Определение уравнения линии на плоскости. Аналитическая геометрия

Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение: Уравнением линии называется соотношение y = f(x) между координатами точек, составляющих эту линию.

Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t . Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

Различные виды уравнения прямой

Общее уравнение прямой.

Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:

Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На плоскости записанное выше уравнение прямой упрощается:

если х 1 ¹ х 2 и х = х 1 , еслих 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k.

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С ¹ 0, то, разделив на –С, получим: или

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется нормирующем множителем, то получим

xcosj + ysinj - p = 0 –

нормальное уравнение прямой.

Знак ± нормирующего множителя надо выбирать так, чтобы m×С < 0.

р – длина перпендикуляра, опущенного из начала координат на прямую, а j - угол, образованный этим перпендикуляром с положительным направлением оси Ох.

Угол между прямыми на плоскости.

Если заданы две прямые y = k 1 x + b 1 , y = k 2 x + b 2 , то острый угол между этими прямыми будет определяться как

Две прямые параллельны, если k 1 = k 2 .

Две прямые перпендикулярны, если k 1 = -1/k 2 .

Теорема. Прямые Ах + Ву + С = 0 и А 1 х + В 1 у + С 1 = 0 параллельны, когда пропорциональны коэффициенты А 1 = lА, В 1 = lВ. Если еще и С 1 = lС, то прямые совпадают.

Координаты точки пересечения двух прямых находятся как решение системы двух уравнений.

Расстояние от точки до прямой.

Теорема. Если задана точка М(х 0 , у 0), то расстояние до прямой Ах + Ву + С =0 определяется как


Лекция 5

Введение в анализ. Дифференциальное исчисление функции одной переменной.

ПРЕДЕЛ ФУНКЦИИ

Предел функции в точке.

0 a - D a a + D x

Рисунок 1. Предел функции в точке.

Пусть функция f(x) определена в некоторой окрестности точки х = а (т.е. в самой точке х = а функция может быть и не определена)

Определение. Число А называется пределом функции f(x) при х®а, если для любого e>0 существует такое число D>0, что для всех х таких, что

0 < ïx - aï < D

верно неравенство ïf(x) - Aï< e.

То же определение может быть записано в другом виде:

Если а - D < x < a + D, x ¹ a, то верно неравенство А - e < f(x) < A + e.

Запись предела функции в точке:

Определение .

Если f(x) ® A 1 при х ® а только при x < a, то - называется пределом функции f(x) в точке х = а слева, а если f(x) ® A 2 при х ® а только при x > a, то называется пределом функции f(x) в точке х = а справа.

Приведенное выше определение относится к случаю, когда функция f(x) не определена в самой точке х = а, но определена в некоторой сколь угодно малой окрестности этой точки.

Пределы А 1 и А 2 называются также односторонними пределами функции f(x) в точке х = а. Также говорят, что А – конечный предел функции f(x).

Уравнение линии на плоскости

Основные вопросы лекции: уравнения линии на плоскости; различные формы уравнения прямой на плоскости; угол между прямыми; условия параллельности и перпендикулярности прямых; расстояние от точки до прямой; кривые второго порядка: окружность, эллипс, гипербола, парабола, их уравнения и геометрические свойства; уравнения плоскости и прямой в пространстве.

Уравнение вида называется уравнением прямой в общем виде.

Если выразить в этом уравнении , то после замены и получим уравнение , называемое уравнением прямой с угловым коэффициентом, причем , где – угол между прямой и положительным направлением оси абсцисс. Если же в общем уравнении прямой перенести свободный коэффициент в правую сторону и разделить на него, то получим уравнение в отрезках

Где и – точки пересечения прямой с осями абсцисс и ординат соответственно.

Две прямые на плоскости называются параллельными, если они не пересекаются.

Прямые называются перпендикулярными, если они пересекаются под прямым углом.

Пусть заданы две прямые и .

Чтобы найти точку пересечения прямых (если они пересекаются) необходимо решить систему с этими уравнениями. Решение этой системы и будет точкой пересечения прямых. Найдем условия взаимного расположения двух прямых.

Так как , то угол между этими прямыми находится по формуле

Отсюда можно получить, что при прямые будут параллельными, а при – перпендикулярны. Если прямые заданы в общем виде, то прямые параллельны при условии и перпендикулярны при условии

Расстояние от точки до прямой можно найти по формуле

Нормальное уравнение окружности:

Эллипсом называется геометрическое место точек на плоскости, сумма расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение эллипса имеет вид:


. Вершинами эллипса называются точки , , ,. Эксцентриситетом эллипса называется отношение

Гиперболой называется геометрическое место точек на плоскости, модуль разности расстояний от которых до двух заданных точек, называемых фокусами, есть величина постоянная.

Каноническое уравнение гиперболы имеет вид:

где - большая полуось, - малая полуось и . Фокусы находятся в точках . Вершинами гиперболы называются точки , . Эксцентриситетом гиперболы называется отношение

Прямые называются асимптотами гиперболы. Если , то гипербола называется равнобочной.

Из уравнения получаем пару пересекающихся прямых и .

Параболой называется геометрическое место точек на плоскости, от каждой из которых расстояние до данной точки, называемой фокусом, равно расстоянию до данной прямой называемой директрисой, есть величина постоянная.

Каноническое уравнение параболы


Прямая называется директрисой, а точка – фокусом.

Понятие функциональной зависимости

Основные вопросы лекции: множества; основные операции над множествами; определение функции, ее область существования, способы задания; основные элементарные функции, их свойства и графики; числовые последовательности и их пределы; предел функции в точке и на бесконечности; бесконечно малые и бесконечно большие величины и их свойства; основные теоремы о пределах; замечательные пределы; непрерывность функции в точке и на интервале; свойства непрерывных функций.

Если каждому элементу множества ставится в соответствие вполне определенный элемент множества , то говорят что на множестве задана функция. При этом называется независимой переменной или аргументом, а – зависимой переменной, а буква обозначает закон соответствия.

Множество называется областью определения или существования функции, а множество – областью значений функции.

Существуют следующие способы задания функции

1. Аналитический способ, если функция задана формулой вида

2. Табличный способ состоит в том, что функция задается таблицей, содержащей значения аргумента и соответствующие значения функции

3. Графический способ состоит в изображении графика функции – множества точек плоскости, абсциссы которых есть значения аргумента , а ординаты – соответствующие им значения функции

Линия на плоскости есть совокупность точек этой плоскости, обладающих определенными свойствами, при этом точки, не лежащие на данной линии, этими свойствами не обладают. Уравнение линии определяет аналитически выраженное соотношение между координатами точек, лежащих на этой линии. Пусть это соотношение задано уравнением

F(x,y )=0. (2.1)

Пара чисел, удовлетворяющая (2.1), – не произвольная: если х задано, то у не может быть каким угодно, значение у связано с х . При изменении х изменяется у , и точка с координатами (х,у ) описывает данную линию. Если координаты точки М 0 (х 0 ,у 0) удовлетворяют уравнению (2.1), т.е. F(х 0 ,у 0)=0 – верное равенство, то точка М 0 лежит на данной линии. Верно и обратное утверждение.

Определение. Уравнением линии на плоскости называется уравнение, которому удовлетворяют координаты любой точки, лежащей на этой линии, и не удовлетворяют координаты точек, не лежащих на этой линии .

Если известно уравнение некоторой линии, то исследование геометрических свойств этой линии можно свести к исследованию ее уравнения – в этом заключается одна из основных идей аналитической геометрии. Для исследования уравнений существуют хорошо разработанные методы математического анализа, которые упрощают изучение свойств линий.

При рассмотрении линий используется термин текущая точка линии – переменная точка М(х,у ), перемещающаяся вдоль этой линии. Координаты х и у текущей точки называются текущими координатами точки линии.

Если из уравнения (2.1) можно явным образом выразить у
через х , т. е. записать уравнение (2.1) в виде , то кривую, определяемую таким уравнением, называют графиком функции f(х) .

1. Дано уравнение: , или . Если х принимает произвольные значения, то у принимает значения, равные х . Следовательно, линия, определяемая этим уравнением, состоит из точек, равноотстоящих от координатных осей Ох и Оу – это биссектриса I–III координатных углов (прямая на рис. 2.1).

Уравнение , или , определяет биссектрису II–IV координатных углов (прямая на рис. 2.1).

у у у

0 х 0 х С 0 х

рис. 2.1 рис. 2.2 рис. 2.3

2. Дано уравнение: , где С – некоторая постоянная. Это уравнение можно записать иначе: . Этому уравнению удовлетворяют те и только те точки, ординаты у которых равны С при любом значении абсциссы х . Эти точки лежат на прямой, параллельной оси Ох (рис. 2.2). Аналогично, уравнение определяет прямую, параллельную оси Оу (рис. 2.3).

Не всякое уравнение вида F(x,y )=0 определяет линию на плоскости: уравнению удовлетворяет единственная точка – О(0,0), а уравнению не удовлетворяет ни одна точка на плоскости.

В приведенных примерах мы по заданному уравнению строили определяемую этим уравнением линию. Рассмотрим обратную задачу: составить по заданной линии ее уравнение.


3. Составить уравнение окружности с центром в точке Р(a,b ) и
радиусом R.

○ Окружность с центром в точке Р и радиусом R есть совокупность точек, отстоящих от точки Р на расстоянии R. Это значит, что для любой точки М, лежащей на окружности, МР= R, если же точка М не лежит на окружности, то МР ≠ R.

Как известно, любая точка на плоскости определяется двумя координатами в какой- либо системе координат. Системы координат могут быть различными в зависимости от выбора базиса и начала координат.

Определение. Уравнением линии называется соотношение y = f(x) между координатами точек, составляющих эту линию.

Отметим, что уравнение линии может быть выражено параметрическим способом, то есть каждая координата каждой точки выражается через некоторый независимый параметр t .

Характерный пример – траектория движущейся точки. В этом случае роль параметра играет время.

Уравнение прямой на плоскости.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно, т.е. А 2 + В 2 ¹ 0. Это уравнение первого порядка называют общим уравнением прямой.

В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

C = 0, А ¹ 0, В ¹ 0 – прямая проходит через начало координат

А = 0, В ¹ 0, С ¹ 0 { By + C = 0}- прямая параллельна оси Ох

В = 0, А ¹ 0, С ¹ 0 { Ax + C = 0} – прямая параллельна оси Оу

В = С = 0, А ¹ 0 – прямая совпадает с осью Оу

А = С = 0, В ¹ 0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В) перпендикулярен прямой, заданной уравнением Ах + Ву + С = 0.

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С подставим в полученное выражение координаты заданной точки А.

Получаем: 3 – 2 + C = 0, следовательно С = -1.

Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 (x 1 , y 1 , z 1) и M 2 (x 2, y 2 , z 2), тогда уравнение прямой, проходящей через эти точки:



Если какой- либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель.

На плоскости записанное выше уравнение прямой упрощается:

если х 1 ¹ х 2 и х = х 1 , еслих 1 = х 2 .

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется уравнением прямой с угловым коэффициентом k .

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор (a 1 , a 2), компоненты которого удовлетворяют условию Аa 1 + Вa 2 = 0 называется направляющим вектором прямой

Ах + Ву + С = 0.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям.


Эта статья является продолжением раздела прямая на плоскости . Здесь мы перейдем к алгебраическому описанию прямой линии с помощью уравнения прямой.

Материал данной статьи является ответом на вопросы: «Какое уравнение называют уравнением прямой и какой вид имеет уравнение прямой на плоскости»?

Навигация по странице.

Уравнение прямой на плоскости - определение.

Пусть на плоскости зафиксирована Oxy и в ней задана прямая линия.

Прямая, как и любая другая геометрическая фигура, состоит из точек. В фиксированной прямоугольной системе координат каждая точка прямой имеет свои координаты – абсциссу и ординату. Так вот зависимость между абсциссой и ординатой каждой точки прямой в фиксированной системе координат, может быть задана уравнением, которое называют уравнением прямой на плоскости.

Другими словами, уравнение прямой на плоскости в прямоугольной системе координат Oxy есть некоторое уравнение с двумя переменными x и y , которое обращается в тождество при подстановке в него координат любой точки этой прямой.

Осталось разобраться с вопросом, какой вид имеет уравнение прямой на плоскости. Ответ на него содержится в следующем пункте статьи. Забегая вперед, отметим, что существуют различные формы записи уравнения прямой, что объясняется спецификой решаемых задач и способом задания прямой линии на плоскости . Итак, приступим к обзору основных видов уравнения прямой линии на плоскости.

Общее уравнение прямой.

Вид уравнения прямой в прямоугольной системе координат Oxy на плоскости задает следующая теорема.

Теорема.

Всякое уравнение первой степени с двумя переменными x и y вида , где А , В и С – некоторые действительные числа, причем А и В одновременно не равны нулю, задает прямую линию в прямоугольной системе координат Oxy на плоскости, и всякая прямая на плоскости задается уравнением вида .

Уравнение называется общим уравнением прямой на плоскости.

Поясним смысл теоремы.

Заданному уравнению вида соответствует прямая на плоскости в данной системе координат, а прямой линии на плоскости в данной системе координат соответствует уравнение прямой вида .

Посмотрите на чертеж.

С одной стороны можно сказать, что эта линия определяется общим уравнением прямой вида , так как координаты любой точки изображенной прямой удовлетворяют этому уравнению. С другой стороны, множество точек плоскости, определяемых уравнением , дают нам прямую линию, приведенную на чертеже.

Общее уравнение прямой называется полным , если все числа А , В и С отличны от нуля, в противном случае общее уравнение прямой называется неполным . Неполное уравнение прямой вида определяют прямую, проходящую через начало координат. При А=0 уравнение задает прямую, параллельную оси абсцисс Ox , а при В=0 – параллельную оси ординат Oy .

Таким образом, любую прямую на плоскости в заданной прямоугольной системе координат Oxy можно описать с помощью общего уравнения прямой при некотором наборе значений чисел А , В и С .

Нормальный вектор прямой , заданной общим уравнением прямой вида , имеет координаты .

Все уравнения прямых, которые приведены в следующих пунктах этой статьи, могут быть получены из общего уравнения прямой, а также могут быть обратно приведены к общему уравнению прямой.

Рекомендуем к дальнейшему изучению статью . Там доказана теорема, сформулированная в начале этого пункта статьи, приведены графические иллюстрации, подробно разобраны решения примеров на составление общего уравнения прямой, показан переход от общего уравнения прямой к уравнениям другого вида и обратно, а также рассмотрены другие характерные задачи.

Уравнение прямой в отрезках.

Уравнение прямой вида , где a и b – некоторые действительные числа отличные от нуля, называется уравнением прямой в отрезках . Это название не случайно, так как абсолютные величины чисел а и b равны длинам отрезков, которые прямая отсекает на координатных осях Ox и Oy соответственно (отрезки отсчитываются от начала координат). Таким образом, уравнение прямой в отрезках позволяет легко строить эту прямую на чертеже. Для этого следует отметить в прямоугольной системе координат на плоскости точки с координатами и , и с помощью линейки соединить их прямой линией.

Для примера построим прямую линию, заданную уравнением в отрезках вида . Отмечаем точки и соединяем их.

Детальную информацию об этом виде уравнения прямой на плоскости Вы можете получить в статье .

Уравнение прямой с угловым коэффициентом.

Уравнение прямой вида , где x и y - переменные, а k и b – некоторые действительные числа, называется уравнением прямой с угловым коэффициентом (k – угловой коэффициент). Уравнения прямой с угловым коэффициентом нам хорошо известны из курса алгебры средней школы. Такой вид уравнения прямой очень удобен для исследования, так как переменная y представляет собой явную функцию аргумента x.

Определение углового коэффициента прямой дается через определение угла наклона прямой к положительному направлению оси Ox .

Определение.

Углом наклона прямой к положительному направлению оси абсцисс в данной прямоугольной декартовой системе координат Oxy называют угол , отсчитываемый от положительного направления оси Ох до данной прямой против хода часовой стрелки.

Если прямая параллельна оси абсцисс или совпадает с ней, то угол ее наклона считают равным нулю.

Определение.

Угловой коэффициент прямой есть тангенс угла наклона этой прямой, то есть, .

Если прямая параллельна оси ординат, то угловой коэффициент обращается в бесконечность (в этом случае также говорят, что угловой коэффициент не существует). Другими словами, мы не можем написать уравнение прямой с угловым коэффициентом для прямой, параллельной оси Oy или совпадающей с ней.

Заметим, что прямая, определяемая уравнением , проходит через точку на оси ординат.

Таким образом, уравнение прямой с угловым коэффициентом определяет на плоскости прямую, проходящую через точку и образующую угол с положительным направлением оси абсцисс, причем .

В качестве примера изобразим прямую, определяемую уравнением вида . Эта прямая проходит через точку и имеет наклон радиан (60 градусов) к положительному направлению оси Ox . Ее угловой коэффициент равен .

Отметим, что очень удобно искать именно в виде уравнения прямой с угловым коэффициентом.

Каноническое уравнение прямой на плоскости.

Каноническое уравнение прямой на плоскости в прямоугольной декартовой системе координат Oxy имеет вид , где и – некоторые действительные числа, причем и одновременно не равны нулю.

Очевидно, что прямая линия, определяемая каноническим уравнением прямой, проходит через точку . В свою очередь числа и , стоящие в знаменателях дробей, представляют собой координаты направляющего вектора этой прямой. Таким образом, каноническое уравнение прямой в прямоугольной системе координат Oxy на плоскости соответствует прямой, проходящей через точку и имеющей направляющий вектор .

Для примера изобразим на плоскости прямую линию, соответствующую каноническому уравнению прямой вида . Очевидно, что точка принадлежит прямой, а вектор является направляющим вектором этой прямой.

Каноническое уравнение прямой вида используют даже тогда, когда одно из чисел или равно нулю. В этом случае запись считают условной (так как содержится ноль в знаменателе) и ее следует понимать как . Если , то каноническое уравнение принимает вид и определяет прямую, параллельную оси ординат (или совпадающую с ней). Если , то каноническое уравнение прямой принимает вид и определяет прямую, параллельную оси абсцисс (или совпадающую с ней).

Детальная информация об уравнении прямой в каноническом виде, а также подробные решения характерных примеров и задач собраны в статье .

Параметрические уравнения прямой на плоскости.

Параметрические уравнения прямой на плоскости имеют вид , где и – некоторые действительные числа, причем и одновременно не равны нулю, а - параметр, принимающий любые действительные значения.

Параметрические уравнения прямой устанавливают неявную зависимость между абсциссами и ординатами точек прямой линии с помощью параметра (отсюда и название этого вида уравнений прямой).

Пара чисел , которые вычисляются по параметрическим уравнениям прямой при некотором действительном значении параметра , представляет собой координаты некоторой точки прямой. К примеру, при имеем , то есть, точка с координатами лежит на прямой.

Следует отметить, что коэффициенты и при параметре в параметрических уравнениях прямой являются координатами направляющего вектора этой прямой.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.