отсутствуют единые правила формирования больших чисел и возникает путаница, а также в ней очень сложно производить вычисления. Кроме того, самым которое могли записать древние римляне с помощью своего метода, было 100000.

Системы счисления - это способы записи чисел в виде, удобном для прочтения и выполнения арифметических операций.

Уже в эпоху палеолита люди стремились группировать точки, полосы и насечки по 3,4,5, или 7. Такая группировка облегчала счет. В древности люди считали на пальцах, поэтому предметы стали группировать по 5 или 10. В дальнейшем десяток десятков получил особое название, десяток сотен - свое название. Для удобства записи числа стали обозначать особыми знаками. Поскольку в такой записи положение знака не играет роли, подобные системы счисления стали называть непозиционными. Непозиционные системы счисления использовали древние египтяне, греки и римляне. Непозиционные системы счисления были более или менее пригодны для выполнения операций сложения и вычитания, но совсем не удобны для умножения и деления.

Чтобы облегчить работу, использовали счетные доски – абаки.

Позиционные системы счисления. Десятичная система счисления

В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен.

К позиционной шестидесятеричной системе перешли вавилоняне. Долгое время в вавилонской системе счета не было нуля, т. е. знака для пропущенного разряда. Сначала это не создавало неудобств, но когда стали составлять обширные математические и астрономические таблицы, возникла необходимость в таком знаке. Следы вавилонской системы счисления сохранились до наших дней в порядке счета времени (1 ч=60 мин. , 1 мин. =60 сек.).

В V1 в. , точнее в 595г. индийцы создали способ записи, использующий лишь 9 цифр. Вместо нуля оставляли пустое место, а позднее ставили точку или маленький кружок. Особый знак для нуля появился в 1Х в. были выработаны правила выполнения арифметических операций над числами в десятичной системе счисления, не требовавшие использования абака, и этот способ записи распространился по всему миру. О десятичной системе счисления подробно рассказал среднеазиатский математик аль - Хорезми. Поскольку он написал свой труд на арабском языке, то системе в Европе дали неправильное название – «арабская».

Позиционные системы с произвольным основанием.

Мы привыкли к десятичной системе счисления. Компьютеру как нельзя лучше подходит двоичная система. Но иногда могут оказаться удобными системы с другими основаниями. Счёт на дюжины прекрасный тому пример. Здесь числовая база – степени числа 12.

В общем же случае представить произвольное число N в системе счисления с заданным основанием d означает записать его в виде где d – любое целое число, большее единицы. Коэффициенты a0, а1,аn называются цифрами в d – ичной записи N. Они могут принимать лишь d значений: 0,или 1, или 2, или d-1. Заметим, что в случае d > 10 придётся придумывать новые символы для цифр.

Для нахождения цифр числа по заданному числу N и основанию d можно воспользоваться следующим способом: сначала находят самое большое базовое число, не превосходящее N. Затем число N делят на d, в результате чего получают неполное частное an и остаток r n-1, т. е.

Остаток r n-1 уже меньше базового числа, поэтому делим r n-1 на d! И получаем неполное частное an-1 и остаток r n-2:

На практике определять d-ичные цифры числа N, начиная со старшего разряда, не очень удобно. Для этой цели обычно применяют другой способ. Представим число N в виде выражения не содержащего степеней:

Отсюда видно, что цифры an an-1, a1 a0 могут быть найдены последовательно, начиная с младшего разряда, в результате следушего многошагового процесса: a0 равно остатку то деления N на d; a1 равно остатку от деления на d неполного частного, полученного на предыдущем шаге; an равно остатку от деления на d неполного частного, полученного на предыдущем шаге.

То. Что число N в d-ичной системе счисления выражается цифрами an an-1, a1 a0, записывается так:

Например: 26700 = (110100001001100)2 = (1323300)5.

Положительным рациональным числом (обыкновенной положительной дробью) называется число, которое может быть записано в виде

Где p, q-натуральные числа. Число p называется числителем дроби, а число q-ее знаменателем.

Мы знаем, что дробь не изменится, если ее числитель и знаменатель умножить на одно и то же натуральное число n; другими словами, для любого натурального числа n справедливо равенство

Если числа p и q не имеют общих простых делителей, то дробь называется несократимой или правильной.

Если знаменатель q дроби равен 10 или 100, или 1000 и т. д. , то обыкновенную дробь можно записать в виде конечной десятичной дроби, каждая из которых называется десятичным разложением соответствующей обыкновенной дроби.

Очевидно также, что всякая конечная десятичная дробь может быть записана в виде обыкновенной дроби, где p-натуральное число, а q-некоторая степень числа 10.

Если знаменатель q обыкновенной дроби есть некоторая степень числа 10, то эта дробь может быть разложена в конечную десятичную дробь. Верно и обратное утверждение: конечная десятичная дробь представляет собой десятичное разложение обыкновенной дроби, знаменатель которой есть некоторая степень числа 10.

Восьмеричная система счисления

Восьмери́чная систе́ма счисле́ния - позиционная целочисленная система счисления с основанием 8. Для представления чисел в ней используются цифры 0 до 7.

Восьмеричная система часто используется в областях, связанных с цифровыми устройствами. Характеризуется лёгким переводом восьмеричных чисел в двоичные и обратно, путём замены восьмеричных чисел на триады двоичных. Ранее широко использовалась в программировании и вообще компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной.

Если мы обращаемся к восьмеричной системе счисления, то это означает, что можно использовать гораздо больше цифр, чем это принято в двоичной, но меньше, чем в десятичной, а именно можно оперировать восемью цифрами: 0, 1, 2, 3, 4, 5, 6, 7 - и не более.

Логика конвертирования десятичных чисел в восьмеричные (кодирование в восьмеричную систему счисления) совершенно идентична приведенной выше.

Более подробная информация - в разд. "Запись целых чисел в двоичной системе счисления" данной главы.

Действительно, в определенный момент цифры заканчиваются (наступает "кризис переходного периода").

Десятичное число "8" становится восьмеричным числом "10" ("восьмеричной десяткой"). Число "9" будет восьмеричным числом "11", число "10" - восьмеричным числом "12". И так далее до десятичного числа "15", которое в восьмеричном виде равно числу "17". А дальше?

Цифры снова кончились. Как будет представлено десятичное число "16" в восьмеричной системе счисления?

178 + 1 =. , но сумма "78 + 1" равняется "10" в восьмеричной системе счисления, а, следовательно, восьмеричный "десяток" необходимо складывать с "десятком", уже имеющимся, т. е. получается сумма, присутствующая в восьмеричной системе: "1 + 1 = 2". В результате получается, что

Представим эту информацию в виде таблицы (табл. 4. 4).

Таблица 4. 4. Соответствие десятичных и восьмеричных чисел

Десятичные числа Восьмеричные числа Десятичные числа Восьмеричные числа

0-7 0-7 25-63 31-77

9-15 11-17 128 200

17-23 21-27 512 1000

Но даже такие числа все-таки мало экономны, по крайней мере, их разрядность не уступает десятичной системе, поэтому в компьютерных технологиях применяется еще одна система счисления, которая называется шестна-дцатеричной.

Система счисления - это определенный способ записи чисел и соответствующие ему правила действия над числами.

Системы счисления бывают позиционными и непозиционными.

В позиционной системе счисления величина, которую обозначает цифра в записи числа, зависит от позиции цифры в этом числе. Совокупность различных цифр, используемых в позиционной системе счисления для записи чисел, называется алфавитом системы счисления. Для представления цифр больше 10 используют латинские буквы (А=10, В=11). Основание системы счисления - это размер алфавита. Число в позиционной системе можно представить в виде суммы произведений составляющих его цифр на соответствующие степени основания системы.

Любая позиционная система вводится следующим образом. Выбирается основание р - целое число и алфавит из р цифр: О, 1, 2,. , р-1. Тогда любое число Х в этой системе представляется в виде суммы произведений:

Х = аn*рn + an-1*pn-1 + + a0*p0

Здесь Х - это число в системе с основанием p, имеющее n+1 цифру в целой части - это цифры из алфавита системы.

Перевод чисел из одной позиционной системы в другую

При переводе чисел из десятичной системы в р-ичную надо разложить десятичное число на слагаемые, содержащие степени числа р. Перевод целого десятичного числа производится путем последовательного деления числа на основание р с выделением остатков от деления до тех пор, пока частное не станет меньше делителя. Выписывая остатки от деления справа налево, получаем р-ричную запись десятичного числа.

В позиционных системах значение записи целого числа определяется по следующему правилу: пусть a na n-1a n-2a 1a 0 - запись числа A, а i – цифры, тогда

A = a n·pn+a n-1·pn-1 +a n-2·pn-2+. +a 1·p1+ a0·p0 (1), где p - целое число большее 1, которое называется основанием системы счисления

Для того, чтобы при заданном p любое неотрицательное целое число можно было бы записать по формуле (1) и притом единственным образом, числовые значения различных цифр должны быть различными целыми числами, принадлежащими отрезку от 0 до p-1.

1) Десятичная система p = 10 цифры: 0,1,2,3,4,5,6,7,8,9 число 5735 = 5·103+7·102+3·101+8·100

2) Троичная система p = 3 цифры: 0,1,2 число 2013 = 2·32+0·31+1·30

Замечание: нижним индексом в записи числа обозначается основание системы счисления, в которой записано число. Для десятичной системы счисления индекс можно не писать.

Представление отрицательных и дробных чисел:

Во всех позиционных системах для записи отрицательных чисел так же как и в десятичной системе используется знак ‘–‘. Для отделения целой части числа от дробной используется запятая. Значение записи a na n-1a n-2a 1a 0, a -1 a -2a m-2 a m-1a m числа A определяется по формуле, являющейся обобщением формулы (1):

A = an·pn+a n-1·p n-1+a n-2·p n-2++a1·p1+a0·p0+a-1·p-1+a -2·p-2++am-2·p–(m–2)+am–1·p–(m–1)+amp–m (2),

75,6 = 7·101+5·100+6·10–1

–2,3145 = –(2·50+3·5–1+1·5–2+4·5–3)

Перевод чисел из произвольной системы счисления в десятичную:

Следует понимать, что при переводе числа из одной системы счисления в другую количественное значение числа не изменяется, а меняется только форма записи числа, так же как при переводе названия числа, например, с русского языка на английский.

Перевод чисел из произвольной системы счисления в десятичную выполняется непосредственным вычислением по формуле (1) для целых и формуле (2) для дробных чисел.

Перевод чисел из десятичной системы счисления в произвольную.

Перевести число из десятичной системы в систему с основанием p – значит найти коэффициенты в формуле (2). Иногда это легко сделать простым подбором. Например, пусть нужно перевести число 23,5 в восьмеричную систему. Нетрудно заметить, что 23,5 = 16+7+0,5 = 2·8+7+4/8 = 2·81+7·80+4·8–1 =27,48. Понятно, что не всегда ответ столь очевиден. В общем случае применяется способ перевода отдельно целой и дробной частей числа.

Для перевода целых чисел применяется следующий алгоритм (полученный на основании формулы (1)):

1. Найдем частное и остаток от деления числа на p. Остаток будет очередной цифрой ai (j=0,1,2) записи числа в новой системе счисления.

2. Если частное равно нулю, то перевод числа закончен, иначе применяем к частному пункт 1.

Замечание 1. Цифры ai в записи числа нумеруются справа налево.

Замечание 2. Если p>10, то необходимо ввести обозначения для цифр с числовыми значениями, большими или равными 10.

Перевести число 165 в семеричную систему счисления.

165:7 = 23 (остаток 4) => a0 = 4

23:7 = 3 (остаток 2) => a1 = 2

3:7 = 0 (остаток 3) => a2 = 3

Выпишем результат: a2a1a0, т. е. 3247.

Выполнив проверку по формуле (1), убедимся в правильности перевода:

3247=3·72+2·71+4·70=3·49+2·7+4 = 147+14+4 = 165.

Для перевода дробных частей чисел применяется алгоритм, полученный на основании формулы (2):

1. Умножим дробную часть числа на p.

2. Целая часть результата будет очередной цифрой am (m = –1,–2, –3) записи числа в новой системе счисления. Если дробная часть результата равна нулю, то перевод числа закончен, иначе применяем к ней пункт 1.

Замечание 1. Цифры am в записи числа располагаются слева направо в порядке возрастания абсолютного значения m.

Замечание 2. Обычно количество дробных разрядов в новой записи числа ограничивается заранее. Это позволяет выполнить приближенный перевод с заданной точностью. В случае бесконечных дробей такое ограничение обеспечивает конечность алгоритма.

Перевести число 0,625 в двоичную систему счисления.

0,625·2 = 1,25 (целая часть 1) => a-1 =1

0,25·2 = 0,5 (целая часть 0) => a-2 = 0

0,5·2 = 1,00 (целая часть 1) => a-3 = 1

Итак, 0,62510 = 0,1012

Выполнив проверку по формуле (2), убедимся в правильности перевода:

0,1012=1·2-1+0·2-2+1·2-3=1/2+1/8 = 0,5+0,125 = 0,625.

Перевести число 0,165 в четверичную систему счисления, ограничившись четырьмя четверичными разрядами.

0,165·4 = 0,66 (целая часть 0) => a-1=0

0,66·4 = 2,64 (целая часть 2) => a-2= 2

0,64·4 = 2,56 (целая часть 2) => a-3= 2

0,56·4 = 2,24 (целая часть 2) => a-4= 2

Итак, 0,16510 ” 0,02224

Выполним обратный перевод, чтобы убедиться, что абсолютная погрешность не превышает 4–4:

0,02224 = 0·4-1+2·4-2+2·4-3+2·4-4= 2/16+2/64+2/256 = 1/8+1/32+1/128 = 21/128 = 0,1640625

0,1640625–0,165 = 0,00094

Перевод чисел из одной произвольной системы в другую

В этом случае сначала следует выполнить перевод числа в десятичную систему, а затем из десятичной в требуемую.

Особым способом выполняется перевод чисел для систем с кратными основаниями.

Пусть p и q – основания двух систем счисления. Будем называть эти системы системами счисления с кратными основаниями, если p = qn или q = pn, где n – натуральное число. Так, например, системы счисления с основаниями 2 и 8 являются системами счисления с кратными основаниями.

Пусть p = qn и требуется перевести число из системы счисления с основанием q в систему счисления с основанием p. Разобьем целую и дробную части записи числа на группы по n последовательно записанных цифр влево и вправо от запятой. Если количество цифр в записи целой части числа не кратно n, то надо дописать слева соответствующее количество нулей. Если количество цифр в записи дробной части числа не кратно n, то нули дописываются справа. Каждая такая группа цифр числа в старой системе счисления будет соответствовать одной цифре числа в новой системе счисления.

Переведем 1100001,1112 в четверичную систему счисления.

Дописав нули и выделив пары цифр, получим 01100001,11102.

Теперь выполним перевод отдельно каждой пары цифр, пользуясь пунктом Перевод чисел из одной произвольной системы в другую.

Итак, 1100001,1112 = 01100001,11102 = 1201,324.

Пусть теперь требуется выполнить перевод из системы с большим основанием q, в систему с меньшим основанием p, т. е. q = pn. В этом случае одной цифре числа в старой системе счисления соответствует n цифр числа в новой системе счисления.

Пример: Выполним проверку предыдущего перевода числа.

1201,324 = 1100001,11102=1100001,1112

В шестнадцатеричной системе есть цифры с числовыми значениями 10,11,12, 13,14,15. Для их обозначения используют первые шесть букв латинского алфавита A, B, C, D, E, F.

Приведем таблицу чисел от 0 до 16, записанных в системах счисления с основаниями 10, 2, 8 и 16.

Число в десятичной системе счисления 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 В восьмеричной 0 1 2 3 4 5 6 7 10 11 12 13 14 15 16 17 20 В двоичной 0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 В шестнадцатеричной 0 1 2 3 4 5 6 7 8 9 A B C D E F 10 Для записи шестнадцатеричных цифр можно использовать также строчные латинские буквы a-f.

Пример: Переведем число 110101001010101010100,112 в шестнадцатеричную систему счисления.

Воспользуемся кратностью оснований систем счисления (16=24). Сгруппируем цифры по четыре, дописав, слева и справа нужное количество нулей

000110101001010101010100,11002 и, сверяясь с таблицей, получим: 1A9554,C16

В какой системе счисления лучше записывать числа – это вопрос удобства и традиций. С технической точки зрения, в ЭВМ удобно использовать двоичную систему, так как в ней для записи числа используются только две цифры 0 и 1, которые можно представить двумя легко различимыми состояниями “нет сигнала ” и “есть сигнал”.

А человеку, напротив, неудобно иметь дело с двоичными записями чисел из-за того, что они более длинные, чем десятичные и в них много повторяющихся цифр. Поэтому, при необходимости работать с машинными представлениями чисел используют восьмеричную или шестнадцатеричную системы счисления. Основания этих систем – целые степени двойки, и поэтому числа легко переводятся из этих систем в двоичную и обратно.

Двоичная система счисления. Бит и байт. Сегментация памяти.

Рассмотрим, как в памяти компьютера хранятся данные.

Вообще, как компьютер может хранить, например, слово "диск"? Главный принцип - намагничивание и размагничивание одной дорожки (назовем ее так). Одна микросхема памяти - это, грубо говоря, огромное количество дорожек. Сейчас попробуем разобраться. Например: нуль будет обозначаться как 0000 (четыре нуля), один 0001, два 0010,

(т. е. правую единицу заменяем на 0 и вторую устанавливаем в 1).

Уловили принцип? "0" и "1" - это т. н. биты. Один бит, как вы уже заметили, может быть нулем или единицей, т. е. размагничена или намагничена та или иная дорожка ("0" и "1" это условное обозначение). Если еще присмотреться, то можно заметить, что каждый следующий установленный бит (начиная справа) увеличивает число в два раза: 0001 в нашем примере = 1; 0010 два; 0100 четыре; 1000 восемь и т. д. Это и есть т. н. двоичная форма представления данных.

Т. о. чтобы обозначить числа от 0 до 9 нам нужно четыре бита (хоть они и не до конца использованы. Можно было бы продолжить: десять 1010, одиннадцать 1011 , пятнадцать 1111).

Компьютер хранит данные в памяти именно так. Для обозначения какого-нибудь символа (цифры, буквы, запятой, точки.) в компьютере используется определенное количество бит. Компьютер "распознает" 256 (от 0 до 255) различных символов по их коду. Этого достаточно, чтобы вместить все цифры (0 - 9), буквы латинского алфавита (a - z, A - Z), русского (а - я, А - Я), а также другие символы. Для представления символа с максимально возможным кодом (255) нужно 8 бит. Эти 8 бит называются байтом. Т. о. один любой символ - это всегда 1 байт.

Т. о. слово "диск" будет занимать 4 байта или 4*8 = 32 бита. Как вы уже поняли, компьютер хранит в памяти не сами буквы этого слова, а последовательность "единичек" и "ноликов". "Почему же тогда на экране мы видим текст, а не "единички-нолики"? - спросите вы. Чтобы удовлетворить ваше любопытство, я забегу немного вперед и скажу, что всю работу по выводу самого символа на экран (а не битов) выполняет видеокарта (видеоадаптер), которая находится в вашем компьютере. И если бы ее не было, то мы, естественно, ничего бы не видели, что у нас творится на экране.

В Ассемблере после двоичного числа всегда должна стоять буква "b". Это нужно для того, чтобы при ассемблировании нашей программы Ассемблер смог отличать десятичные, шестнадцатеричные и двоичные числа. Например: 10 - это "десять", 10h - это "шестнадцать" а 10b - это "два" в десятичной системе.

Т. о. в регистры можно загружать двоичные, десятичные и шестнадцатеричные числа.

Например: mov ax,20 mov bh,10100b mov cl,14h

В результате в регистрах AX, BH и CL будет находится одно и тоже число, только загружаем мы его в разных системах. Компьютер же будет хранить его в двоичном формате (как в регистре BH).

Итак, подведем итог. В компьютере вся информация хранится в двоичном формате (двоичной системе) примерно в таком виде: 10101110 10010010 01111010 11100101 (естественно, без пробелов. Для удобства я разделили биты по группам). Восемь бит - это один байт. Один символ занимает один байт, т. е. восемь бит. По-моему, ничего сложного. Очень важно уяснить данную тему, так как мы будем постоянно пользоваться двоичной системой, и вам необходимо знать ее на "отлично".

Зачем нужны различные позиционные системы?

Позиционные системы с различными основаниями используются для изучения свойств чисел уже не одну сотню лет. Например, с помощью записи целых чисел в различных системах можно получить признаки делимости. Рассмотрение некоторых других вопросов теории делимости также облегчается использованием недесятичных позиционных систем.

Однако этот вопрос занимал лишь сравнительно небольшой круг людей, главным образом специалистов в области так называемой высшей арифметики – теории чисел. Но положение изменилось с момента возникновения и широкого распространения вычислительных машин.

Конструкция цифровых вычислительных машин тесно связана с принятой системой счисления.

Вычислительные устройства.

Простейшим цифровым вычислительным устройством являются хорошо известные русские счёты. В них для изображения числа используются спицы с надетыми на них косточками. Количество спиц соответствует количеству разрядов, отведённых для изображения числа. Каждая спица может находиться в различных состояниях, определяемых количеством опущенных косточек. Так как в десятичной системе имеется десять различных цифр, то для их изображения нужно иметь десять различных состояний. Для этого на каждую спицу надевают десять косточек.

Русские счёты

Другим примером цифровой вычислительной машины является арифмометр. Здесь для изображения различных цифр в каждом разряде используется зубчатая шестерёнка. Окружность колёсика, из которого эта шестерёнка сделана, разбивается на 10 частей. На каждой такой части имеется зубец шестерёнки. Поворачиваясь вокруг своей оси, шестерёнка может останавливаться только в таких положениях, когда какой-либо её зубец устанавливается против окошка в корпусе арифмометра. На каждом зубце шестерёнки написана соответствующая цифра.

Рассмотренные примеры показывают, что применяемая для записи чисел позиционная система счисления предъявляет свои требования к конструкции вычислительных машин: десять косточек на спице, десять зубцов шестерёнке и десять ступенек на валике объясняются тем, что число изображается в десятичной системе счисления.

Единичная система счисления

Необходимость в записи чисел стала возникать у людей еще в древности после того, как они научились считать. Свидетельством этого являются археологические находки в местах стойбищ первобытных людей, которые относятся к периоду палеолита ($10$-$11$ тыс. лет до н.э.). Изначально количество предметов изображали, используя определенные знаки: черточки, насечки, кружочки, нанесенные на камни, дерево или глину, а также узлы на веревках.

Рисунок 1.

Ученые эту систему записи чисел называют единичной (унарной) , поскольку число в ней образовано повторением одного знака, который символизирует единицу.

Недостатки системы:

    при написании большого числа необходимо использовать большое количество палочек;

    возможно легко ошибиться при нанесении палочек.

Позднее, чтобы облегчить счет, эти знаки люди стали объединять.

Пример 1

С примерами использования единичной системы счисления можно встретится и в нашей жизни. Например, маленькие дети пытаются изобразить на пальцах сколько им лет, или же счетные палочки используют для обучения счету в первом классе.

Единичная система не совсем удобна, так как записи выглядят очень длинно и их нанесение довольно утомительно, поэтому со временем стали появляться более практичые в использовании системы счисления.

Вот некоторые примеры.

Древнеегипетская десятичная непозиционная система счисления

Данная система счисления появилась около 3000 лет до н.э. в результате того, что жители Древнего Египта придумали свою числовую систему, в которой при обозначении ключевых чисел $1$, $10$, $100$ и т.д. были использованы иероглифы, что было удобным при написании на глиняных дощечках, которые заменяли бумагу. Другие числа составлялись из них с помощью сложения. Сначала записывалось число высшего порядка, а затем низшего. Умножали и делили египтяне, последовательно удваивая числа. Каждая цифра могла повторяться до $9$ раз. Примеры чисел данной системы приведены ниже.

Рисунок 2.

Римская система счисления

Данная система принципиально не намного отличается от предыдущей и сохранилась до наших дней. В ее основе находятся знаки:

    $I$ (один палец) для числа $1$;

    $V$ (раскрытая ладонь) для числа $5$;

    $X$ (две сложенные ладони) для $10$;

    для обозначения чисел $100$, $500$ и $1000$ использовались первые буквы соответствующих латинских слов (Сentum – сто, Demimille – половина тысячи, Мille – тысяча).

При составлении чисел римляне использовали следующие правила:

    Число равно сумме значений расположенных подряд нескольких одинаковых «цифр», образующих группу первого вида.

    Число равно разности значений двух «цифр», если слева от большей стоит меньшая. В этом случае от значения большей отнимается значение меньшей. Вместе они образуют группу второго вида. При этом левая «цифра» может быть меньше правой максимально на $1$ порядок: перед $L(50)$ и $C(100$) из «младших» может стоять только $Х(10$), перед $D(500$) и $M(1000$) – только $C(100$), перед $V(5) – I(1)$.

    Число равно сумме значений групп и «цифр», не вошедших в группы $1$ или $2$ вида.

Рисунок 3.

Римскими цифрами пользуются издревле: ими обозначаются даты, номера томов, разделов, глав. Раньше считал, что обычные арабские цифры можно легко подделать.

Алфавитные системы счисления

Данные системы счисления более совершенны. К ним относятся греческая, славянская, финикийская, еврейская и другие. В этих системах числа от $1$ до $9$, а также количество десятков (от $10$ до $90$), сотен (от $100$ до $900$) были обозначены буквами алфавита.

В древнегреческой алфавитной системе счисления числа $1, 2, ..., 9$ обозначались первыми девятью буквами греческого алфавита, и т.д. Для обозначения чисел $10, 20, ..., 90$ применялись следующие $9$ букв а для обозначения чисел $100, 200, ..., 900$ – последние $9$ букв.

У славянских народов числовые значения букв устанавливались в соответствии с порядком славянского алфавита, использовавшего изначально глаголицу, а затем кириллицу.

Рисунок 4.

Замечание 1

Алфавитная система использовалась и в древней Руси. До конца $XVII$ века в качестве цифр использовались $27$ букв кириллицы.

Непозиционные системы счисления имеют ряд существенных недостатков:

    Существует постоянная потребность введения новых знаков для записи больших чисел.

    Невозможно представлять дробные и отрицательные числа.

    Сложно выполнять арифметические операции, так как не существует алгоритмов их выполнения.

Т.В. Сарапулова, И.Е. Трофимов

НЕПОЗИЦИОННЫЕ И СМЕШАННЫЕ
СИСТЕМЫ СЧИСЛЕНИЯ

направления 230700.62 «Прикладная информатика» в качестве методических указаний для самостоятельной работы
по дисциплине «Информационные системы и технологии»

Кемерово 2012


Рецензенты:

1. Прокопенко Евгения Викторовна, кандидат физико-математических наук, доцент кафедры прикладных информационных технологий.

2. Соколов Игорь Александрович, кандидат технических наук, доцент, заведующий кафедрой прикладных информационных технологий, председатель УМК направления 230700.62 «Прикладная информатика».

Сарапулова Татьяна Викторовна, Трофимов Иван Евгеньевич. Непозиционные и смешанные системы счисления: метод. указания для самостоятельной работы по дисциплине «Информационные системы и технологии» [электронный ресурс] : для студентов направления подготовки бакалавров 230700.62 «Прикладная информатика»/ Т. В. Сарапулова, И. Е. Трофимов. – Электрон. дан. – Кемерово: КузГТУ, 2012. – 1 электрон. опт. диск (CD-ROM) ; зв. ; цв. ; 12 см. – Систем. требования: ОЗУ 64 Мб; Windows XP/Vista/7 ; (CD-ROM-дисковод). – Загл. с экрана.

Методические указания предназначены для самостоятельного изучения непозиционных и смешанных систем счисления. В состав указаний входят теоретическая база и контрольные вопросы.

Ó Сарапулова Т.В, Трофимов И.Е.


ВВЕДЕНИЕ.. 4

1. НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.. 5

1.1. Римская система счисления. 6

1.2. Система остаточных классов (СОК) 6

1.3. Система счисления Штерна-Броко. 8

2. СМЕШАННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ.. 9

2.1. Система счисления майя. 10

2.2. Факториальная система счисления. 10

2.3. Фибоначчиева система счисления. 11


Целью данной самостоятельной работы является изучение непозиционных и смешанных систем счисления.

ВВЕДЕНИЕ

Одним из обязательных требований к специалисту в области информационных технологий является знание принципов работы с числами. На ранних ступенях развития общества люди почти не умели считать. Они различали совокупности двух и трех предметов; всякая совокупность, содержавшая большее число предметов, объединялась в понятие «много». Предметы при счете сопоставлялись обычно с пальцами рук и ног. По мере развития цивилизации потребность человека в счете стала необходимой. Первоначально натуральные числа изображались с помощью некоторого количества черточек или палочек, затем для их изображения стали использовать буквы или специальные знаки.

Проведём границу между числом и цифрой. Число – это некоторая абстрактная сущность для описания количества. Цифры – это знаки, используемые для записи чисел. Цифры бывают разные, самыми распространёнными являются арабские цифры, представляемые известными нам знаками от нуля (0) до девяти (9); менее распространены римские цифры, мы их можем иногда встретить на циферблате часов или в обозначении века (XIX век).

Итак, запомним: число это некая абстрактная мера количества , цифра это знак (рисунок) для записи числа .

Всё множество способов записи чисел с помощью цифр можно разделить на три части:

1. позиционные системы счисления;

2. смешанные системы счисления;

3. непозиционные системы счисления.

Денежные знаки – это яркий пример смешанной системы счисления. Сейчас в России используются монеты и купюры следующих номиналов: 1 коп., 5 коп., 10 коп., 50 коп., 1 руб., 2 руб., 5 руб., 10 руб., 50 руб., 100 руб., 500 руб., 1000 руб. и 5000 руб. Чтобы получить некоторую сумму в рублях, нам нужно использовать определенное количество денежных знаков различного достоинства. Предположим, что мы покупаем пылесос, который стоит 6379 руб. Чтобы расплатиться, нам потребуется шесть купюр по тысяче рублей, три купюры по сто рублей, одна пятидесятирублёвая купюра, две десятки, одна пятирублёвая монета и две монеты по два рубля. Если мы запишем количество купюр или монет начиная с 1000 руб. и заканчивая одной копейкой, заменяя нулями пропущенные номиналы, то мы получим число, представленное в смешанной системе счисления; в нашем случае – 603121200000.

В непозиционной же системе счисления величина числа не зависит от положения цифры в представлении числа. Ярким примером непозиционной системы счисления является римская система. Не смотря на свой почтенный возраст, данная система до сих пор используется, хотя и не является общеупотребимой.

НЕПОЗИЦИОННЫЕ СИСТЕМЫ СЧИСЛЕНИЯ

В непозиционных системах счисления величина, которую обозначает цифра, не зависит от положения в числе. При этом система может накладывать ограничения на положение цифр.

С глубокой древности люди повсеместно использовали непозиционные системы счисления. Для подсчета животных, населения, запасов использовались различные буквы, пиктограммы и прочие геометрические фигуры. Со временем непозиционные системы стали менее популярны и в современном мире мы встречаем типичного представителя непозиционных систем – римскую систему счисления, уже скорее как экзотическое письмо, нежели реально действующую систему. Причиной отказа от непозиционных систем счисления стало появление позиционных систем, давших возможность использовать значительно меньшие цифровые алфавиты для обозначения даже очень больших чисел и, что еще важнее, обеспечивающих простое выполнение арифметических операций над числами.

Римская система счисления

Каноническим примером фактически непозиционной системы счисления является римская система, в которой в качестве цифр используются латинские буквы:

I обозначает 1, V – 5, X – 10, L – 50, C – 100, D – 500, M – 1000.

Например, II = 1 + 1 = 2, здесь символ I обозначает 1 независимо от места в числе.

Заметьте, что символ нуля в данной системе счисления, как и в других непозиционных системах, отсутствует за ненадобностью.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. В римской нумерации явно прослеживаются следы пятеричной системы счисления.

На самом деле, римская система не является полностью непозиционной , так как меньшая цифра, идущая перед большей, вычитается из неё, например:

VI = 6, т.е. 5 + 1, в то время как IV = 4, т.е. 5 – 1;

XL = 40, т.е. 50 – 10, в то время как LX = 60, т.е. 50 + 10.

Подряд одна и та же цифра в римской системе ставится не более трех раз: LXX = 70; LXXX = 80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так: I, II, III, IV, V, VI, VII, VIII, IX, X, XI, XII.

Другие же числа записываются, например, как: XXVIII = 28; XXXIX = 39; CCCXCVII = 397; MDCCCXVIII = 1818.

Задавшись вопросом о том, сколько же чисел можно записать в римской системе, мы быстро обнаружим, что их диапазон простирается от 1 (I) до 3999 (MMMCMXCIX). Столь узкий диапазон чисел серьезно ограничивает применение системы в современной жизни, где счет идет на миллионы.

Сейчас римской системой счисления пользуются для обозначения юбилейных дат, нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т.д.


Похожая информация.


Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.