Химические свойства простого вещества определяются. Общая характеристика металлов

Химические свойства вещества зависят не только от того, из каких химических элементов оно состоит, но и от структуры молекул вещества (структурная изомерия) и от пространственной конфигурации молекул (конформация , стереоизомерия). Как правило, вещества, имеющие одинаковый состав и структуру, имеют и одинаковые химические свойства, за исключением реакций с веществами другой пространственной конфигурации. Это различие особенно важно в биохимии , например, способность белка к реакции с другими биологически активными веществами может зависеть от способа его сворачивания .

Примеры химических свойств

См. также

Примечания


Wikimedia Foundation . 2010 .

Смотреть что такое "Химические свойства" в других словарях:

    Химические свойства - – определяют способность материала к химическим превращениям при контакте с веществами внешней среды (в том числе агрессивной), к сохранению состава и структуры в условиях инертной окружающей среды, химическому взаимодействию компонентов… …

    химические свойства - — EN chemical property Properties of a substance depending on the arrangement of the atoms in the molecule, e.g. bio availability, degradability, persistence, etc. (Source: RRDA)… …

    химические свойства - – совокупность электромагнитных взаимодействий между химическими элементами, приводящих к образованию равновесных устойчивых систем (молекул, ионов, радикалов). Словарь по аналитической химииХимические термины

    химические свойства - cheminės savybės statusas T sritis automatika atitikmenys: angl. chemical properties vok. chemische Eigenschaften, f rus. химические свойства, n pranc. propriétés chimiques, f … Automatikos terminų žodynas

    Химические свойства спиртов это химические реакции спиртов во взаимодействии с другими веществами. Они определяются в основном наличием гидроксильной группы и строением углеводородной цепи, а также их взаимным влиянием: Чем больше… … Википедия

    Физико-химические свойства - – характеризуют влияние физического состояния материала на протекание определенных химических процессов (например, степень дисперсности материала влияет на кинетику химических реакций). [Косых, А. В. Искусственные и природные строительные… … Энциклопедия терминов, определений и пояснений строительных материалов

    Физико-химические свойства огнеупорного сырья - [огнеупора] –совокупность химического и/или зернового состава огнеупорного сырья [огнеупора], его термомеханических и теплофизических свойств, определяющих область применения. [ГОСТ Р 52918 2008] Рубрика термина: Сырье Рубрики энциклопедии … Энциклопедия терминов, определений и пояснений строительных материалов

    Значимость предмета статьи поставлена под сомнение. Пожалуйста, покажите в статье значимость её предмета, добавив в неё доказательства значимости по частным критериям значимости или, в случае если частные критерии значимости для… … Википедия

    физические и химические свойства - fizikinės ir cheminės savybės statusas T sritis automatika atitikmenys: angl. physicochemical properties vok. physikalish chemische Eigenschaften, f rus. физические и химические свойства, n pranc. propriétés physico chimiques, f … Automatikos terminų žodynas

    физико-химические свойства - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN physicochemical properties … Справочник технического переводчика

Книги

  • Физико-химические свойства полупроводниковых веществ. Справочник , . В справочнике систематизированы основные свойства чистых неорганических кристаллических, а также некоторых стеклообразных веществ элементарных, двойных, тройных и более сложных…

Все химические элементы разделяют на металлы и неметаллы в зависимости от строения и свойств их атомов. Также на металлы и неметаллы классифицируют образуемые элементами простые вещества, исходя из их физических и химических свойств.

В Периодической системе химических элементов Д.И. Менделеева неметаллы расположены по диагонали: бор – астат и над ней в главных подгруппах.

Для атомов металлов характерны сравнительно большие радиусы и небольшое число электронов на внешнем уровне от 1 до 3 (исключение: германий, олово свинец – 4; сурьма и висмут - 5; полоний - 6 электронов).

Атомам неметаллов, наоборот, свойственны небольшие радиусы атомов и число электронов на внешнем уровне от 4 до 8 (исключение бор, у него таких электронов – три).

Отсюда стремление атомов металлов к отдаче внешних электронов, т.е. восстановительные свойства, а для атомов неметаллов – стремление к приему недостающих до устойчивого восьмиэлектронного уровня электронов, т.е. окислительные свойства.

Металлы

В металлах – металлическая связь и металлическая кристаллическая решетка. В узлах решетки находятся положительно заряженные ионы металлов, связанные посредством обобществленных внешних электронов, принадлежащих всему кристаллу.

Это обуславливает все важнейшие физические свойства металлов: металлический блеск, электро- и теплопроводность, пластичность (способность изменять форму под внешним воздействием) и некоторые другие, характерные для этого класса простых веществ.

Металлы I группы главной подгруппы называют щелочными металлами.

Металлы II группы: кальций, стронций, барий – щелочноземельными.

Химические свойства металлов

В химических реакциях металлы проявляют только восстановительные свойства, т.е. их атомы отдают электроны, образуя в результате положительные ионы.

1. Взаимодействуют с неметаллами:

а) кислородом (с образованием оксидов)

Щелочные и щелочноземельные металлы окисляются легко при обычных условиях, поэтому их хранят под слоем вазелинового масла или керосина.

4Li + O 2 = 2Li 2 O

2Ca + O 2 = 2CaO

Обратите внимание: при взаимодействии натрия – образуется пероксид, калия - надпероксид

2Na + O 2 = Na 2 O 2 , К + О2 = КО2

а оксиды получают прокаливанием пероксида с соответствующими металлом:

2Na + Na 2 O 2 = 2Na 2 O

Железо, цинк, медь и другие менее активные металлы медленно окисляются на воздухе и активно при нагревании.

3Fe + 2O 2 = Fe 3 O 4 (смесь двух оксидов: FeO и Fe 2 O 3)

2Zn + O 2 = 2ZnO

2Cu + O 2 = 2CuO

Золото и платиновые металлы не окисляются кислородом воздуха ни при каких условиях.

б) водородом (с образованием гидридов)

2Na + H 2 = 2NaH

Ca + H 2 = CaH 2

в) хлором (с образованием хлоридов)

2K + Cl 2 = 2KCl

Mg + Cl 2 = MgCl 2

2Al + 3Cl 2 =2AlCl 3

Обратите внимание: при взаимодействии железа образуется хлорид железа (III):

2Fe + 3Cl 2 = 2FeCl 3

г) серой (с образованием сульфидов)

2Na + S = Na 2 S

Hg + S = HgS

2Al + 3S = Al 2 S 3

Обратите внимание: при взаимодействии железа образуется сульфид железа (II):

Fe + S = FeS

д) азотом (с образованием нитридов)

6K + N 2 = 2K 3 N

3Mg + N 2 = Mg 3 N 2

2Al + N 2 = 2AlN

2. Взаимодействуют со сложными веществами:

Необходимо помнить, что по восстановительной способности металлы расположены в ряд, который называют электрохимическим рядом напряжений или активности металлов (вытеснительный ряд Бекетова Н.Н.):

Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Co, Ni, Sn, Pb, (H 2), Cu, Hg, Ag, Au, Pt

а) водой

Металлы, расположенные в ряду до магния, при обычных условиях вытесняют водород из воды, образуя растворимые основания – щелочи.

2Na + 2H 2 O = 2NaOH + H 2

Ba + H 2 O = Ba(OH) 2 + H 2

Магний взаимодействует с водой при кипячении.

Mg + 2H 2 O = Mg(OH) 2 + H 2

Алюминий при удалении оксидной пленки бурно реагирует с водой.

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2

Остальные металлы, стоящие в ряду до водорода, при определенных условиях тоже могут вступать в реакцию с водой с выделением водорода и образованием оксидов.

3Fe + 4H 2 O = Fe 3 O 4 + 4H 2

б) растворами кислот

(Кроме концентрированной серной кислоты и азотной кислоты любой концентрации. См. раздел «Окислительно-восстановительные реакции».)

Обратите внимание: не используют для проведения реакций нерастворимую кремниевую кислоту

Металлы, стоящие в ряду от магния до водорода, вытесняют водород из кислот.

Mg + 2HCl = MgCl 2 + H 2

Обратите внимание: образуются соли двухвалентного железа.

Fe + H 2 SO 4(разб.) = FeSO 4 + H 2

Образование нерастворимой соли препятствует протеканию реакции. Например, свинец практически не реагирует с раствором серной кислоты из-за образования на поверхности нерастворимого сульфата свинца.

Металлы, стоящие в ряду после водорода, НЕ вытесняют водород.

в) растворами солей

Металлы, стоящие в ряду до магния и активно реагирующие с водой, не используют для проведения таких реакций.

Для остальных металлов выполняется правило:

Каждый металл вытесняет из растворов солей другие металлы, расположенные в ряду правее него, и сам может быть вытеснен металлами, расположенными левее него.

Cu + HgCl 2 = Hg + CuCl 2

Fe + CuSO 4 = FeSO 4 + Cu

Как и в случае с растворами кислот, образование нерастворимой соли препятствует протеканию реакции.

г) растворами щелочей

Взаимодействуют металлы, гидроксиды которых амфотерны.

Zn + 2NaOH + 2H 2 O = Na 2 + H 2

2Al + 2KOH + 6H 2 O = 2K + 3H 2

д) с органическими веществами

Щелочные металлы со спиртами и фенолом.

2C 2 H 5 OH + 2Na = 2C 2 H 5 ONa + H 2

2C 6 H 5 OH + 2Na = 2C 6 H 5 ONa + H 2

Металлы участвуют в реакциях с галогеналканами, которые используют для получения низших циклоалканов и для синтезов, в ходе которых происходит усложнение углеродного скелета молекулы (реакция А.Вюрца):

CH 2 Cl-CH 2 -CH 2 Cl + Zn = C 3 H 6 (циклопропан) + ZnCl 2

2CH 2 Cl + 2Na = C 2 H 6 (этан) + 2NaCl

Неметаллы

В простых веществах атомы неметаллов связаны ковалентной неполярной связью. При этом образуются одинарные (в молекулах H 2 , F 2 , Cl 2 , Br 2 , I 2), двойные (в молекулах О 2), тройные (в молекулах N 2) ковалентные связи.

Строение простых веществ – неметаллов:

1. молекулярное

При обычных условиях большинство таких веществ представляют собой газы (Н 2 , N 2 , O 2 , O 3 , F 2 , Cl 2) или твердые вещества (I 2 , P 4 , S 8) и лишь единственный бром (Br 2) является жидкостью. Все эти вещества молекулярного строения, поэтому летучи. В твердом состоянии они легкоплавки из-за слабого межмолекулярного взаимодействия, удерживающего их молекулы в кристалле, и способны к возгонке.

2. атомное

Эти вещества образованы кристаллами, в узлах которых находятся атомы: (B n , С n , Si n , Gen , Se n , Te n). Из-за большой прочности ковалентных связей они, как правило, имеют высокую твердость, и любые изменения, связанные с разрушением ковалентной связи в их кристаллах (плавление, испарение), совершаются с большой затратой энергии. Многие такие вещества имеют высокие температуры плавления и кипения, а летучесть их весьма мала.

Многие элементы – неметаллы образуют несколько простых веществ – аллотропных модификаций. Аллотропия может быть связана с разным составом молекул: кислород О 2 и озон О 3 и с разным строением кристаллов: аллотропными модификациями углерода являются графит, алмаз, карбин, фуллерен. Элементы – неметаллы, имеющие аллотропные модификации: углерод, кремний, фосфор, мышьяк, кислород, сера, селен, теллур.

Химические свойства неметаллов

У атомов неметаллов преобладают окислительные свойства, то есть способность присоединять электроны. Эту способность характеризует значение электроотрицательности. В ряду неметаллов

At, B, Te, H, As, I, Si, P, Se, C, S, Br, Cl, N, O, F

электроотрицательность возрастает и усиливаются окислительные свойства.

Отсюда следует, что для простых веществ – неметаллов будут характерны как окислительные, так и восстановительные свойства, за исключением фтора – самого сильного окислителя.

1. Окислительные свойства

а) в реакциях с металлами (металлы всегда восстановители)

2Na + S = Na 2 S (сульфид натрия)

3Mg + N 2 = Mg 3 N 2 (нитрид магния)

б) в реакциях с неметаллами, расположенными левее данного, то есть с меньшим значением электроотрицательности. Например, при взаимодействии фосфора и серы окислителем будет сера, так как фосфор имеет меньшее значение электроотрицательности:

2P + 5S = P 2 S 5 (сульфид фосфора V)

Большинство неметаллов будут окислителями в реакциях с водородом:

H 2 + S = H 2 S

H 2 + Cl 2 = 2HCl

3H 2 + N 2 = 2NH 3

в) в реакциях с некоторыми сложными веществами

Окислитель – кислород, реакции горения

CH 4 + 2O 2 = CO 2 + 2H 2 O

2SO 2 + O 2 = 2SO 3

Окислитель – хлор

2FeCl 2 + Cl 2 = 2FeCl 3

2KI + Cl 2 = 2KCl + I 2

CH 4 + Cl 2 = CH 3 Cl + HCl

Ch 2 =CH 2 + Br 2 = CH 2 Br-CH 2 Br

2. Восстановительные свойства

а) в реакциях с фтором

S + 3F 2 = SF 6

H 2 + F 2 = 2HF

Si + 2F 2 = SiF 4

б) в реакциях с кислородом (кроме фтора)

S + O 2 = SO 2

N 2 + O 2 = 2NO

4P + 5O 2 = 2P 2 O 5

C + O 2 = CO 2

в) в реакциях со сложными веществами – окислителями

H 2 + CuO = Cu + H 2 O

6P + 5KClO 3 = 5KCl + 3P 2 O 5

C + 4HNO 3 = CO 2 + 4NO 2 + 2H 2 O

H 2 C=O + H 2 = CH 3 OH

3. Реакции диспропорционирования: один и тот же неметалл является и окислителем и восстановителем

Cl 2 + H 2 O = HCl + HClO

3Cl 2 + 6KOH = 5KCl + KClO 3 + 3H 2 O

Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

Как видно из рисунка, подавляющее большинство элементов являются металлами.

По своей химической природе металлы – это химические элементы, атомы которых отдают электроны с внешнего или предвнешнего энергетического уровней, образуя при этом положительно заряженные ионы.

Практически все металлы имеют сравнительно большие радиусы и малое число электронов (от 1 до 3) на внешнем энергетическом уровне. Для металлов характерны низкие значения электроотрицательности и восстановительные свойства.

Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН —) 2 , (Li +)2СO 3 2-.

Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga 2 , в твердом состоянии хлориды алюминия и ртути (II) АlСl 3 и НgСl 2 содержат сильно ковалентные связи, но в растворе АlСl 3 диссоциирует почти полностью, а НgСl 2 — в очень малой степени (да и то на ионы НgСl + и Сl —).


Общие физические свойства металлов

Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность . Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

I. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O 2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl 2 – t° → NiCl 2

4) С азотом:
3Ca + N 2 – t° → Ca 3 N 2

5) С фосфором:
3Ca + 2P – t° → Ca 3 P 2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H 2 → 2LiH

Ca + H 2 → CaH 2

II. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl → MgCl 2 + H 2

2Al+ 6HCl → 2AlCl 3 + 3H 2

6Na + 2H 3 PO 4 → 2Na 3 PO 4 + 3H 2 ­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

Zn + 2H 2 SO 4(К) → ZnSO 4 + SO 2 + 2H 2 O

4Zn + 5H 2 SO 4(К) → 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 4H 2 SO 4(К) → 3ZnSO 4 + S + 4H 2 O

2H 2 SO 4(к) + Сu → Сu SO 4 + SO 2 + 2H 2 O

10HNO 3 + 4Mg → 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4HNO 3 (к) + Сu → Сu (NO 3) 2 + 2NO 2 + 2H 2 O

III. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H 2 O → 2NaOH + H 2

Ca+ 2H 2 O → Ca(OH) 2 + H 2

2) Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H 2 O – t° → ZnO + H 2 ­

3) Неактивные (Au, Ag, Pt) — не реагируют.

IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl 2 → Hg+ CuCl 2

Fe+ CuSO 4 → Cu+ FeSO 4

В промышленности часто используют не чистые металлы, а их смеси - сплавы , в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой , в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией . Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их , т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО 2 и SО 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия ).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении ; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь ), имеют высокую коррозионную стойкость.

электрометаллургия , т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

пирометаллургия , т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

гидрометаллургия , т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO 4 действием цинка, железа или алюминия).

В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды ). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.

IIA группа содержит только металлы – Be (бериллий), Mg (магний), Ca (кальций), Sr (стронций), Ba (барий) и Ra (радий). Химические свойства первого представителя этой группы — бериллия — наиболее сильно отличаются от химических свойств остальных элементов данной группы. Его химические свойства во многом даже более схожи с алюминием, чем с остальными металлами IIA группы (так называемое «диагональное сходство»). Магний же по химическим свойствами тоже заметно отличается от Ca, Sr, Ba и Ra, но все же имеет с ними намного больше сходных химических свойств, чем с бериллием. В связи со значительным сходством химических свойств кальция, стронция, бария и радия их объединяют в одно семейство, называемое щелочноземельными металлами .

Все элементы IIA группы относятся к s -элементам, т.е. содержат все свои валентные электроны на s -подуровне. Таким образом, электронная конфигурация внешнего электронного слоя всех химических элементов данной группы имеет вид ns 2 , где n – номер периода, в котором находится элемент.

Вследствие особенностей электронного строения металлов IIA группы, данные элементы, помимо нуля, способны иметь только одну единственную степень окисления, равную +2. Простые вещества, образованные элементами IIA группы, при участии в любых химических реакциях способны только окисляться, т.е. отдавать электроны:

Ме 0 – 2e — → Ме +2

Кальций, стронций, барий и радий обладают крайне высокой химической активностью. Простые вещества, образованные ими, являются очень сильными восстановителями. Также сильным восстановителем является магний. Восстановительная активность металлов подчиняется общим закономерностям периодического закона Д.И. Менделеева и увеличивается вниз по подгруппе.

Взаимодействие с простыми веществами

с кислородом

Без нагревания бериллий и магний не реагируют ни с кислородом воздуха, ни с чистым кислородом ввиду того, что покрыты тонкими защитными пленками, состоящими соответственно из оксидов BeO и MgO. Их хранение не требует каких-либо особых способов защиты от воздуха и влаги, в отличие от щелочноземельных металлов, которые хранят под слоем инертной по отношению к ним жидкости, чаще всего керосина.

Be, Mg, Ca, Sr при горении в кислороде образуют оксиды состава MeO, а Ba – смесь оксида бария (BaO) и пероксида бария (BaO 2):

2Mg + O 2 = 2MgO

2Ca + O 2 = 2CaO

2Ba + O 2 = 2BaO

Ba + O 2 = BaO 2

Следует отметить, что при горении щелочноземельных металлов и магния на воздухе побочно протекает также реакция этих металлов с азотом воздуха, в результате которой, помимо соединений металлов с кислородом, образуются также нитриды c общей формулой Me 3 N 2 .

с галогенами

Бериллий реагирует с галогенами только при высоких температурах, а остальные металлы IIA группы — уже при комнатной температуре:

Мg + I 2 = MgI 2 – иодид магния

Са + Br 2 = СаBr 2 – бромид кальция

Ва + Cl 2 = ВаCl 2 – хлорид бария

с неметаллами IV–VI групп

Все металлы IIA группы реагируют при нагревании со всеми неметаллами IV–VI групп, но в зависимости от положения металла в группе, а также активности неметаллов требуется различная степень нагрева. Поскольку бериллий является среди всех металлов IIA группы наиболее химически инертным, при проведении его реакций с неметаллами требуется существенно бо льшая температура.

Следует отметить, что при реакции металлов с углеродом могут образовываться карбиды разной природы. Различают карбиды, относящиеся к метанидам и условно считающимися производными метана, в котором все атомы водорода замещены на металл. Они так же, как и метан, содержат углерод в степени окисления -4, и при их гидролизе или взаимодействии с кислотами-неокислителями одним из продуктов является метан. Также существует другой тип карбидов – ацетилениды, которые содержат ион C 2 2- , фактически являющийся фрагментом молекулы ацетилена. Карбиды типа ацетиленидов при гидролизе или взаимодействии с кислотами-неокислителями образуют ацетилен как один из продуктов реакции. То, какой тип карбида – метанид или ацетиленид — получится при взаимодействии того или иного металла с углеродом, зависит от размера катиона металла. С ионами металлов, обладающих малым значением радиуса, образуются, как правило, метаниды, с ионами более крупного размера – ацетилениды. В случае металлов второй группы метанид получается при взаимодействии бериллия с углеродом:

Остальные металлы II А группы образуют с углеродом ацетилениды:

С кремнием металлы IIA группы образуют силициды — соединения вида Me 2 Si, с азотом – нитриды (Me 3 N 2), фосфором – фосфиды (Me 3 P 2):

с водородом

Все щелочноземельные металлы реагируют при нагревании с водородом. Для того чтобы магний прореагировал с водородом, одного нагрева, как в случае со щелочноземельными металлами, недостаточно, требуется, помимо высокой температуры, также и повышенное давление водорода. Бериллий не реагирует с водородом ни при каких условиях.

Взаимодействие со сложными веществами

с водой

Все щелочноземельные металлы активно реагируют с водой с образованием щелочей (растворимых гидроксидов металлов) и водорода. Магний реагирует с водой лишь при кипячении вследствие того, что при нагревании в воде растворяется защитная оксидная пленка MgO. В случае бериллия защитная оксидная пленка очень стойкая: с ним вода не реагирует ни при кипячении, ни даже при температуре красного каления:

c кислотами-неокислителями

Все металлы главной подгруппы II группы реагируют с кислотами-неокислителями, поскольку находятся в ряду активности левее водорода. При этом образуются соль соответствующей кислоты и водород. Примеры реакций:

Ве + Н 2 SO 4(разб.) = BeSO 4 + H 2

Mg + 2HBr = MgBr 2 + H 2

Ca + 2CH 3 COOH = (CH 3 COO) 2 Ca + H 2

c кислотами-окислителями

− разбавленной азотной кислотой

С разбавленной азотной кислотой реагируют все металлы IIA группы. При этом продуктами восстановления вместо водорода (как в случае кислот-неокислителей) являются оксиды азота, преимущественно оксид азота (I) (N 2 O), а в случае сильно разбавленной азотной кислоты – нитрат аммония (NH 4 NO 3):

4Ca + 10HNO 3( разб .) = 4Ca(NO 3) 2 + N 2 O + 5H 2 O

4Mg + 10HNO 3(сильно разб.) = 4Mg(NO 3) 2 + NН 4 NO 3 + 3H 2 O

− концентрированной азотной кислотой

Концентрированная азотная кислота при обычной (или низкой) температуре пассивирует бериллий, т.е. в реакцию с ним не вступает. При кипячении реакция возможна и протекает преимущественно в соответствии с уравнением:

Магний и щелочноземельные металлы реагируют с концентрированной азотной кислотой с образованием большого спектра различных продуктов восстановления азота.

− концентрированной серной кислотой

Бериллий пассивируется концентрированной серной кислотой, т.е. не реагирует с ней в обычных условиях, однако реакция протекает при кипячении и приводит к образованию сульфата бериллия, диоксида серы и воды:

Be + 2H 2 SO 4 → BeSO 4 + SO 2 + 2H 2 O

Барий также пассивируется концентрированной серной кислотой вследствие образования нерастворимого сульфата бария, но реагирует с ней при нагревании, сульфат бария растворяется при нагревании в концентрированной серной кислоте благодаря его превращению в гидросульфат бария.

Остальные металлы главной IIA группы реагируют с концентрированной серной кислотой при любых условиях, в том числе на холоду. Восстановление серы может происходить до SO 2 , H 2 S и S в зависимости от активности металла, температуры проведения реакции и концентрации кислоты:

Mg + H 2 SO 4( конц .) = MgSO 4 + SO 2 + H 2 O

3Mg + 4H 2 SO 4( конц .) = 3MgSO 4 + S↓ + 4H 2 O

4Ca + 5H 2 SO 4( конц .) = 4CaSO 4 +H 2 S + 4H 2 O

с щелочами

Магний и щелочноземельные металлы со щелочами не взаимодействуют, а бериллий легко реагирует как растворами щелочей, так и с безводными щелочами при сплавлении. При этом при осуществлении реакции в водном растворе в реакции участвует также и вода, а продуктами являются тетрагидроксобериллаты щелочных или щелочноземельных металлов и газообразный водород:

Be + 2KOH + 2H 2 O = H 2 + K 2 — тетрагидроксобериллат калия

При осуществлении реакции с твердой щелочью при сплавлении образуются бериллаты щелочных или щелочноземельных металлов и водород

Be + 2KOH = H 2 + K 2 BeO 2 — бериллат калия

с оксидами

Щелочноземельные металлы, а также магний могут восстанавливать менее активные металлы и некоторые неметаллы из их оксидов при нагревании, например:

Метод восстановления металлов из их оксидов магнием называют магниетермией.

Неорганические вещества бывают простыми и сложными. Простые вещества делятся на металлы (K, Na, Li) и неметаллы (O, Cl, P). Сложные вещества делят на оксиды, гидроксиды (основания), соли и кислоты.

Оксиды

Оксиды - соединения химического элемента (металла или неметалла) с кислородом (степень окисления -2), при этом кислород связан с менее электроотрицательным элементом.

Выделяют:

1. Кислотные оксиды - оксиды, проявляющие кислотные свойства. Образованы неметаллами и кислородом. Примеры: SO3, SO2, CO2, P2O5, N2O5.

2. Амфотерные оксиды - оксиды, которые могут проявлять как основные, так и кислотные свойства (такое свойство называется амфотерность). Примеры: Al2O3, CrO3, ZnO, BeO, PbO.

3. Основные оксиды - оксиды металлов, при этом металлы проявляют степень окисления +1 или +2. Примеры: K2O, MgO, CaO, BaO, Li2O, Na2O.

4. Несолеобразующие оксиды - практически не вступают в реакции, не имеют соответствующих кислот и гидроксидов. Примеры: CO, NO.

Химические свойства основных оксидов

1. Взаимодействие с водой

В реакцию вступают только оксиды щелочных и щелочноземельных металлов, гидроксиды которых образуют растворимое основание

основной оксид + вода → щелочь

K2O + H2O → 2KOH

CaO + H2O → Ca(OH)2

2. Взаимодействие с кислотой

основной оксид + кислота → соль + вода

MgO + H2SO4 → MgSO4 + H2O

Na2O + H2S(изб) → 2NaHS + H2O

MgO(изб) + HCl → Mg(OH)Cl

3. Взаимодействие с кислотными или амфотерными оксидами

основной оксид + кислотный/амфотерный оксид → соль

При этом металл, находящийся в основном оксиде, становится катионом, а кислотный/амфотерный оксид становится анионом (кислотным остатком). Реакции между твердыми оксидами идут при нагревании. Нерастворимые в воде основные оксиды не взаимодействуют с газообразными кислотными оксидами.

BaO + SiO2 (t)→ BaSiO3

K2O + ZnO (t)→ K2ZnO2

FeO + CO2 ≠

4. Взаимодействие с амфотерными гидроксидами

основной оксид + амфотерный гидроксид → соль + вода

Na2O + 2Al(OH)3 (t)→ 2NaAlO2 + 3H2O

5. Разложение при температуре оксидов благородных металлов и ртути

2Ag2O (t)→ 4Ag + O2

2HgO (t)→ 2Hg + O2

6. Взаимодействие с углеродом (С) или водородом (Н2) при высокой температуре.

При восстановлении таким образом оксидов щелочных, щелочноземельных металлов и алюминия выделяется не сам металл, а его карбид.

FeO + C (t)→ Fe + CO

3Fe2O3 + C (t)→ 2Fe3O4 + CO

CaO + 3C (t)→ CaC2 + CO

CaO + 2H2 (t)→ CaH2 + H2O

7. Активные металлы восстанавливают менее активные из их оксидов при высокой температуре

CuO + Zn (t)→ ZnO + Cu

8. Кислород окисляет низшие оксиды в высшие.

Оксиды щелочных и щелочноземельных металлов переходят в пероксиды

4FeO + O2 (t)→ 2Fe2O3

2BaO + O2 (t)→ 2BaO2

2NaO + O2 (t)→ 2Na2O2

Химические свойства кислотных оксидов

1. Взаимодействие с водой

кислотный оксид + вода → кислота

SO3+ H2O → H2SO4

SiO2 + H2O ≠

У некоторых оксидов нет соответствующих кислот, в таком случае происходит реакция диспропорционирования

2NO2 + H2O → HNO3 + HNO2

3NO2 + H2O (t)→ 2HNO3 + NO

2ClO2 + H2O → HClO3 + HClO2

6ClO2 + 3H2O (t)→ 5HClO3 + HCl

В зависимости от количества присоединенных к P2O5 молекул воды образуются три разных кислоты - метафосфорная НРО3, пирофосфорная Н4Р2О7 или ортофосфорная Н3РО4.

P2O5 + H2O → 2HPO3

P2O5 + 2H2O → H4P2O7

P2O5 + 3H2O → 2H3PO4

Оксид хрома соответствует двум кислотам - хромовой H2CrO4 и дихромовой H2Cr2O7(III)

CrO3 + H2O → H2CrO4

2CrO3 + H2O → H2Cr2O7

2. Взаимодействие с основаниями

кислотный оксид + основание → соль + вода

Нерастворимые кислотные оксиды реагируют только при сплавлении, а растворимые - в обычных условиях.

SiO2 + 2NaOH (t)→ Na2SiO3 + H2O

При избытке оксида образуется кислая соль.

CO2(изб) + NaOH → NaHCO3

P2O5(изб) + 2Ca(OH)2 → 2CaHPO4 + H2O

P2O5(изб) + Ca(OH)2 + H2O → Ca(H2PO4)2

При избытке основания образуется основная соль

CO2 + 2Mg(OH)2(изб) → (MgOH)2CO3 + H2O

Оксиды, которые не имеют соответствующих кислот, вступают в реакцию диспропорционирования и образуют при этом две соли.

2NO2 + 2NaOH → NaNO3 + NaNO2 + H2O

2ClO2 + 2NaOH → NaClO3 + NaClO2 + H2O

CO2 реагирует с некоторыми амфотерными гидроксидами (Be(OH)2, Zn(OH)2, Pb(OH)2, Cu(OH)2), при этом образуется основная соль и вода.

CO2 + 2Be(OH)2 → (BeOH)2CO3↓ + H2O

CO2 + 2Cu(OH)2 → (CuOH)2CO3↓ + H2O

3. Взаимодействие с основным или амфотерным оксидом

кислотный оксид + основной/амфотерный оксид → соль

Реакции между твердыми оксидами идут при сплавлении. Амфотерные и нерастворимые в воде основные оксиды взаимодействуют только с твердыми и жидкими кислотными оксидами.

SiO2 + BaO (t)→ BaSiO3

3SO3 + Al2O3 (t)→ Al2(SO4)3

4. Взаимодействие с солью

кислотный нелетучий оксид + соль (t)→ соль + кислотный летучий оксид

SiO2 + CaCO3 (t)→ CaSiO3 + CO2

P2O5 + Na2CO3 → 2Na3PO4 + 2CO2

5. Кислотные оксиды не взаимодействуют с кислотами, но Р2О5 реагирует с безводными кислородсодержащими кислотами.

При этом образуется НРО3 и ангидрид соответствующей кислоты

P2O5 + 2HClO4(безводн) → Cl2O7 + 2HPO3

P2O5 + 2HNO3(безводн) → N2O5 + 2HPO3

6. Вступают в окислительно-восстановительные реакции.

1. Восстановление

При высокой температуре некоторые неметаллы могут восстанавливать оксиды.

CO2 + C (t)→ 2CO

SO3 + C → SO2 + CO

H2O + C (t)→ H2 + CO

Для восстановления неметаллов из их оксидов часто используют магнийтермию.

CO2 + 2Mg → C + 2MgO

SiO2 + 2Mg (t)→ Si + 2MgO

N2O + Mg (t)→ N2 + MgO

2. Низшие оксиды превращаются в высшие при взаимодействии с озоном (или кислородом) при высокой температуре в присутствии катализатора

NO + O3 → NO2 + O2

SO2 + O3 → SO3 + O2

2NO2 + O3 → N2O5 + O2

2CO + O2 (t)→ 2CO2

2SO2 + O2 (t, kat)→ 2SO3

P2O3 + O2 (t)→ P2O5

2NO + O2 (t)→ 2NO2

2N2O3 + O2 (t)→ 2N2O4

3. Оксиды вступают и в другие окислительно-восстановительные реакции

SO2 + NO2 → NO + SO3 4NO2 + O2 + 2H2O → 4HNO3

2SO2 + 2NO → N2 + 2SO3 2N2O5 → 4NO2 + O2

SO2 + 2H2S → 3S↓ + 2H2O 2NO2 (t)→ 2NO + O2

2SO2 + O2 + 2H2O → 2H2SO4 3N2O + 2NH3 → 4N2 + 3H2O

2CO2 + 2Na2O2 → 2Na2CO3 + O2 10NO2 +8P → 5N2 + 4P2O5

N2O + 2Cu (t)→ N2 + Cu2O

2NO + 4Cu (t)→ N2 + 2Cu2O

N2O3 + 3Cu (t)→ N2 + 3CuO

2NO2 + 4Cu (t)→ N2 + 4CuO

N2O5 + 5Cu (t)→ N2 + 5CuO

Химические свойства амфотерных оксидов

1. Не взаимодействуют с водой

амфотерный оксид + вода ≠

2. Взаимодействие с кислотами

амфотерный оксид + кислота → соль + вода

Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O

При избытке многоосновной кислоты образуется кислая соль

Al2O3 + 6H3PO4(изб) → 2Al(H2PO4)3 + 3H2O

При избытке оксида образуется основная соль

ZnO(изб) + HCl → Zn(OH)Cl

Двойные оксиды образуют две соли

Fe3O4 + 8HCl → FeCl2 + 2FeCl3 + 4H2O

3. Взаимодействие с кислотным оксидом

амфотерный оксид + кислотный оксид → соль

Al2O3 + 3SO3 → Al2(SO4)3

4. Взаимодействие с щелочью

амфотерный оксид + щелочь → соль + вода

При сплавлении образуется средняя соль и вода, а в растворе - комплексная соль

ZnO + 2NaOH(тв) (t)→ Na2ZnO2 + H2O

ZnO + 2NaOH + H2O → Na2

5. Взаимодействие с основным оксидом

амфотерный оксид + основной оксид (t)→ соль

ZnO + K2O (t)→ K2ZnO2

6. Взаимодействие с солями

амфотерный оксид + соль (t)→ соль + летучий кислотный оксид

Амфотерные оксиды вытесняют при сплавлении летучие кислотные оксиды из их солей

Al2O3 + K2CO3 (t)→ KAlO2 + CO2

Fe2O3 + Na2CO3 (t)→ 2NaFeO2 + CO2

Химические свойства оснований

Основания - вещества, в состав которых входит катион металла и гидроксид-анион. Основания бывают растворимыми (щелочи - NaOH, KOH, Ba(OH)2) и нерастворимыми (Al2O3, Mg(OH)2).

1. Растворимое основание + индикатор → изменение цвета

При добавлении индикатора в раствор основания его цвет меняется:

Бесцветный фенолфталеин - малиновый

Фиолетовый лакмус - синий

Метилоранж - желтый

2. Взаимодействие с кислотой (реакция нейтрализации)

основание + кислота → соль + вода

По реакции могут быть получены средние, кислые или основные соли. При избытке многоосновной кислоты образуется кислая соль, при избытке многокислотного основания - основная соль.

Mg(OH)2 + H2SO4 → MGSO4 + 2H2O

Mg(OH)2 + 2H2SO4 → MG(HSO4)2 + 2H2O

2Mg(OH)2 + H2SO4 → (MgOH)2SO4 + 2H2O

3. Взаимодействие с кислотными оксидами

основание + кислотный оксид → соль + вода

6NH4OH + P2O5 → 2(NH4)3PO4 + 3H2O

4. Взаимодействие щелочи с амфотерным гидроксидом

щелочь + амфотерный гидроксид → соль + вода

В данной реакции амфотерный гидроксид проявляет кислотные свойства. При реакции в расплаве получается средняя соль и вода, а в растворе - комплексная соль. Гидроксиды железа (III) и хрома (III) растворяются только в концентрированных растворах щелочей.

2KOH(тв) + Zn(OH)2 (t)→ K2ZnO2 + 2H2O

KOH + Al(OH)3 → K

3NaOH(конц) + Fe(OH)3 → Na3

5. Взаимодействие с амфотерным оксидом

щелочь + амфотерный оксид → соль + вода

2NaOH(тв) + Al2O3 (t)→ 2NaAlO2 + H2O

6NaOH + Al2O3 + 3H2O → 2Na3

6. Взаимодействие с солью

Между основанием и солью происходит реакция ионного обмена. Она идет только при выпадении осадка или при выделении газа (при образовании NH4OH).

А. Взаимодействие растворимого основания и растворимой кислой соли

растворимое основание + растворимая кислая соль → средняя соль + вода

Если соль и основание образованы разными катионами, то образуются две средние соли. В случае кислых солей аммония избыток щелочи приводит к образованию гидроксида аммония.

Ba(OH)2 + Ba(HCO3)2 → 2BaCO3↓ + 2H2O

2NaOH(изб) + NH4HS → Na2S + NH4OH + H2O

Б. Взаимодействие растворимого основания с растворимой средней или основной солью.

Возможно несколько вариантов развития событий

растворимое основание + растворимая средняя/основная соль → нерастворимая соль↓ + основание

→ соль + нерастворимое основание↓

→ соль + слабый электролит NH4OH

→ реакция не идет

Реакции идут между растворимыми основаниями и средней солью только в том случае, если в результате образуется нерастворимая соль, или нерастворимое основание, или слабый электролит NH4OH

NaOH + KCl ≠ реакция не идет

Если исходная соль образована многокислотным основанием, при недостатке щелочи образуется основная соль

При действии щелочей на соли серебра и ртути (II) выделяются не их гидроксиды, которые растворяются при 25С, а нерастворимые оксиды Ag2O и HgO.

7. Разложение при температуре

основный гидроксид (t)→ оксид + вода

Ca(OH)2 (t)→ CaO + H2O

NaOH (t)≠

Некоторые основания (AgOH, Hg(OH)2 и NH4OH) разлагаются даже при комнатной температуре

LiOH (t)→ Li2O + H2O

NH4OH (25C)→ NH3 + H2O

8. Взаимодействие щелочи и переходного металла

щелочь + переходный металл → соль + Н2

2Al + 2KOH + 6H2O → 2K +3H2

Zn + 2NaOH(тв) (t)→ Na2ZnO2 + H2

Zn + 2NaOH + 2H2O → Na2 + H2

9. Взаимодействие с неметаллами

Щелочи взаимодействуют с некоторыми неметаллами - Si, S, P, F2, Cl2, Br2, I2. При этом часто в результате диспропорционирования образуются две соли.

Si + 2KOH + H2O → K2SiO3 + 2H2

3S + 6KOH (t)→ 2K2S + K2SO3 + 3H2O

Cl2 +2KOH(конц) → KCl + KClO + H2O (для Br, I)

3Cl2 + 6KOH(конц) (t)→ 5KCl + KClO3 +3H2O (для Br, I)

Cl2 + Ca(OH)2 → CaOCl2 + H2O

4F2 + 6NaOH(разб) → 6NaF + OF2 + O2 + 3H2O

4P + 3NaOH + 3H2O → 3NaH2PO2 + PH3

Гидроксиды, обладающие восстановительными свойствами, способны окисляться кислородом

4Fe(OH)2 + O2 + 2H2O → 4Fe(OH)3 (=Cr)

Химические свойства кислот

1. Изменение цвета индикатора

растворимая кислота + индикатор → изменение цвета

Фиолетовый лакмус и метилоранж окрашиваются в красный, фенолфталеин становится прозрачным

2. Взаимодействие с основаниями (реакция нейтрализации)

кислота + основание → соль + вода

H2SO4 + Mg(OH)2 → MgSO4 + 2H2O

3. Взаимодействие с основным оксидом

кислота + основный оксид → соль + вода

2HCl + CuO → CuCl2 + H2O

4. Взаимодействие с амфотерными гидроксидами с образованием средних, кислых или основных солей

кислота + амфотерный гидроксид → соль + вода

2HCl + Be(OH)2 → BeCl2 + 2H2O

H3PO4() + Zn(OH)2 → ZNHPO4 + 2H2O

HCl + Al(OH)3() → Al(OH)2Cl + H2O

5. Взаимодействие с амфотерными оксидами

кислота + амфотерный оксид → соль + вода

H2SO4 + ZnO → ZnSO4 + H2O

6. Взаимодействие с солями

Общая схема реакции: кислота + соль → соль + кислота

Происходит реакция ионного обмена, которая идет до конца только в случае образования газа или выпадения осадка.

Например: HCl + AgNO3 → AgCl↓ + HNO3

2HBr + K2SiO3 → 2KBr + H2SiO3↓

А. Взаимодействие с солью более летучей или слабой кислоты с образованием газа

HCl + NaHS → NaCl + H2S

Б. Взаимодействие сильной кислоты и соли сильной или средней кислоты с образованием нерастворимой соли

сильная кислота + соль сильной/средней кислоты → нерастворимая соль + кислота

Нелетучая ортофосфорная кислота вытесняет сильные, но летучие соляную и азотную кислоты из их солей при условии образования нерастворимой соли

В. Взаимодействие кислоты с основной солью этой же кислоты

кислота1 + основная соль кислоты1 → средняя соль + вода

HCl + Mg(OH)Cl → MgCl2 + H2O

Г. Взаимодействие многоосновной кислоты с средней или кислой солью этой же кислоты с образованием кислой соли этой же кислоты, содержащей большее число атомов водорода

многоосновная кислота1 + средняя/кислая соль кислоты1 → кислая соль кислоты1

H3PO4 + Ca3(PO4)2 → 3CaHPO4

H3PO4 + CaHPO4 → Ca(H2PO4)2

Д. Взаимодействие сероводородной кислоты с солями Ag, Cu, Pb, Cd, Hg с образованием нерастворимого сульфида

кислота H2S + соль Ag, Cu, Pb, Cd, Hg → Ag2S/CuS/PbS/CdS/HgS↓ + кислота

H2S + CuSO4 → CuS↓ + H2SO4

Е. Взаимодействие кислоты со средней или комплексной солью с амфотерным металлом в анионе

а) в случае недостатка кислоты образуется средняя соль и амфотерный гидроксид

кислота + средняя/комплексная соль в амфотерным металлом в анионе → средняя соль + амфотерный гидроксид

б) в случае избытка кислоты образуются две средние соли и вода

кислота + средняя/комплексная соль с амфотерным металлом в анионе → средняя соль + средняя соль + вода

Ж. В некоторых случаях кислоты с солями вступают в окислительно-восстановительные реакции или реакции комплексообразования:

H2SO4(конц) и I‾/Br‾ (продукты H2S и I2/SO2 и Br2)

H2SO4(конц) и Fe² + (продукты SO2 и Fe³ +)

HNO3 разб/конц и Fe² + (продукты NO/NO2 и Fe³ +)

HNO3 разб/конц и SO3²‾/S²‾ (продукты NO/NO2 и SO4²‾/S или SO4²‾)

HClконц и KMnO4/K2Cr2O7/KClO3 (продукты Cl2 и Mn² + /Cr² + /Cl‾)

3. Взаимодействие концентрированной серной кислоты с твердой солью

Нелетучие кислоты могут вытеснять летучие из их твердых солей

7. Взаимодействие кислоты с металлом

А. Взаимодействие кислоты с металлами, стоящими в ряду до или после водорода

кислота + металл до Н2 → сель металла в минимальной степени окисления + Н2

Fe + H2SO4(разб) → FeSO4 + H2

кислота + металл после Н2 ≠ реакция не идет

Cu + H2SO4(разб) ≠

Б. Взаимодействие концентрированной серной кислоты с металлами

H2SO4(конц) + Au, Pt, Ir, Rh, Ta ≠ реакция не идет

H2SO4(конц) + щелочной/щелочноземельный металл и Mg/Zn → H2S/S/SO2 (в зависимости от условий) + сульфат металла в максимальной степени окисления + Н2О

Zn + 2H2SO4(конц) (t1)→ ZnSO4 + SO2 + 2H2O

3Zn + 4H2SO4(конц) (t2>t1)→ 3ZnSO4 + S↓ + 4H2O

4Zn + 5H2SO4(конц) (t3>t2)→ 4ZnSO4 + H2S + 4H2O

H2SO4(конц) + остальные металлы → SO2 + сульфат металла в максимальной степени окисления + H2O

Cu + 2H2SO4(конц) (t)→ CuSO4 + SO2 + 2H2O

2Al + 6H2SO4(конц) (t)→ Al2(SO4)3 + 3SO2 + 6H2O

В. Взаимодействие концентрированной азотной кислоты с металлами

HNO3(конц) + Au, Pt, Ir, Rh, Ta, Os ≠ реакция не идет

HNO3(конц) + Pt ≠

HNO3(конц) + металл щелочной/щелочноземельный → N2O + нитрат металла в максимальной степени окисления + H2O

4Ba + 10HNO3(конц) → 4Ba(NO3)2 + N2O + 5H2O

HNO3(конц) + остальные металлы при температуре → NO2 + нитрат металла в максbмальной степени окисления + H2O

Ag + 2HNO3(конц) → AgNO3 + NO2 + H2O

С Fe, Co, Ni, Cr и Al взаимодействует только при нагревании, так как при обычных условиях эти металлы азотной кислотой пассивируются - становятся химически стойкими

Г. Взаимодействие разбавленной азотной кислоты с металлами

HNO3(разб) + Au, Pt, Ir, Rh, Ta ≠ реакция не идет

Очень пассивные металлы (Au, Pt) могут быть растворены царской водкой - смесью одного объема концентрированной азотной кислоты с тремя объемами концентрированной соляной кислоты. Окислителем в ней является атомарный хлор, отщепляющийся от хлорида нитрозила, который образуется в результате реакции: HNO3 + 3HCl → 2H2O + NOCl + Cl2

HNO3(разб) + металл щелочной/щелочноземельный → NH3(NH4NO3) + нитрат металла в максимальной степени окисления + H2O

NH3 превращается в NH4NO3 в избытке азотной кислоты

4Ca + 10HNO3(разб) → 4Ca(NO3)2 + NH4NO3 + 3H2O

HNO3(разб) + металл в ряду напряжений до Н2 → NO/N2O/N2/NH3 (в зависимости от условий) + нитрат металла в максимальной степени окисления + Н2О

С остальными металлами, стоящими в ряду напряжений до водорода и неметаллами, HNO3(разб) образует соль, воду и, в основном NO, но, может, в зависимости от условий и N2O, и N2, и NH3/NH4NO3 (чем больше разбавлена кислота, тем ниже степень окисления азота в выделяющемся газообразной продукте)

3Zn + 8HNO3(разб) → 3Zn(NO3)2 + 2NO + 4H2O

4Zn + 10HNO3(разб) → 4Zn(NO3)2 + N2O + 5H2O

5Zn + 12HNO3(разб) → 5Zn(NO3)2 + N2 + 6H2O

4Zn + 10HNO3(оч.разб) → 4Zn(NO3)2 + NH4NO3 + 3H2O

HNO3(разб) + металл после Н2 → NO + нитрат металла в максимальной степени окисления + H2O

С малоактивными металлами, стоящими после Н2, HNO3разб образует соль, воду и NO

3Cu + 8HNO3(разб) → 3Cu(NO3)2 + 2NO + 4H2O

8. Разложение кислот при температуре

кислота (t)→ оксид + вода

H2CO3 (t)→ CO2 + H2O

H2SO3 (t)→ SO2 + H2O

H2SiO3 (t)→ SiO2 + H2O

2H3PO4 (t)→ H4P2O7 + H2O

H4P2O7 (t)→ 2HPO3 + H2O

4HNO3 (t)→ 4NO2 + O2 + 2H2O

3HNO2 (t)→ HNO3 + 2NO + H2O

2HNO2 (t)→ NO2 + NO + H2O

3HCl (t)→ 2HCl + HClO3

4H3PO3 (t)→ 3H3PO4 + PH3

9. Взаимодействие кислоты с неметаллами (окислительно-восстановительная реакция). При этом неметалл окисляется до соответствующей кислоты, а кислота восстанавливается до газообразного оксида: H2SO4(конц) - до SO2; HNO3(конц) - до NO2; HNO3(разб) - до NO.

S + 2HNO3(разб) → H2SO4 + 2NO

S + 6HNO3(конц) → H2SO4 + 6NO2 + 2H2O

S + 2H2SO4(конц) → 3SO2 + CO2 + 2H2O

C + 2H2SO4(конц) → 2SO2 + CO2 + 2H2O

C + 4HNO3(конц) → 4NO2 + CO2 + 2H2O

P + 5HNO3(разб) + 2H2O → 3H3PO4 + 5NO

P + 5HNO3(конц) → HPO3 + 5NO2 + 2H2O

H2S + Г2 → 2HГ + S↓ (кроме F2)

H2SO3 + Г2 + H2O → 2HГ + H2SO4 (кроме F2)

2H2S(водн) + O2 → 2H2O + 2S↓

2H2S + 3O2 → 2H2O + 2SO2 (горение)

2H2S + O2(недост) → 2H2O + 2S↓

Более активные галогены вытесняют менее активные из кислот НГ (исключение: F2 реагирует с водой, а не с кислотой)

2HBr + Cl2 → 2HCl + Br2↓

2HI + Cl2 → 2HCl + I2↓

2HI + Br2 → 2HBr + I2↓

10. Окислительно-восстановительные реакции между кислотами

H2SO4(конц) 2HBr → Br2↓ + SO2 + 2H2O

H2SO4(конц) + 8HI → 4I2↓ + H2S + 4H2O

H2SO4(конц) + HCl ≠

H2SO4(конц) + H2S → S↓ + SO2 + 2H2O

3H2SO4(конц) + H2S → 4SO2 + 4H2O

H2SO3 + 2H2S → 3S↓ + 3H2O

2HNO3(конц) + H2S → S↓ + 2NO2 + 2H2O

2HNO3(конц) + SO2 → H2SO4 + 2NO2

6HNO3(конц) + HI → HIO3 + 6NO2 + 3H2O

2HNO3(конц) + 6HCl → 3Cl2 + 2NO + 4H2O

Химические свойства амфотерных гидроксидов

1. Взаимодействие с основным оксидом

амфотерный гидроксид + основной оксид → соль + вода

2Al(OH)3 +Na2O (t)→ 2NaAlO2 + 3H2O

2. Взаимодействие с амфотерным или кислотным оксидом

амфотерный гидроксид + амфотерный/кислотный оксид ≠ реакция не идет

Некоторые амфотерные оксиды (Be(OH)2, Zn(OH)2, Pb(OH)2) реагируют с кислотным оксидом СО2 с образованием осадков основных солей и воды

2Be(OH)2 + CO2 → (BeOH)2CO3↓ + H2O

3. Взаимодействие с щелочью

амфотерный гидроксид + щелочь → соль + вода

Zn(OH)2 + 2KOH(тв) (t)→ K2ZnO2 + 2H2O

Zn(OH)2 + 2KOH → K2

4. Не взаимодействуют с нерастворимыми основаниями или амфотерными гидроксидами

амфотерный гидроксид + нерастворимое основание/амфотерный гидроксид ≠ реакция не идет

5. Взаимодействие с кислотами

амфотерный гидроксид + кислота → соль + вода

Al(OH)3 + 3HCl → AlCl3 + 3H2O

6. Не реагируют с солями

амфотерный гидроксид + соль ≠ реакция не идет

7. Не реагируют с металлами/неметаллами (простыми веществами)

амфотерный гидроксид + металл/неметалл ≠ реакция не идет

8. Термическое разложение

амфотерный гидроксид (t)→ амфотерный оксид + вода

2Al(OH)3 (t)→ Al2O3 + 3H2O

Zn(OH)2 (t)→ ZnO + H2O

Общие сведения о солях

Представим, что у нас есть кислота и щелочь, проведем между ними реакцию нейтрализации и получим кислоту и соль.

NaOH + HCl → NaCl (хлорид натрия) + H2O

Получается, что соль состоит из катиона металла и аниона кислотного остатка.

Соли бывают:

1. Кислые (с одним или двумя катионами водорода (то есть имеют кислую (или слабо-кислую) среду) - KHCO3, NaHSO3).

2. Средние (имею катион металла и анион кислотного остатка, среду надо определять при помощи рН-метра - BaSO4, AgNO3).

3. Основные (имеют гидроксид-ион, то есть щелочную (или слабо-щелочную) среду - Cu(OH)Cl, Ca(OH)Br).

Также существуют двойные соли, образующие при диссоциации катионы двух металлов (K).

Соли, за небольшим исключением, являются твердыми кристаллическими веществами с высокими температурами плавления. Большинство солей белого цвета (KNO3, NaCl, BaSO4 и др.). Некоторые соли имеют окраску (K2Cr2O7 - оранжевого цвета, K2CrO4 - желтого, NiSO4 - зеленого, CoCl3 - розового, CuS - черного). По растворимости их можно разделить на растворимые, малорастворимые и практически нерастворимые. Кислые соли, как правило, лучше растворимы в воде, чем соответствующие средние, а основные - хуже.

Химические свойства солей

1. Соль + вода

При растворении многих солей в воде происходит их частичное или полное разложение - гидролиз . Некоторые соли образуют кристаллогидраты. При растворении в воде средних солей, содержащих амфотерный металл в анионе, образуются комплексные соли.

NaCl + H2O → NaOH + HCl

Na2ZnO2 + 2H2O = Na2

2. Соль + Основной оксид ≠ реакция не идет

3. Соль + амфотерный оксид → (t) кислотный летучий оксид + соль

Амфотерные оксиды вытесняют при сплавлении летучие кислотные оксиды из их солей.

Al2O3 +K2CO3 → KAlO2 + CO2

Fe2O3 + Na2CO3 → 2NaFeO2 + CO2

4. Соль + кислотный нелетучий оксид → кислотный летучий оксид + соль

Нелетучие кислотные оксиды вытесняют при сплавлении летучие кислотные оксиды из их солей.

SiO2 + CaCO3 → (t) CaSiO3 + CO2

P2O5 + Na2CO3 → (t) 2Na3PO4 + 3CO2

3SiO2 + Ca3(PO4)2 → (t) 3CaSiO3 + P2O5

5. Соль + основание → основание + соль

Реакции между солями о основаниями являются реакциями ионного обмена. Поэтому в обычных условиях они протекают только в растворах (и соль и основание должны быть растворимыми) и только при условии, что в результате обмена образуется осадок или слабый электролит (Н2О/NH4OH); газообразные продукты в этих реакциях не образуются.

А. Растворимое основание + растворимая кислая соль → средняя соль + вода

Если соль и основание образованные разными катионами, то образуются две средние соли; в случае кислых солей аммония избыток щелочи приводит к образованию гидроксида аммония.

Ba(OH)2 + Ba(HCO3) → 2BaCO3 + 2H2O

2KOH + 2NaHCO3 → Na2CO3 + K2CO3 + 2H2O

2NaOH + 2NH4HS → Na2S + (NH4)2S + 2H2O

2NaOH(изб) + NH4Hs → Na2S + NH4OH + H2O

Б. Растворимое основание + растворимая средняя/основная соль → нерастворимая соль↓ + основание

Растворимое основание + растворимая средняя/основная соль → соль + нерастворимое основание↓

Растворимое основание + растворимая средняя/основная соль → соль + слабый электролит NH4OH

Растворимое основание + растворимая средняя/основная соль → реакция не идет

Реакция между растворимыми основаниями и средней/основной солью идет только в том случае, если в результате обмена ионами образуется нерастворимая соль, или нерастворимое основание, или слабый электролит NH4OH.

Ba(OH)2 + Na2SO4 → BaSO4↓ + 2NaOH

2NH4OH + CuCl2 → 2NH4Cl + Cu(OH)2↓

Ba(OH)2 + NH4Cl → BaCl2 + NH4OH

NaOH + KCl ≠

Если исходная соль образована многокислотным основанием, при недостатке щелочи образуется основная соль.

NaOH(недост) + AlCl3 → Al(OH)Cl2 + NaCl

При действии щелочей на соли серебра и ртути (II) выделяются не AgOH и Hg(OH)2, которые разлагаются при комнатной температуре, а нерастворимые оксиды Ag2O и HgO.

2AgNO3 + 2NaOH → Ag2O↓ 2NaNO3 + H2O

Hg(NO3)2 + 2KOH → HgO↓ + 2KNO3 + H2O

6. Соль + амфотерны гидроксид → реакция не идет

7. Соль + кислота → кислота + соль

В основном. реакции кислот с солями - реакции ионного обмена, поэтому они протекают в растворах и только в том случае, если при этом образуется нерастворимая в кислотах соль или более слабая и летучая кислота.

HCl + AgNO3 → AgCl↓ + HNO3

2HBr + K2SiO3 → 2KBr +H2SiO3↓

2HNO3 + Na2CO3 → 2NaNO3 + H2O + CO2

А. Кислота1 + соль более летучей/слабой кислоты2 → соль кислоты1 + более летучая/слабая кислота2

Кислоты взаимодействуют с растворами солей более слабых или летучих кислот. Независимо от состава соли (средняя, кислая, основная), как правило, образуется средняя соль и более слабая летучая кислота.

2CH3COOH + Na2S → 2CH3COONa + H2S

HCl + NaHS → NaCl + H2S

Б. Сильная кислота + соль сильной/средней кислоты → нерастворимая соль↓ + кислота

Сильные кислоты взаимодействуют с растворами солей других сильных кислот, если при этом образуется нерастворимая соль. Нелетучая Н3РО4 (кислота средней силы) вытесняет сильные, но летучие соляную НСl и азотную HNO3 кислоты из их солей при условии образования нерастворимой соли.

H2SO4 + Ca(NO3)2 → CaSO4↓ + 2HNO3

2H3PO4 + 3CaCl2 → Ca3(PO4)2↓ + 6HCl

H3PO4 + 3AgNO3 → Ag3PO4↓ + 3HNO3

В. Кислота1 + основная соль кислоты1 → средняя соль + вода

При действии кислоты на основную соль этой же кислоты образуется средняя соль и вода.

HCl + Mg(OH)Cl → MgCl2 + H2O

Г. Многоосновная кислота1 + средняя/кислая соль кислоты1 → кислая соль кислоты1

При действии многоосновной кислоты на среднюю соль этой же кислоты образуется кислая соль, а при действии на кислую соль образуется кислая соль, содержащая большее число атомов водорода.

H3PO4 + Ca3(PO4) → 3CaHPO4

H3PO4 + CaHPO4 → Ca(H2PO4)2

CO2 + H2O + CaCO3 → Ca(HCO3)2

Д. Кислота H2S + соль Ag, Cu, Pb, Cd, Hg → Ag2S/CuS/PbS/CdS/HgS↓ + кислота

Слабая и летучая сероводородная кислота H2S вытесняет даже сильные кислоты из растворов солей Ag, Cu, Pb, Cd и Hg, образуя с ними осадки сульфидов, нерастворимые не только в воде, но и в образующейся кислоте.

H2S + CuSO4 → CuS↓ + H2SO4

Е. Кислота + средняя/комплексная соль с амфотерным Ме в анионе → средняя соль + амфотерный гидроксид↓

→ средняя соль + средняя соль + Н2О

При действии кислоты на среднюю или комплексную соль с амфотерным металлом в анионе, соль разрушается и образуется:

а) в случае недостатка кислоты - средняя соль и амфотерный гидроксид

б) в случае избытка кислоты - две средние соли и вода

2HCl(нед) + Na2ZnO2 → 2NaCl + Zn(OH)2↓

2HCl(нед) + Na2 → 2NaCl + Zn(OH)2↓ + 2H2O

4HCl(изб) + Na2ZnO2 → 2NaCl + ZnCl2 + 2H2O

4HCl(изб) + Na2 → 2NaCl + ZnCl2 + 4H2O

Следует иметь ввиду, что в ряде случаев между кислотами и солями протекают ОВР или реакции комплексообразования. Так, в ОВР вступают:

H2SO4 конц. и I‾/Br‾ (продукты H2S и I2/SO2 и Br2)

H2SO4 конц. и Fe² + (продукты SO2 и Fe³ + )

HNO3 разб./конц. и Fe² + (продукты NO/NO2 и Fe 3 + )

HNO3 разб./конц. и SO3²‾/S²‾ (продукты NO/NO2 и сульфат/сера или сульфат)

HCl конц. и KMnO4/K2Cr2O7/KClO3 (продукты хлор (газ) и Mn² + /Cr³ + /Cl‾.

Ж. Реакция протекает без растворителя

Серная кислота конц. + соль (тв.) → соль кислая/средняя + кислая

Нелетучие кислоты могут вытеснять летучие из их сухих солей. Чаще всего используется взаимодействие концентрированной серной кислоты с сухими солями сильных и слабых кислот, при этом образуется кислота и кислая или средняя соль.

H2SO4(конц) + NaCl(тв) → NaHSO4 + HCl

H2SO4(конц) + 2NaCl(тв) → Na2SO4 + 2HCl

H2SO4(конц) + KNO3(тв) → KHSO4 + HNO3

H2SO4(конц) + CaCO3(тв) → CaSO4 + CO2 + H2O

8. Растворимая соль + растворимая соль → нерастворимая соль↓ + соль

Реакции между солями являются реакциями обмена. Поэтому в обычных условиях они протекают только в том случае, если:

а) обе соли растворимы в воде и взяты в виде растворов

б) в результате реакции образуется осадок или слабый электролит (последний - очень редко).

AgNO3 + NaCl → AgCl↓ + NaNO3

Если одна из исходных солей нерастворима, реакция идет лишь тогда, когда в результате ее образуется еще более неарстворимая соль. Критерием "нерастворимости" служит величина ПР (произведение растворимости), однако, поскольку ее изучение выходит за рамки школьного курса, случаи, когда одна из солей-реагентов нерастворима, далее не рассматриваются.

Если в реакции обмена образуется соль, полностью разлагающаяся в результате гидролиза (в таблице растворимости на месте таких солей стоят прочерки), то продуктами реакции становятся продукты гидролиза этой соли.

Al2(SO4)3 + K2S ≠ Al2S3↓ + K2SO4

Al2(SO4)3 + K2S + 6H2O → 2Al(OH)3↓ + 3H2S + K2SO4

FeCl3 + 6KCN → K3 + 3KCl

AgI + 2KCN → K + KI

AgBr + 2Na2S2O3 → Na3 + NaBr

Fe2(SO4)3 + 2KI → 2FeSO4 + I2 + K2SO4

NaCl + NaHSO4 → (t) Na2SO4 + HCl

Средние соли иногда взаимодействуют друг с другом с образованием комплексных солей. Между солями возможны ОВР. Некоторые соли взаимодействуют при сплавлении.

9. Соль менее активного металла + металл более активный → металл менее активный↓ + соль

Более активный металл вытесняет менее активный металл (стоящий правее в ряду напряжения) из раствора его соли, при этом образуется новая соль, а менее активный металл выделяется в свободном виде (оседает на пластинке активного металла). Исключение - щелочные и щелочноземельные металлы в растворе взаимодействуют с водой.

Соли, обладающие окислительными свойствами, в растворе вступают с металлами и в другие окислительно-восстановительные реакции.

FeSO4 + Zn → Fe↓ + ZnSO4

ZnSO4 + Fe ≠

Hg(NO3)2 + Cu → Hg↓ + Cu(NO3)2

2FeCl3 + Fe → 3FeCl2

FeCl3 + Cu → FeCl2 + CuCl2

HgCl2 + Hg → Hg2Cl2

2CrCl3 + Zn → 2CrCl2 + ZnCl2

Металлы могут вытеснять друг друга и из расплавов солей (реакция осуществляется без доступа воздуха). При этом надо помнить, что:

а) при плавлении многие соли разлагаются

б) ряд напряжения металлов определяет относительную активность металлов только в водных растворах (так, например, Аl в водных растворах менее активен, чем щелочноземельные металлы, а в расплавах - более активен)

K + AlCl3(распл) →(t) 3KCl + Al

Mg + BeF2(распл) → (t) MgF2 + Be

2Al + 3CaCl2(распл) → (t) 2AlCl3 + 3Ca

10. Соль + неметалл

Реакции солей с неметаллами немногочисленны. Это окислительно-восстановительные реакции.

5KClO3 + 6P →(t) 5KCl + 3P2O5

2KClO3 + 3S →(t) 2KCl + 2SO2

2KClO3 + 3C →(t) 2KCl + 3CO2

Более активные галогены вытесняют менее активные из растворов солей галогеноводородных кислот. Исключение - молекулярный фтор, который в растворах реагирует не с солью, а с водой.

2FeCl2 + Cl2 →(t) 2FeCl3

2NaNO2 + O2 → 2NaNO3

Na2SO3 + S →(t) Na2S2O3

BaSO4 + 2C →(t) BaS + 2CO2

2KClO3 + Br2 →(t) 2KBrO3 + Cl2 (такая же реакция характерна и для йода)

2KI + Br2 → 2KBr + I2↓

2KBr + Cl2 → 2KCl + Br2↓

2NaI + Cl2 → 2NaCl + I2↓

11. Разложение солей.

Соль →(t) продукты термического разложения

1. Соли азотной кислоты

Продукты термического разложения нитратов зависят от положения катиона металла в ряду напряжений металлов.

MeNO3 → (t) (для Me левее Mg (исключая Li)) MeNO2 + O2

MeNO3 → (t) (для Me от Mg до Cu, а также Li) MeO + NO2 + O2

MeNO3 → (t) (для Me правее Cu) Me + NO2 + O2

(при термическом разложении нитрата железа (II)/хрома (II) образуется оксид железа (III)/ хрома (III).

2. Соли аммония

Все соли аммония при прокаливании разлагаются. Чаще всего при этом выделяется аммиак NH3 и кислота или продукты ее разложения.

NH4Cl →(t) NH3 + HCl (=NH4Br, NH4I, (NH4)2S)

(NH4)3PO4 →(t) 3NH3 + H3PO4

(NH4)2HPO4 →(t) 2NH3 + H3PO4

NH4H2PO4 →(t) NH3 + H3PO4

(NH4)2CO3 →(t) 2NH3 + CO2 + H2O

NH4HCO3 →(t) NH3 + CO2 + H2O

Иногда соли аммония, содержащие анионы - окислители, разлагаются при нагревании с выделением N2, NO или N2O.

(NH4)Cr2O7 →(t) N2 + Cr2O3 + 4H2O

NH4NO3 →(t) N2O + 2H2O

2NH4NO3 →(t) N2 + 2NO + 4H2O

NH4NO2 →(t) N2 + 2H2O

2NH4MnO4 →(t) N2 + 2MnO2 + 4H2O

3. Соли угольной кислоты

Почти все карбонаты разлагаются до оксида металла и СО2. Карбонаты щелочных металлов кроме лития не разлагаются при нагревании. Карбонаты серебра и ртути разлагаются до свободного металла.

MeCO3 →(t) MeO + CO2

2Ag2CO3 →(t) 4Ag + 2CO2 + O2

Все гидрокарбонаты разлагаются до соответствующего карбоната.

MeHCO3 →(t) MeCO3 + CO2 + H2O

4. Соли сернистой кислоты

Сульфиты при нагревании диспропорционируют, образуя сульфид и сульфат. Образующийся при разложении (NH4)2SO3 сульфид (NH4)2S сразу же разлагается на NH3 и H2S.

MeSO3 →(t) MeS + MeSO4

(NH4)2SO3 →(t) 2NH3 + H2S + 3(NH4)2SO4

Гидросульфиты разлагаются до сульфитов, SO2 и H2O.

MeHSO3 →(t) MeSO3 + SO2 +H2O

5. Соли серной кислоты

Многие сульфаты при t > 700-800 С разлагаются до оксида металла и SO3, который при такой температуре разлагается до SO2 и О2. Сульфаты щелочных металлов термостойки. Сульфаты серебра и ртути разлагаются до свободного металла. Гидросульфаты разлагаются сначала до дисульфатов, а затем до сульфатов.

2CaSO4 →(t) 2CaO + 2SO2 + O2

2Fe2(SO4)3 →(t) 2Fe2O3 + 6SO2 + 3O2

2FeSO4 →(t) Fe2O3 + SO3 + SO2

Ag2SO4 →(t) 2Ag + SO2 + O2

MeHSO4 →(t) MeS2O7 + H2O

MeS2O7 →(t) MeSO4 + SO3

6. Комплексные соли

Гидроксокомплексы амфотерных металлов разлагаются в основном на среднюю соль и воду.

K →(t) KAlO2 + 2H2O

Na2 →(t) ZnO + 2NaOH + H2O

7. Основные соли

Многие основные соли при нагревании разлагаются. Основные соли бесислородных кислот разлагаются на воду и оксосоли

Al(OH)2Br →(t) AlOBr + H2O

2AlOHCl2 →(t) Al2OCl4 + H2O

2MgOHCl →(t) Mg2OCl2 + H2O

Основные соли кислородсодержащих кислот разлагаются на оксид металла и продукты термического разложения соответствующей кислоты.

2AlOH(NO3)2 →(t) Al2O3 + NO2 + 3O2 + H2O

(CuOH)2CO3 →(t) 2CuO + H2O + CO2

8. Примеры термического разложения других солей

4K2Cr2O7 →(t) 4K2CrO4 + 2Cr2O3 + 3O2

2KMnO4 →(t) K2MnO4 + MnO2 + O2

KClO4 →(t) KCl + O2

4KClO3 →(t) KCl + 3KClO4

2KClO3 →(t) 2KCl +3O2

2NaHS →(t) Na2S + H2S

2CaHPO4 →(t) Ca2P2O7 + H2O

Ca(H2PO4)2 →(t) Ca(PO3)2 +2H2O

2AgBr →(hν) 2Ag + Br2 (=AgI)

Большая часть представленного материала взята из пособия Дерябиной Н.Е. "Химия. Основные классы неорганических веществ". ИПО "У Никитских ворот" Москва 2011.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.