Основные положения и постулаты статистической термодинамики. Статистическая физика и термодинамика

Статистическая термодинамика – раздел статистической физики, формулирующий законы, связывающие молекулярные свойства веществ с измеряемыми на опыте ТД величинами.

СТД посвящена обоснованию законов термодинамики равновесных систем и вычислению ТД функций по молекулярным постоянным. Основу СТД составляют гипотезы и постулаты.

В отличие от механики, в СТЛ рассматриваются средние значения координат и импульсов и вероятности появления их значений. Термодинамические свойства макроскопической системы рассматриваются как средние значения случайных величин или как характеристики плотности вероятности.

Различают классическую СТД (Максвелл, Больцман), квантовую (Ферми, Дирак, Бозе, Эйнштейн).

Основная гипотеза СТД: существует однозначная связь молекулярных свойств частиц, составляющих систему, и макроскопических свойств системы.

Ансамбль – большое, почти бесконечное число аналогичных ТД систем, находящихся в различных микросостояниях. У ансамбля с постоянной энергией все микросостояния равновероятны. Средние значения физически наблюдаемой величины за большой промежуток времени равно среднему значению по ансамблю.

§ 1. Микро- и макросостояния. Термодинамическая вероятность (статичтический вес) и энтропия. Формула Больцмана. Статистический характер второго закона ТД

Для описания макросостояния указывают небольшое число переменны (часто 2). Для описания микросостояния применяют описание конкретных частиц, для каждой из которых вводится шесть переменных.

Для графического изображения микросостояния удобно пользоваться фазовым пространством. Различают - фазовое пространство (молекулы) и Г-фазовое пространство (газ).

Для подсчёта числа микросостояний Больцман использовал метод ячеек, т.е. фазовый объём разбивается на ячейки, причем величина ячеек достаточно большая, чтобы поместилось несколько частиц, но маленькая по сравнению с целым объёмом.

Если полагать, что одна ячейка соответствует одному микросостоянию, то, если весь объём поделить на объём ячейки, получим число микросостояний.

Примем, что объём фазового пространства разбит на три ячейки. Общее число частиц в системе – девять. Пусть одно макросостояние: 7+1+1, второе: 5+2+2, третье: 3+3+3. Посчитаем число микросостояний, которыми может быть реализовано каждое макросостояние. Это число способов равно . В статистике Больцмана частицы считаются различимыми, т.е. обмен частиц между ячейками даёт новое микросостояние, но макросостояние остается тем же.

Наибольшее число микросостояний даёт система, в которой частицы равномерно распределены по всему объёму. Самое неустойчивое состояние соответствует накоплению частиц в одной части системы.


Посчитаем число микросостояний, когда число Авогадро распределено по двум ячейкам:

Применим формулу Стирлинга:

Если одна частица перескочит в чужую ячейку, получим отличие на .

Возьмем систему, в которой произошёл переход х частиц. Пусть мы хотим, чтобы . Расчет показывает, что х = 10 12 .

По мере перехода системы в равновесное состояние термодинамическая вероятность сильно растёт, энтропия тоже растёт. Следовательно,

Найдём вид этой функции, для этого возьмем систему из двух ячеек. В первом случае NA+0, во втором 0,5 + 0,5. Температура постоянна. Переход от первого состояния ко второму есть изотермическое расширение газа.

Согласно формуле Больцмана,

Так получается постоянная Больцмана. Теперь получим формулу Больцмана.

Возьмем две системы

Из двух систем образуем третью, тогда энтропия новой системы будет равняться:

Вероятность двух независимых систем перемножается:

Функция логарифмическая:

Но энтропия – величина размерная, нужен коэффициент пропорциональности. А это и есть константа Больцмана.

Вот здесь скользкий переход и вывод, что максимум энтропии в точке равновесия – закон не абсолютный, а статистический. Как видно, чем меньше частиц, тем реже выполняется второй закон термодинамики.

§ 2. Распределение молекул по энергии. Закон Больцмана

Система из Н частиц, . Как молекулы распрделены по энергии? Какое число молекул обладает энергией ?

Энтропия в состоянии равновесия имеет максимальное значение:

А теперь найдем что-то ещё:

Найдём дифференциалы:

В уравнении (2) не все количества независимы

Для того, чтобы избавиться от зависимых переменных, используем метод неопределенных множителей Лагранжа:

Подбираются так, чтобы коэффициенты при зависимых переменных были равны нулю.

Тогда остальные члены в сумме независимы. Окончательно получится, что

Потенцируем это уравнение:

Просуммируем:

Подставим в (3):

Избавимся от ещё одного множителя. Ур-е (6) логарифмируем, умножаем на и суммируем:

Неопределенный множитель Лагранжа стал определенным.

Окончательно, закон Больцмана запишется:

Подставим в (8) значение

Фактор Больцмана

Иногда распределение Больцмана записывают и так:

Соответственно, при температуре, близкой к абсолютному нулю, , т.е. нет молекул на возбужденных уровнях. При температуре, стремящейся к бесконечности, распределение по всем уровнями одинаково.

– сумма по состояниям


§ 3. Сумма по состояниям молекулы и её связь с термодинамическими свойствами

Выясним, какими свойствами обладает сумма по состояниям молекулы. Во-первых, это безразмерная величина, а её значение определяется температурой, количеством частиц и объёмом системы. Также она зависит от массы молекулы и её формы движения.

Далее, сумма по состояниям неабсолютная величина, она определена с точностью до постоянного множителя. Её величина зависит от уровня отсчёта энергии системы. Часто за этот уровень принимается температура абсолютного нуля и состояние молекулы с минимальными квантовыми числами.

Сумма по состояниям – монотонно увеличивающаяся функция температуры:

С ростом энергий сумма по состояниям увеличивается.

Сумма по состояниям молекулы обладает свойством мультипликативности. Энергию молекулы можно представить суммой поступательной и внутримолекулярной энергий. Тогда сумма по состояниям запишется так:

Можно ещё и так:

На возбуждение электронных уровней необходима высокая температура. При сравнительно невысоких температурах вклад электронных колебаний близок к нулю.

Нулевой уровень электронного состояния

Это вот всё называется приближением Борна – Оппенгеймера.

Предположим, что , тогда сумму можно заменить так:

Если остальные тоже между собой практически одинаковы, то:

Вырожденность уровней

Такая форма записи называется суммой по энергетическим уровням молекулы.

Сумма по состояниям связана с термодинамическими свойствами системы.

Возьмем производную по температуре:

Получили выражение для энтропии

Энергия Гельмгольца

Найдем давление:

Энтальпия и энергия Гиббса:

Осталась теплоемкость:

Во-первых, все величины – это приращение к нулевой энергии, во-вторых, все уравнения выполняются для систем, где частицы можно считать различимыми. В идеальном газе молекулы неразличимы.

§ 4. Каноническое распределение Гиббса

Гиббс предложил метод статистических, или термодинамических, ансамблей. Ансамбль – это большое, стремящееся к бесконечности, число аналогичных термодинамических систем, находящихся в различных микросостояниях. Микроканонический ансамбль характеризуется постонством . Канонический ансамбль имеет постоянные . Распределение Больцмана было выведено для микроканонического ансамбля, перейдём к каноническому.

Какова вероятность одного микросостояния в системе в термостате?

Гиббс ввёл понятие статистического ансамбля. Представим большой термостат, поместим в него ансамбль – одинаковые системы в различных микросостояниях. Пусть М – число систем в ансамбле. В состоянии i находятся систем.

В каноническом ансамбле, поскольку могут реализоваться состояния с различной энергией, следует ожидать, что вероятности будут зависеть от уровня энергии, которому они принадлежат.

Пусть имеется состояние, где энергия системы и её энтропия равны . Этой системе соответствует микросостояний.

Энергия Гельмгольца всего ансамбля постоянна.

Если внутреннюю энергию приравнять к энергии , то

Тогда вероятность одного состояния равна

Таким образом, вероятности, относящиеся к различным энергиям, зависят от энергии системы, а она может быть различной.

– каноническое распределение Гиббса

– вероятность макросостояния

вероятн.

§ 5. Сумма по состояниям системы и её связь с термодинамическими функциями

Сумма по состояниям системы

Функция состояния системы обладает свойством мультипликативности. Если энергию системы представить в виде:

Оказалось, что эта связь действует для системы локализованных частиц. Число микросостояний для нелокализованных частиц будет гораздо меньше. Тогда:

Пользуясь свойством мультипликативности, получим:

§ 6. Поступательная сумма по состояниям.
ТД свойства одноатомного идеального газа

Будем рассматривать одноатомный идеальный газ. Молекула считается точкой, которая обладает массой и способностью перемещаться в пространстве. Энергия такой частицы равна:

Такое движение имеет три степени свободы, поэтому представим эту энергию в виде трех составляющих. Рассмотрим движение вдоль координаты х .

Из квантовой механики:

Постулируется также.

Основные понятия

Основные знания.

Статистическая интерпретация понятий: внутренняя энергия, работа подсистемы, количество теплоты; обоснование первого начала термодинамики с помощью канонического распределения Гиббса; статистическое обоснование третьего термодинамики; свойства макросистем при ; физический смысл энтропии; условия устойчивости термодинамической системы.

Основные умения.

Самостоятельно работать с рекомендованной литературой; определять понятия из п.1; уметь логично обосновывать с использованием математического аппарата элементы знаний из п.2; по известной статистической сумме (статистическому интегралу) определять внутреннюю энергию системы, свободную энергию Гельмгольца, свободную энергию Гиббса, энтропию, уравнение состояния и т.п.; определять направление эволюции открытой системы при постоянных и , постоянных и , постоянных и .

Внутренняя энергия макроскопической системы.

Основой статистической термодинамики является следующее утверждение: внутренняя энергия макроскопического тела тождественна её средней энергии , вычисленной по законам статистической физики:

(2.2.1)

Подставляя каноническое распределение Гиббса, получаем:

(2.2.2)

Числитель правой части равенства (2.2.2) представляет собой производную от Z по :

.

Поэтому выражение (2.2.2) можно переписать в более компактном виде:

(2.2.3)

Таким образом, для нахождения внутренней энергии системы достаточно знать её статистическую сумму Z .

Второе начало термодинамики и «стрела времени».

Энтропия изолированной системы в неравновесном состоянии.

Если система находится в равновесном состоянии или участвует в квазистатическом процессе, её энтропия с молекулярной точки зрения определяется числом микросостояний, соответствующих данному макросостоянию системы с энергией, равной среднему значению:

.

Энтропия изолированной системы в неравновесном состоянии определяется числом микросостояний, соответствующих данному макросостоянию системы:

причём .

Третий закон термодинамики.

Третий закон термодинамики характеризует свойства термодинамической системы при очень низких температурах (). Пусть наименьшая возможная энергия системы – , а энергия возбуждённых состояний – . При очень низкой температуре средняя энергия теплового движения . Следовательно, энергии теплового движения недостаточно для перехода системы в возбуждённое состояние . Энтропия , где – число состояний системы с энергией (то есть в основном состоянии). Поэтому равно единице, при наличии вырождения, небольшому числу (кратности вырождения). Следовательно энтропию системы, и в том и другом случае можно считать равной нулю ( – очень маленькое число). Поскольку энтропия определяется с точностью до произвольной постоянной иногда это утверждение формулируют так: при , . Значение этой постоянной не зависит от давления, объёма и других параметров, характеризующих состояние системы.

Вопросы для самопроверки.

1. Сформулировать постулаты феноменологической термодинамики.

2. Сформулировать второй принцип термодинамики.

3. В чём заключается мысленный эксперимент Нарликара?

4. Доказать, что энтропия изолированной системы при неравновесных процессах возрастает.

5. Понятие внутренней энергии.

6. При каких условиях (в каких случаях) состояние системы можно рассматривать как равновесное?

7. Какой процесс называется обратимым и необратимым?

8. Что такое термодинамический потенциал?

9. Записать термодинамические функции.

10. Объяснить получение низких температур при адиабатическом размагничивании.

11. Понятие об отрицательной температуре.

12. Запишите термодинамические параметры через сумму состояний.

13. Записать основное термодинамическое равенство системы с переменным числом частиц.

14. Объяснить физический смысл химического потенциала.


Задачи.

1. Доказать основное термодинамическое равенство.

2. Найти выражение термодинамического потенциала свободной энергии F через интеграл состояния Z системы.

3. Найти выражение энтропии S через интеграл состояний Z системы.

4. Найти зависимость энтропия S идеального одноатомного газа из N частиц от энергии Е и объёма V .

5. Вывести основное термодинамическое равенство для системы с переменным числом частиц.

6. Вывести большое каноническое распределение.

7. Вычислить свободную энергию одноатомного идеального газа.

II. Статистическая термодинамика.

Основные понятия

Квазистатический процесс; нулевой постулат феноменологической термодинамики; первый постулат феноменологической термодинамики; второй постулат феноменологической термодинамики; третий постулат феноменологической термодинамики; понятие внутренней энергии; функция состояния; функция процесса; основное термодинамическое равенство; понятие энтропии для изолированной неравновесной системы; понятие локальной неустойчивости фазовых траекторий (траекторий частиц); системы с перемешиванием; обратимый процесс; необратимый процесс; термодинамический потенциал; свободная энергия Гельмгольца; свободная энергия Гиббса; соотношения Максвелла; обобщённые координаты и обобщённые силы; принципы экстремума в термодинамике; принцип Ле-Шателье-Брауна.

В результате изучения материала главы 9 студент должен: знать основные постулаты статистической термодинамики; уметь рассчитывать суммы по состояниям и знать их свойства; пользоваться терминами и определениями, приведенными в главе;

владеть специальной терминологией; навыками расчета термодинамических функций идеальных газов статистическими методами.

Основные постулаты статистической термодинамики

Термодинамический метод не применим к системам, состоящих из малого числа молекул, так как в таких системах исчезает различие между теплотой и работой. Одновременно исчезает однозначность направления процесса:

Для очень малого числа молекул оба направления процесса становятся равноценными. Для изолированной системы - приращение энтропии или равно приведенной теплоте (для равновесно-обратимых процессов), или больше ее (для неравновесных). Такая дуалистичность энтропии может быть объяснена с точки зрения упорядоченности - неупорядоченности движения или состояния составляющих систему частиц; следовательно, качественно энтропию можно рассматривать как меру неупорядоченности молекулярного состояния системы. Эти качественные представления количественно развиваются статистической термодинамикой. Статистическая термодинамика является частью более общего раздела науки - статистической механики.

Основные принципы статистической механики были развиты в конце XIX в. в трудах Л. Больцмана и Дж. Гиббса.

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. Макроскопический подход используется классической термодинамикой, где состояния систем, содержащих единственное чистое вещество, определяется в общем случае тремя независимыми переменными: Т (температура), V (объем), N (число частиц). Однако, с микроскопической точки зрения, система, содержащая 1 моль вещества, включает 6,02 10 23 молекул. Кроме того, в первом подходе подробно характеризуется микросостояние системы,

например координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): ЗN координат и ЗN проекций импульса.

Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле - бесконечно много) микросостояний (рис. 9.1).

Рис. 9.1.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояиий, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее но всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам р(р, q , t), которая определяется следующим образом: р(p, q, t)dpdq - это вероятность того, что система ансамбля находится в элементе объема dpdq вблизи точки (р , q) в момент времени t.

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостояпии.

Из определения следуют элементарные свойства функции распределения:

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f(p, q) по ансамблю:

Например, внутренняя энергия - это среднее значение функции Гамильтона Н(р, q):

(9.4)

Существование функции распределения составляет суть основного постулата классической статистической механики: макроскопическое состояние системы полностью задается некоторой функцией распределения , которая удовлетворяет условиям (9.1) и (9.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: р = р(p, q). Явный вид функции распределения зависит от типа ансамбля. Различают три основных тина ансамблей:

где k = 1,38 10 -23 Дж/К - постоянная Больцмана. Значение константы в выражении (9.6) определяется условием нормировки.

Частным случаем канонического распределения (9.6) является распределение Максвелла по скоростям ь которое справедливо для газов:

(9.7)

где m - масса молекулы газа. Выражение р(v)dv описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d&. Максимум функции (9.7) дает наиболее вероятную скорость молекул, а интеграл

среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона Н(р, q) используют оператор Гамильтона Н, а вместо функции распределения - оператор матрицы плотности р:

(9.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в і-м энергетическом состоянии и имеет энергию Е{.

(9.10)

Значение константы определяется условием нормировки:

(9.11)

Знаменатель этого выражения называют суммой по состояниям. Он имеет ключевое значение для статистической оценки термодинамических свойств системы. Из выражений (9.10) и (9.11) можно найти число частиц N jf имеющих энергию

(9.12)

где N - общее число частиц. Распределение частиц (9.12) по уровням энергии называют распределением Больцмана, а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией £, то их объединяют в одну группу путем суммирования больцмановских множителей:

(9.13)

где gj - число уровней с энергией Ej , или статистический вес.

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

(9.14)

3) большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой Т, а равновесие по числу частиц - химическим потенциалом р. Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

Термодинамическая система, коллектив и его состояния. Метод ансамблей. Энтропия и вероятность. Канонический ансамбль Гиббса. Каноническое распределение. Фактор Гиббса. Вероятности, свободная энергия и статистическая сумма.

Система и подсистемы. Общие свойства статистических сумм. Статистическая сумма пробной частицы и коллектива.

Идеальный газ. Распределение Больцмана. Фактор Больцмана. Квантовые состояния и дискретные уровни простых молекулярных движений. Статистический вес уровня (вырожденность). Суммы по уровням и суммы по состояниям.

Системы локализованные и делокализованные. Трансляционная сумма состояний, неразличимость частиц, стандартный объём. Вращательная сумма по уровням двухатомной молекулы, ориентационная неразличимость и число симметрии. Статистические суммы для одной и нескольких вращательных степеней свободы. Колебательная статистическая сумма в гармоническом приближении. Коррекция статистических сумм простых движений. Нулевой уровень колебаний, шкала молекулярной энергии, и молекулярная сумма состояний.

Свободная энергия A и статистические формулы для термодинамических функций: энтропия S, давление p, внутренняя энергия U, энтальпия H, энергия Гиббса G, химический потенциал m. Химическая реакция и константа равновесия Kp в системе идеальных газов.

1. Введение. Краткое напоминание основных сведений из термодинамики.

…Удобно термодинамические аргументы и определённые с их помощью функции состояния представить в виде единого массива взаимосвязанных переменных. Этот способ был предложен Гиббсом. Так, скажем, энтропия, которая по определению есть функция состояния, перемещается в разряд одной из двух естественных калорических переменных, дополняя в этом своём качестве температуру. И если в любых калорических процессах температура выглядит как интенсивная (силовая) переменная, то энтропия обретает статус экстенсивной переменной – тепловой координаты.

Этот массив всегда можно дополнить новыми функциями состояния или по необходимости уравнениями состояния, связывающими между собою аргументы. Число аргументов, минимально необходимое для исчерпывающего термодинамического описания системы, называется числом степеней свободы. Оно определяется из фундаментальных соображений термодинамики и может быть уменьшено благодаря различным уравнениям связи.

В таком едином массиве можно менять ролями аргументы и функции состояния. Этот приём широко используется в математике при построении обратных и неявных функций. Цель подобных логических и математических приёмов (достаточно тонких) одна – достижение максимальной компактности и стройности теоретической схемы.

2. Характеристические функции. Дифференциальные уравнения Массье.

Массив переменных p, V, T удобно дополнить функцией состояния S. Между ними имеется два уравнения связи. Одно из них выражено в виде постулируемой взаимозависимости переменных f(p,V,T) =0. Говоря об "уравнении состояния", чаще всего именно эту зависимость имеют в виду. Однако любой функции состояния отвечает новое уравнение состояния. Энтропия по определению есть функция состояния, т.е. S=S(p,V,T). Стало быть, между четырьмя переменными существует две связи, и в качестве независимых термодинамических аргументов можно выделить всего два, т.е. для исчерпывающего термодинамического описания системы достаточно лишь двух степеней свободы. Если этот массив переменных дополнить новой функцией состояния, то наряду с новой переменной появляется и ещё одно уравнение связи, и, стало быть, число степеней свободы не увеличится.

Исторически первой из функций состояния была внутренняя энергия. Поэтому с её участием можно сформировать исходный массив переменных:

Массив уравнений связи в таком случае содержит функции вида

f(p,V,T) =0, 2) U=U(p,V,T), 3) S=S(p,V,T).

Эти величины можно менять ролями или формировать из них новые функции состояния, но в любом случае суть дела не изменится, и останутся две независимые переменные. Теоретическая схема не выйдет за пределы двух степеней свободы до тех пор, пока не встанет необходимость учесть новые физические эффекты и связанные с ними новые превращения энергии, и их окажется невозможно охарактеризовать без расширения круга аргументов и числа функций состояния. Тогда может измениться и число степеней свободы.

(2.1)

3. Свободная энергия (энергия Гельмгольца) и её роль.

Состояние изотермической системы с неизменным объёмом целесообразно описывать посредством свободной энергии (функции Гельмгольца). В этих условиях она является характеристической функцией и изохорно-изотермическим потенциалом системы.

Посредством частного дифференцирования из неё далее можно извлечь прочие необходимые термодинамические характеристики, а именно:

(3.1)

Построить явный вид функции свободной энергии для некоторых относительно простых систем можно методом статистической термодинамики.

4. О равновесии.

В любом естественно протекающем (самопроизвольном или свободном) процессе свободная энергия системы понижается. При достижении системой состояния термодинамического равновесия её свободная энергия достигает минимума и уже в равновесии далее сохраняет постоянное значение. Из равновесия систему можно вывести за счёт внешних сил, повышая её свободную энергию. Такой процесс уже не может быть свободным - он будет вынужденным.

Микроскопические движения частиц и в равновесии не прекращаются, и в системе, состоящей из огромного числа частиц и подсистем любой природы, возможно множество различных частных вариантов и комбинаций отдельных частей и внутри них, но все они не выводят систему из равновесия.

Термодинамическое равновесие в макросистеме совсем не означает, что и в её микроскопических фрагментах исчезают все виды движения. Напротив, равновесие обеспечивается динамикой именно этих микроскопических движений. Они-то осуществляют непрерывное выравнивание - сглаживание наблюдаемых макроскопических признаков и свойств, не допуская их выбросов и чрезмерных флуктуаций.

5. О статистическом методе.

Основной целью статистического метода является установление количественной связи между характеристиками механических движений отдельных частиц, составляющих равновесный статистический коллектив, и усреднёнными свойствами этого коллектива, которые доступны для термодинамических измерений макроскопическими методами.

Цель состоит в том, чтобы на основании механических характеристик движений отдельных микроэлементов равновесного коллектива вывести количественные законы для термодинамических параметров системы.

6. Равновесия и флуктуации. Микросостояния.

Согласно методу Гиббса термодинамическая система это коллектив - совокупность очень большого числа элементов - однотипных подсистем.

Каждая подсистема в свою очередь может также состоять из очень большого числа иных ещё более мелких подсистем и в свою очередь может играть роль вполне самостоятельной системы.

Все естественные флуктуации внутри равновесной системы равновесия не нарушают, они совместимы с устойчивым макроскопическим состоянием огромного коллектива частиц. Они просто перераспределяют признаки отдельных элементов коллектива. Возникают разные микросостояния, и все они суть версии одного и того же наблюдаемого макросостояния.

Каждая отдельная комбинация состояний элементов коллектива порождает лишь одно из огромного множества возможных микросостояний макросистемы. Все они в физическом смысле равноценны, все приводят к одному и тому же набору измеримых физических параметров системы и отличаются лишь какими-то деталями распределения состояний между элементами …

Все микросостояния совместимы с макроскопическим - термодинамическим равновесием, и числовой разброс отдельных составляющих свободной энергии (её энергии и энтропии) является вполне обычным обстоятельством. Надо понимать, что разброс возникает за счёт непрерывного обмена энергией между частицами – элементами коллектива. У одних элементов она уменьшается, но при этом у других увеличивается.

Если система находится в термостате, то ещё непрерывно осуществляется обмен энергией и с окружающей средой. Происходит естественное энергетическое перемешивание коллектива, за счёт непрерывного обмена между микрочастицами коллектива. Равновесие постоянно поддерживается через тепловой контакт с внешним термостатом. Так в статистике чаще всего именуют окружающую среду.

7. Метод Гиббса. Статистический ансамбль и его элементы.

Создавая универсальную схему статистической механики, Гиббс использовал удивительно простой приём.

Любая реальная макроскопическая система это коллектив из огромного множества элементов – подсистем. Подсистемы могут иметь и макроскопические размеры, и могут быть микроскопическими, вплоть до атомов и молекул. Всё зависит от рассматриваемой задачи и уровня исследования.

В разные моменты времени в разных точках реальной системы, в разных пространственных регионах макроскопического коллектива мгновенные характеристики его малых элементов могут быть различны. "Неоднородности" в коллективе постоянно мигрируют.

Атомы и молекулы могут находиться в разных квантовых состояниях. Коллектив огромный, и в нём представлены различные комбинации состояний физически одинаковых частиц. На атомно-молекулярном уровне всегда происходит обмен состояниями, имеет место их непрерывное перемешивание. Благодаря этому свойства различных фрагментов макроскопической системы выравниваются, и физически наблюдаемое макроскопическое состояние термодинамической системы внешне выглядит неизменным...

10. Основные постулаты статистической термодинамики

При описании систем, состоящих из большого числа частиц, можно использовать два подхода: микроскопический и макроскопический. В первом подходе, основанном на классической или квантовой механике, подробно характеризуется микросостояние системы, например, координаты и импульсы каждой частицы в каждый момент времени. Микроскопическое описание требует решения классических или квантовых уравнений движения для огромного числа переменных. Так, каждое микросостояние идеального газа в классической механике описывается 6N переменными (N - число частиц): 3N координат и 3N проекций импульса.

Макроскопический подход, который использует классическая термодинамика, характеризует только макросостояния системы и использует для этого небольшое число переменных, например, три: температуру, объем и число частиц. Если система находится в равновесном состоянии, то ее макроскопические параметры постоянны, тогда как микроскопические параметры изменяются со временем. Это означает, что каждому макросостоянию соответствует несколько (на самом деле, бесконечно много) микросостояний.

Статистическая термодинамика устанавливает связь между этими двумя подходами. Основная идея заключается в следующем: если каждому макросостоянию соответствует много микросостояний, то каждое из них вносит в макросостояние свой вклад. Тогда свойства макросостояния можно рассчитать как среднее по всем микросостояниям, т.е. суммируя их вклады с учетом статистического веса.

Усреднение по микросостояниям проводят с использованием понятия статистического ансамбля. Ансамбль - это бесконечный набор идентичных систем, находящихся во всех возможных микросостояниях, соответствующих одному макросостоянию. Каждая система ансамбля - это одно микросостояние. Весь ансамбль описывается некоторой функцией распределения по координатам и импульсам (p , q , t ), которая определяется следующим образом:

(p , q , t ) dp dq - это вероятность того, что система ансамбля находится в элементе объема dp dq вблизи точки (p , q ) в момент времени t .

Смысл функции распределения состоит в том, что она определяет статистический вес каждого микросостояния в макросостоянии.

Из определения следуют элементарные свойства функции распределения:

1. Нормировка

. (10.1)

2. Положительная определенность

(p , q , t ) і 0 (10.2)

Многие макроскопические свойства системы можно определить как среднее значение функций координат и импульсов f (p , q ) по ансамблю :

Например, внутренняя энергия - это среднее значение функции Гамильтона H (p ,q ):

Существование функции распределения составляет суть основного постулата классической статистической механики :

Макроскопическое состояние системы полностью задается некоторой функцией распределения, которая удовлетворяет условиям (10.1) и (10.2).

Для равновесных систем и равновесных ансамблей функция распределения не зависит явно от времени: = (p ,q ). Явный вид функции распределения зависит от типа ансамбля. Различают три основных типа ансамблей:

1) Микроканонический ансамбль описывает изолированные системы и характеризуется переменными: E (энергия), V (объем), N (число частиц). В изолированной системе все микросостояния равновероятны (постулат равной априорной вероятности ):

2) Канонический ансамбль описывает системы, находящиеся в тепловом равновесии с окружающей средой. Тепловое равновесие характеризуется температурой T . Поэтому функция распределения также зависит от температуры:

(10.6)

(k = 1.38 10 -23 Дж/К - постоянная Больцмана). Значение константы в (10.6) определяется условием нормировки (см. (11.2)).

Частным случаем канонического распределения (10.6) является распределение Максвелла по скоростям v, которое справедливо для газов:

(10.7)

(m - масса молекулы газа). Выражение (v)d v описывает вероятность того, что молекула имеет абсолютное значение скорости в интервале от v до v + d v. Максимум функции (10.7) дает наиболее вероятную скорость молекул, а интеграл

Среднюю скорость молекул.

Если система имеет дискретные уровни энергии и описывается квантовомеханически, то вместо функции Гамильтона H (p ,q ) используют оператор Гамильтона H , а вместо функции распределения - оператор матрицы плотности :

(10.9)

Диагональные элементы матрицы плотности дают вероятность того, что система находится в i -ом энергетическом состоянии и имеет энергию E i :

(10.10)

Значение константы определяется условием нормировки: S i = 1:

(10.11)

Знаменатель этого выражения называют суммой по состояниям (см. гл. 11). Он имеет ключевое значение для статистической оценки термодинамических свойств системы Из (10.10) и (10.11) можно найти число частиц N i , имеющих энергию E i :

(10.12)

(N - общее число частиц). Распределение частиц (10.12) по уровням энергии называют распределением Больцмана , а числитель этого распределения - больцмановским фактором (множителем). Иногда это распределение записывают в другом виде: если существует несколько уровней с одинаковой энергией E i , то их объединяют в одну группу путем суммирования больцмановских множителей:

(10.13)

(g i - число уровней с энергией E i , или статистический вес).

Многие макроскопические параметры термодинамической системы можно вычислить с помощью распределения Больцмана. Например, средняя энергия определяется как среднее по уровням энергии с учетом их статистических весов:

, (10.14)

3) Большой канонический ансамбль описывает открытые системы, находящиеся в тепловом равновесии и способные обмениваться веществом с окружающей средой. Тепловое равновесие характеризуется температурой T , а равновесие по числу частиц - химическим потенциалом . Поэтому функция распределения зависит от температуры и химического потенциала. Явное выражение для функции распределения большого канонического ансамбля мы здесь использовать не будем.

В статистической теории доказывается, что для систем с большим числом частиц (~ 10 23) все три типа ансамблей эквивалентны друг другу. Использование любого ансамбля приводит к одним и тем же термодинамическим свойствам, поэтому выбор того или иного ансамбля описания термодинамической системы диктуется только удобством математической обработки функций распределения.

ПРИМЕРЫ

Пример 10-1. Молекула может находиться на двух уровнях с энергиями 0 и 300 см -1 . Какова вероятность того, что молекула будет находиться на верхнем уровне при 250 о С?

Решение . Надо применить распределение Больцмана, причем для перевода спектроскопической единицы энергии см -1 в джоули используют множитель hc (h = 6.63 10 -34 Дж. c, c = 3 10 10 см/с): 300 см -1 = 300 6.63 10 -34 3 10 10 = 5.97 10 -21 Дж.

Ответ . 0.304.

Пример 10-2. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . При какой температуре а) все молекулы будут находиться на нижнем уровне, б) число молекул на нижнем уровне будет равно числу молекул на верхних уровнях, в) число молекул на нижнем уровне будет в три раза меньше, чем число молекул на верхних уровнях?

Решение . Воспользуемся распределением Больцмана (10.13):

а) N 0 / N = 1; exp(-E /kT ) = 0; T = 0. При понижении температуры молекулы накапливаются на нижних уровнях.

б) N 0 / N = 1/2; exp(-E /kT ) = 1/3; T = E / [k ln(3)].

в) N 0 / N = 1/4; exp(-E /kT ) = 1; T = . При высоких температурах молекулы равномерно распределены по уровням энергии, т.к. все больцмановские множители почти одинаковы и равны 1.

Ответ . а) T = 0; б) T = E / [k ln(3)]; в) T = .

Пример 10-3. При нагревании любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с ростом температуры.

Решение . Заселенность - доля молекул, находящихся на определенном энергетическом уровне. По условию, производная от этой величины по температуре должна быть положительна:

Во второй строчке мы использовали определение средней энергии (10.14). Таким образом, заселенность возрастает с ростом температуры для всех уровней, превышающих среднюю энергию системы.

Ответ . .

ЗАДАЧИ

10-1. Молекула может находиться на двух уровнях с энергиями 0 и 100 см -1 . Какова вероятность того, что молекула будет находиться на низшем уровне при 25 о С?

10-2. Молекула может находиться на двух уровнях с энергиями 0 и 600 см -1 . При какой температуре на верхнем уровне будет в два раза меньше молекул, чем на нижнем?

10-3. Молекула может находиться на уровне с энергией 0 или на одном из трех уровней с энергией E . Найдите среднюю энергию молекул: а) при очень низких температурах, б) при очень высоких температурах.

10-4. При охлаждении любой термодинамической системы заселенность одних уровней увеличивается, а других уменьшается. Используя закон распределения Больцмана, определите, какова должна быть энергия уровня для того, чтобы его заселенность увеличивалась с уменьшением температуры.

10-5. Рассчитайте наиболее вероятную скорость молекул углекислого газа при температуре 300 К.

10-6. Рассчитайте среднюю скорость атомов гелия при нормальных условиях.

10-7. Рассчитайте наиболее вероятную скорость молекул озона при температуре -30 о С.

10-8. При какой температуре средняя скорость молекул кислорода равна 500 м/с?

10-9. При некоторых условиях средняя скорость молекул кислорода равна 400 м/с. Чему равна средняя скорость молекул водорода при этих же условиях?

10-10. Какова доля молекул массой m , имеющих скорость выше средней при температуре T ? Зависит ли эта доля от массы молекул и температуры?

10-11. Пользуясь распределением Максвелла, рассчитайте среднюю кинетическую энергию движения молекул массой m при температуре T . Равна ли эта энергия кинетической энергии при средней скорости?

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.