В процессе электролиза на аноде происходит. Практическое применение электролиза

Процессы, протекающие при электролизе

Электролиз получил широкое распространение в металлургии цветных металлов и в ряде химических производств. Такие металлы, как алюминий, цинк, магний, получают главным образом путем электролиза. Кроме того, электролиз используется для рафинирования (очистки) меди, никеля, свинца, а также для получения водорода, кислорода, хлора и ряда других химических веществ.

Сущность электролиза заключается в выделении из электролита при протекании через электролитическую ванну постоянного тока частиц вещества и осаждении их на погруженных в ванну электродах (электроэкстракция) или в переносе веществ с одного электрода через электролит на другой (электролитическое рафинирование). В обоих случаях цель процессов - получение возможно более чистых незагрязненных примесями веществ.

В отличие от металлов в электролитах (растворах солей, кислот и оснований в воде и в некоторых других растворителях, а также в расплавленных соединениях) наблюдается ионная электропроводность.

Электролиты являются проводниками второго рода. В этих растворах и расплавах имеет место электролитическая диссоциация - распад на положительно и отрицательно заряженные ионы.

Если в сосуд с электролитом - электролизер поместить электроды, присоединенные к электрическому источнику энергии, то в нем начнет протекать ионный ток, причем положительно заряженные ионы - катионы будут двигаться к катоду (это в основном металлы и водород), а отрицательно заряженные ионы - анионы (хлор, кислород) - к аноду.

У анода анионы отдают свой заряд и превращаются в нейтральные частицы, оседающие на электроде. У катода катионы отбирают электроны у электрода и также нейтрализуются, оседая на нем, причем выделяющиеся на электродах газы в виде пузырьков поднимаются кверху.

Рис. 1. Процессы, протекающие при электролизе. Схема электролизной ванны: 1 - ванна, 2 - электролит, 3 - анод, 4 - катод, 5 - источник питания

Электрический ток во внешней цепи представляет собой движение электронов от анода к катоду (рис. 1). При этом раствор обедняется, и для поддержания непрерывности процесса электролиза приходится его обогащать. Так осуществляют извлечение тех или иных веществ из электролита (электроэкстракцию).

Если же анод может растворяться в электролите по мере обеднения последнего, то частицы его, растворяясь в электролите, приобретают положительный заряд и направляются к катоду, на котором осаждаются, тем самым осуществляется перенос материала с анода на катод. Так как при этом процесс ведут так, чтобы содержащиеся в металле анода примеси не переносились на катод, такой процесс называется электролитическим рафинированием.

Если электрод поместить в раствор с ионами того же вещества, из которого он изготовлен, то при некотором потенциале между электродом и раствором не происходит ни растворения электрода, ни осаждения на нем вещества из раствора.

Такой потенциал называется нормальным потенциалом вещества. Если на электрод подать более отрицательный потенциал, то на нем начнется выделение вещества (катодный процесс), если же более положительный, то начнется его растворение (анодный процесс).

Значение нормальных потенциалов зависит от концентрации ионов и температуры. Принято считать нормальный потенциал водорода за нуль. В табл. 1 даны нормальные электродные потенциалы некоторых водных растворов веществ при +25° С.

Таблица 1. Нормальные электродные потенциалы при +25° С

Если в электролите имеются ионы разных металлов, то первыми на катоде выделяются ионы, имеющие меньший отрицательный нормальный потенциал (медь, серебро, свинец, никель), щелочноземельные металлы выделить труднее всего. Кроме того, в водных растворах всегда имеются ионы водорода, которые будут выделяться ранее, чем все металлы, имеющие отрицательный нормальный потенциал, поэтому при электролизе последних значительная или даже большая часть энергии затрачивается на выделение водорода.

Путем специальных мер можно воспрепятствовать в известных пределах выделению водорода, однако металлы с нормальным потенциалом меньше 1 В (например, магний, алюминий, щелочноземельные металлы) получить электролизом из водного раствора не удается. Их получают разложением расплавленных солей этих металлов.

Нормальные электродные потенциалы веществ, указанные в табл. 1, являются минимальными, при них начинается процесс электролиза, практически требуются большие значения потенциала для развития процесса.

Разность между действительным потенциалом электрода при электролизе и нормальным для него потенциалом называют перенапряжением. Оно увеличивает потери энергии при электролизе.

С другой стороны, увеличивая перенапряжение для ионов водорода, можно затруднить его выделение на катоде, что позволяет получить электролизом из водных растворов ряд таких более отрицательных по сравнению с водородом металлов, как свинец, олово, никель, кобальт, хром и даже цинк. Это достигается ведением процесса при повышенных плотностях тока на электродах, а также введением в электролит некоторых веществ.

Течение катодных и анодных реакций при электролизе определяется следующими двумя законами Фарадея.

1. Масса вещества m э, выделившегося при электролизе на катоде или перешедшего с анода в электролит, пропорциональна количеству прошедшего через электролит электричества Iτ : m э = α /τ ,здесь а - электрохимический эквивалент вещества, г/Кл.

2. Масса выделенного при электролизе вещества одним и тем же количеством электричества прямо пропорциональна атомной массе вещества А и обратно пропорциональна его валентности n : m э = А / 96480n , здесь 96480 - число Фарадея, Кл х моль -1 .

Таким образом, электрохимический эквивалент вещества α = А / 96480n представляет собой массу вещества в граммах, выделяемую единицей проходящего через электролитическую ванну количества электричества - кулоном (ампер-секундой).

Для меди А = 63,54, n =2, α =63,54/96480 -2 = 0,000329 г/Кл, для никеля α =0,000304 г/Кл, для цинка α =0,00034 г/Кл.

В действительности масса выделившегося вещества всегда меньше указанной, что объясняется рядом побочных процессов, проходящих в ванне (например, выделением водорода на катоде), утечками тока и короткими замыканиями между электродами.

Отношение массы фактически выделившегося вещества к массе его, которая должна была бы выделиться по закону Фарадея, носит название выхода вещества по току η1.

Следовательно, для реального процесса m э = η1 х ( А / 96480n) х It

Естественно, всегда η1

Выход по току существенно зависит от плотности тока на электроде. С увеличением плотности тока на электроде выход по току растет и повышается эффективность процесса.

Напряжение U эл, которое необходимо подвести к электролизеру, состоит из: напряжения разложения Ер (разность потенциалов анодной и катодной реакций), суммы анодного и катодного перенапряжений падения напряжения в электролите Еп, падения напряжения в электролите U э = IR эп (R эп - сопротивление электролита), падения напряжения в шинах, контактах, электродах U с = I (R ш+R к+R э). Получаем: U эл = Ер + Еп + U э + U с.

Мощность, потребляемая при электролизе, равна: Рэл = IU эл = I (Ер + Еп + U э + U с)

Из этой мощности только первая составляющая расходуется на проведение реакций, остальные являются тепловыми потерями процесса. Лишь при электролизе расплавленных солей часть теплоты, выделяющейся в электролите IU э, используется полезно, так как расходуется на расплавление загружаемых в электролизер солей.

Эффективность работы электролизной ванны, может быть оценена массой вещества в граммах, выделяемого на 1 Дж затраченной электроэнергии. Эта величина носит название выхода вещества по энергии. Ее можно найти по выражению q э = (αη1)/U эл100, здесь α - электрохимический эквивалент вещества, г/Кл, η1 - выход по току, U эл - напряжение на электролизере, В.

Электролизер– это специальное устройство, которое предназначено для разделения компонентов соединения или раствора с помощью электрического тока. Данные приборы широко используются в промышленности, к примеру, для получения активных металлических компонентов из руды, очищения металлов, нанесения на изделия металлических покрытий. Для быта они используются редко, но также встречаются. В частности для домашнего использования предлагаются устройства, которые позволяют определить загрязненность воды или получить так называемую «живую» воду.

Основа работы устройства принцип электролиза, первооткрывателем которого считается известный зарубежный ученый Фарадей. Однако первый электролизер воды за 30 лет до Фарадея создал русский ученый по фамилии Петров. Он на практике доказал, что вода может обогащаться в катодном или анодном состоянии. Несмотря на эту несправедливость, его труды не пропали даром и послужили развитию технологий. На данный момент изобретены и с успехом используются многочисленные виды устройств, которые работают по принципу электролиза.

Что это

Электролизерработает благодаря внешнему источнику питания, который подает электрический ток. Упрощенно агрегат выполнен в виде корпуса, в который вмонтировано два или несколько электродов. Внутри корпуса находится электролит. При подаче электрического тока происходит разложение раствора на требуемые составляющие. Положительно заряженные ионы одного вещества направляются к отрицательно заряженному электроду и наоборот.

Основной характеристикой подобных агрегатов является производительность. То есть это количество раствора или вещества, которое установка может перерабатывать за определенный период времени. Данный параметр указывается в наименовании модели. Однако на него также могут влиять и иные показатели: сила тока, напряжение, вид электролита и так далее.

Виды и типы
По конструкции анода и расположению токопровода электролизер может быть трех видов, это агрегаты с:
  1. Прессованными обожженными анодами.
  2. Непрерывным самообжигающимся анодом, а также боковым токопроводом.
  3. Непрерывным самообжигающимся анодом, а также верхним токопроводом.
Электролизер, используемый для растворов, по конструктивным особенностям можно условно разделить на:

  • Сухие.
  • Проточные.
  • Мембранные.
  • Диафрагменные.

Устройство

Конструкции агрегатов могут быть различными, но все они работают на принципе электролиза.

Устройство в большинстве случаев состоит из следующих элементов:
  • Электропроводящий корпус.
  • Катод.
  • Анод.
  • Патрубки, предназначенные для ввода электролита, а также вывода веществ, полученных в ходе реакции.

Электроды выполняются герметичными. Обычно они представлены в виде цилиндров, которые сообщаются с внешней средой с помощью патрубков. Электроды изготавливаются из специальных токопроводящих материалов. На катоде осаждается металл или к нему направляют ионы отделенного газа (при расщеплении воды).

В цветной промышленности часто применяют специализированные агрегаты для электролиза. Это более сложные установки, которые имеют свои особенности. Так электролизер для выделения магния и хлора требует ванну, выполненную из стенок торцевого и продольного вида. Она обкладывается с помощью огнеупорных кирпичей и иных материалов, а также делится с помощью перегородки на отделение для электролиза и ячейку, в которой собираются конечные продукты.

Конструктивные особенности каждого вида подобного оборудования позволяют решать лишь конкретные задачи, которые связаны с обеспечением качества выделяющихся веществ, скоростью происходящей реакции, энергоемкостью установки и так далее.

Принцип действия

В электролизных устройствах электрический ток проводят лишь ионные соединения. Поэтому при опускании электродов в электролит и включении электрического тока, в нем начинает течь ионный ток. Положительные частицы в виде катионов направляются к катоду, к примеру, это водород и различные металлы. Анионы, то есть отрицательно заряженные ионы текут к аноду (кислород, хлор).

При подходе к аноду анионы лишаются своего заряда и становятся нейтральными частицами. В результате они оседают на электроде. У катода происходят похожие реакции: катионы забирают у электрода электроны, что приводит к их нейтрализации. В результате катионы оседают на электроде. К примеру, при расщеплении воды образуется водород, которые поднимается наверх в виде пузырьков. Чтобы собрать этот газ над катодом сооружаются специальные патрубки. Через них водород поступает в необходимую емкость, после чего его можно будет использовать по назначению.

Принцип действия в конструкциях разных устройств в целом схож, но в ряде случаев могут быть и свои особенности. Так в мембранных агрегатах используется твердый электролит в виде мембраны, которая имеет полимерную основу. Главная особенность подобных приборов кроется в двойном назначении мембраны. Эта прослойка может переносить протоны и ионы, в том числе разделять электроды и конечные продукты электролиза.

Диафрагменные устройства применяются в случаях, когда нельзя допустить диффузию конечных продуктов электролизного процесса. С этой целью применяют пористую диафрагму, которая выполнена из стекла, асбеста или керамики. В ряде случаев в качестве подобной диафрагмы могут применяться полимерные волокна либо стеклянная вата.

Применение

Электролизершироко применяется в различных отраслях промышленности. Но, несмотря на простую конструкцию, оно имеет различные варианты исполнения и функции. Данное оборудование применяется для:

  • Добычи цветных металлов (магний, алюминий).
  • Получения химических элементов (разложение воды на кислород и водород, получение хлора).
  • Очистки сточных вод (обессоливание, обеззараживание, дезинфекция от ионов металлов).
  • Обработки различных продуктов (деминерализация молока, посол мяса, электроактивация пищевых жидкостей, извлечение нитратов и нитритов из овощных продуктов, извлечения белка из водорослей, грибов и рыбных отходов).

В медицине установки используются в интенсивной терапии для детоксикации организма человека, то есть для создания растворов гипохлорита натрия высокой чистоты. Для этого используется устройство проточного вида с электродами из титана.

Электролизные и электродиализные установки нашли широкое применение для решения экологических проблем и опреснения воды. Но эти агрегаты в виду их недостатков используются редко: это сложность конструкции и их эксплуатации, необходимость трехфазного тока и требования периодической замены электродов из-за их растворения.

Подобные установки находят применение и в быту, к примеру, для получения «живой» воды, а также ее очистки. В будущем возможно создание миниатюрных установок, которые будут использоваться в автомобилях для безопасного получения водорода из воды. Водород станет источником энергии, а машину можно будет заправлять обычной водой.


Если в электролит опустить два электрода, и подсоединить их к источнику питания, то отрицательно заряженные ионы (анионы), находящиеся в электролите, начнут притягиваться к положительному электроду (аноду), а положительно заряженные ионы (катионы) - к отрицательному электроду (катоду) - в цепи возникнет постоянный ток.

Катионы, достигнув поверхности катода, будут присоединять к себе электроны металла (восстанавливаться); анионы на аноде будут отдавать свои электроны (окисляться).

На рисунке выше показан простейший случай электролиза - в расплаве хлорид натрия диссоциирует на катионы натрия и анионы хлора. Под действием электрического тока Na + восстанавливаются на катоде, Cl - - окисляются на аноде.

Уравнение электролиза будет иметь вид:

2Na + +Cl - = 2Na 0 +Cl 2 0 2NaCl = 2Na+Cl

В результате электролиза на аноде будет выделяться газообразный хлор, а на катоде - металлический натрий.

Окислительно-восстановительная реакция, протекающая при электролизе, протекает за счет электрической энергии - без внешнего источника энергии она будет невозможна.

Следует обратить внимание, что электролиз в растворе электролита и электролиз в расплаве электролита - немного разные вещи.

Нюанс заключается в том, что в водном растворе электролита кроме ионов металла и кислотного остатка, присутствуют еще и продукты диссоциации воды, что необходимо учитывать.

Правила электролиза водных растворов

  • Электролиз на катоде зависит только от положения металла в электрохимическом ряду напряжений :
    • если катион электролита стоит левее алюминия (включительно), на катоде восстанавливается вода с выделением водорода, а катионы металла остаются в растворе:
      2H 2 O+2e - = H 2 +2OH - (Li...Al)
    • если катион электролита стоит между алюминием и водородом, на катоде восстанавливаются и вода, и катионы металла;
      Me n+ +ne - = Me 0 ; 2H 2 O+2e - = H 2 +2OH - (Mn...Pb)
    • если катион электролита стоит правее водорода, на катоде восстанавливается только катионы металла:
      Me n+ +ne - = Me 0 (Cu...Au)
    • если в растворе электролита находится несколько металлов, первыми восстанавливаются катионы металла, который в ряду напряжений стоит правее остальных.
  • Электролиз на аноде зависит только от материала , из которого изготовлен анод:
    • в случае растворимого анода (металлы, которые окисляются в процессе электролиза - железо, медь, цинк, серебро) - всегда идет процесс окисления металла анода:
      Me 0 -ne - = Me n+
    • в случае нерастворимого анода (золото, платина, графит):
      • идет процесс окисления аниона при электролизе растворов солей бескислородных кислот, за исключением фторидов:
        Ac m -me - = Ac 0
      • идет процесс окисления воды в остальных случаях (электролиз оксикислот и фторидов) - анион остается в растворе:
        2H 2 O-4e - = 4H + +O 2
      • при электролизе растворов щелочей окисляются гидроксид-ионы:
        4OH - -4e - = 2H 2 O+O 2
    • восстановительная активность анионов уменьшается в ряду (соответственно увеличивается способность окисляться): I - ; Br - ; S 2- ; Cl - ; OH - ; SO 4 2- ; NO 3 - ; F -

Промышленное применение электролиза

  • Выделение и очистка металлов.
  • Получение алюминия, магния, натрия, кадмия.
  • Получение щелочей, хлора, водорода.
  • Очистка меди, никеля, свинца.
  • Процессы напыления защитных покрытий с целью защиты металлов от коррозии.

Примеры решения задач по электролизу

1. Написать уравнение электролиза раствора хлорида калия для нерастворимого анода.

  • KCl → K + +Cl -
  • электрлиз на аноде (+):
    2Cl - -2e - = Cl 2 0
  • электролиз на катоде (-):
    2H 2 O+2e - = H 2 +2OH -
  • Суммарное ионное уравнение:
    2H 2 O+2Cl - = H 2 +Cl 2 +2OH -
  • Молекулярное уравнение:
    2KCl+2H 2 O = H 2 +Cl 2 +2KOH

2. Написать уравнение электролиза раствора хлорида калия для медного (растворимого) анода.

  • KCl → K + +Cl -
  • анод(+):
    Cu 0 -2e - = Cu 2+
  • ионы меди в процессе электролиза переходят с анода на катод (выделение чистой меди на катоде):
    Cu 2+ +2e - = Cu 0
  • Концентрация хлорида калия в растворе остается постоянной, поэтому, суммарное уравнение электролиза для растворимого анода написать нельзя.

3. Написать уравнение электролиза раствора гидроксида натрия.

  • NaOH → Na + +OH -
  • электролиз на аноде(+):
    4OH - +4e - = O 2 +2H 2 O
  • электролиз на катоде(-):
    2H 2 O+2e - = H 2 +2OH -
  • Суммарные уравнения:
    4H 2 O+4OH - = 2H 2 +O 2 +4OH - +2H 2 O
    2H 2 O = 2H 2 +O 2

4. Написать уравнение электролиза раствора хлорида цинка с угольными электродами.

  • ZnCl 2 → Zn 2+ +2Cl -
  • электролиз на аноде(+):
    2Cl - -2e - = Cl 2
  • катод(-):
    Zn 2+ +2e - = Zn 0
    2H 2 O+2e - = H 2 +2OH -
  • Суммарное уравнение электролиза написать нельзя, поскольку, неизвестно сколько электричества затрачивается на восстановление воды, а сколько - на восстновление ионов цинка.

5. Написать уравнение электролиза водного раствора нитратов меди (II) и серебра с нерастворимыми электродами.

  • Cu(NO 3) 2 → Cu 2+ +2NO 3 -
    AgNO 3 → Ag + +NO 3 -
  • электролиз на аноде(+):
    2H 2 O-4e - = O 2 +4H +
  • электролизы на катоде(-):
    Cu 2+ +2e - = Cu 0
    Ag + +e - = Ag 0
  • Согласно положению металлов в ряду напряжений (см. выше), катионы серебра будут восстанавливаться первыми, катионы меди - в последнюю очередь.
  • Ионные уравнения:
    4Ag + +2H 2 O = 4Ag 0 +O 2 +4H +
    2Cu 2+ +2H 2 O = 2Cu 0 +O 2 +4H +
  • Молекулярные уравнения:
    4AgNO 3 +2H 2 O = 4Ag+O 2 +4HNO 3
    2Cu(NO 3) 2 +2H 2 O = 2Cu+O 2 +4HNO 3

Электролиз широко используется в производственной сфере, например, для получения алюминия (аппараты с обожженными анодами РА-300, РА-400, РА-550 и т.д.) или хлора (промышленные установки Asahi Kasei). В быту этот электрохимический процесс применялся значительно реже, в качестве примера можно привести электролизер для бассейна Intellichlor или плазменный сварочный аппарат Star 7000. Увеличение стоимости топлива, тарифов на газ и отопление в корне поменяли ситуацию, сделав популярной идею электролиза воды в домашних условиях. Рассмотрим, что представляют собой устройства для расщепления воды (электролизеры), и какова их конструкция, а также, как сделать простой аппарат своими руками.

Что такое электролизер, его характеристики и применение

Так называют устройство для одноименного электрохимического процесса, которому требуется внешний источник питания. Конструктивно это аппарат представляет собой заполненную электролитом ванну, в которую помещены два или более электродов.

Основная характеристика подобных устройств – производительность, часто это параметр указывается в наименовании модели, например, в стационарных электролизных установках СЭУ-10, СЭУ-20, СЭУ-40, МБЭ-125 (мембранные блочные электролизеры) и т.д. В данных случаях цифры указывают на выработку водорода (м 3 /ч).

Что касается остальных характеристик, то они зависят от конкретного типа устройства и сферы применения, например, когда осуществляется электролиз воды, на КПД установки влияют следующие параметры:


Таким образом, подавая на выходы 14 вольт, мы получим 2 вольта на каждой ячейке, при этом на пластинах с каждой стороны будут разные потенциалы. Электролизеры, где используется подобная система подключения пластин, называются сухими.

  1. Расстояние между пластинами (между катодным и анодным пространством), чем оно меньше, тем меньше будет сопротивление и, следовательно, больший ток пройдет через раствор электролита, что приведет к увеличению выработки газа.
  2. Размеры пластины (имеется в виду площадь электродов), прямо пропорциональны току, идущему через электролит, а значит, также оказывают влияние на производительность.
  3. Концентрация электролита и его тепловой баланс.
  4. Характеристики материала, используемого для изготовления электродов (золото – идеальный материал, но слишком дорогой, поэтому в самодельных схемах используется нержавейка).
  5. Применение катализаторов процесса и т.д.

Как уже упоминалось выше, установки данного типа могут использоваться как генератор водорода, для получения хлора, алюминия или других веществ. Они также применяются в качестве устройств, при помощи которых осуществляется очистка и обеззараживание воды (УПЭВ, VGE), а также проводится сравнительный анализ ее качества (Tesp 001).


Нас, прежде всего, интересуют устройства, производящие газ Брауна (водород с кислородом), поскольку именно эта смесь имеет все перспективы для использования в качестве альтернативного энергоносителя или добавок к топливу. Их мы рассмотрим чуть позже, а пока перейдем к конструкции и принципу работы простейшего электролизера, расщепляющего воду на водород и кислород.

Устройство и подробный принцип работы

Аппараты для производства гремучего газа, в целях безопасности, не предполагают его накопление, то есть газовая смесь сжигается сразу после получения. Это несколько упрощает конструкцию. В предыдущем разделе мы рассмотрели основные критерии, влияющие на производительность аппарата и накладывающие определенные требования к исполнению.

Принцип работы устройства демонстрирует рисунок 4, источник постоянного напряжения подключен к погруженным в раствор электролита электродам. В результате через него начинает проходить ток, напряжение которого выше точки разложения молекул воды.

Рисунок 4. Конструкция простого электролизера

В результате этого электрохимического процесса катод выделяет водород, а анод – кислород, в соотношении 2 к 1.

Виды электролизеров

Кратко ознакомимся с конструктивными особенностями основных видов устройств для расщепления воды.

Сухие

Конструкция прибора данного типа была показана на рисунке 2, ее особенность заключается в том, что манипулируя количеством ячеек, можно запитать устройство от источника с напряжением, существенно превышающим минимальный электродный потенциал.

Проточные

С упрощенным устройством приборов этого вида можно ознакомиться на рисунке 5. Как видим, конструкция включает в себя ванну с электродами «A», полностью залитую раствором и бак «D».


Рис 5. Конструкция проточного электролизера

Принцип работы устройства следующий:

  • входе электрохимического процесса газ вместе с электролитом выдавливается в емкость «D» через трубу «В»;
  • в баке «D» происходит отделение от электролитного раствора газа, который выводится через выходной клапан «С»;
  • электролит возвращается в гидролизную ванну через трубу «Е».

Мембранные

Основная особенность устройств этого типа – использование твердого электролита (мембраны) на полимерной основе. С конструкцией приборов этого вида можно ознакомиться на рисунке 6.

Рис 6. Электролизер мембранного типа

Основная особенность таких устройств заключается в двойном назначении мембраны, она не только переносит протоны и ионы, а и на физическом уровне разделяет как электроды, так и продукты электрохимического процесса.

Диафрагменные

В тех случаях, когда не допустима диффузия продуктов электролиза между электродными камерами, используют пористую диафрагму (что и дало название таким приборам). Материалом для нее может служить керамика, асбест или стекло. В некоторых случаях для создания такой диафрагмы можно использовать полимерные волокна или стеклянную вату. На рисунке 7 показан простейший вариант диафрагменного прибора для электрохимических процессов.


Пояснение:

  1. Выход для кислорода.
  2. U-образная колба.
  3. Выход для водорода.
  4. Анод.
  5. Катод.
  6. Диафрагма.

Щелочные

Электрохимический процесс невозможен в дистиллированной воде, в качестве катализатора применяется концентрированный раствор щелочи (использование соли нежелательно, так как при этом выделяется хлор). Исходя из этого, щелочными можно назвать большую часть электрохимических устройств для расщепления воды.

На тематических форумах советуют использовать гидроксид натрия (NaOH), который, в отличие от пищевой соды (NaHCO 3), не разъедает электрод. Заметим, что у последней имеются два весомых преимущества:

  1. Можно использовать железные электроды.
  2. Не выделяются вредные вещества.

Но, один существенный недостаток сводит на нет все преимущества пищевой соды, как катализатора. Ее концентрация в воде не более 80 грамм на литр. Это снижает морозостойкость электролита и его проводимость тока. Если с первым еще можно смириться в теплое время года, то второе требует увеличения площади пластин электродов, что в свою очередь, увеличивает размер конструкции.

Электролизер для получения водорода: чертежи, схема

Рассмотрим, как можно сделать мощную газовую горелку, работающую от смеси водорода с кислородом. Схему такого устройства можно посмотреть на рисунке 8.


Рис. 8. Устройство водородной горелки

Пояснение:

  1. Сопло горелки.
  2. Резиновые трубки.
  3. Второй водяной затвор.
  4. Первый водяной затвор.
  5. Анод.
  6. Катод.
  7. Электроды.
  8. Ванна электролизера.

На рисунке 9 представлена принципиальная схема блока питания для электролизера нашей горелки.


Рис. 9. Блок питания электролизной горелки

На мощный выпрямитель нам понадобятся следующие детали:

  • Транзисторы: VT1 – МП26Б; VT2 – П308.
  • Тиристоры: VS1 – КУ202Н.
  • Диоды: VD1-VD4 – Д232; VD5 – Д226Б; VD6, VD7 – Д814Б.
  • Конденсаторы: 0,5 мкФ.
  • Переменные резисторы: R3 -22 кОм.
  • Резисторы: R1 – 30 кОм; R2 – 15 кОм; R4 – 800 Ом; R5 – 2,7 кОм; R6 – 3 кОм; R7 – 10 кОм.
  • PA1 – амперметр со шкалой измерения не менее 20 А.

Краткая инструкция по деталям к электролизеру.

Ванну можно сделать из старого аккумулятора. Пластины следует нарезать 150х150 мм из кровельного железа (толщина листа 0,5 мм). Для работы с вышеописанным блоком питания потребуется собрать электролизер на 81 ячейку. Чертеж, по которому выполняется монтаж, приведен на рисунке 10.

Рис. 10. Чертеж электролизера для водородной горелки

Заметим, что обслуживание такого устройства и управление им не вызывает трудностей.

Электролизер для автомобиля своими руками

В интернете можно найти много схем HHO систем, которые, если верить авторам, позволяют экономить от 30% до 50% топлива. Такие заявления слишком оптимистичны и, как правило, не подтверждаются никакими доказательствами. Упрощенная схема такой системы продемонстрирована на 11 рисунке.


Упрощенная схема электролизера для автомобиля

По идее, такое устройство должно снизить расход топлива за счет его полного выгорания. Для этого в воздушный фильтр топливной системы подается смесь Брауна. Это водород с кислородом, полученные из электролизера, запитанного от внутренней сети автомобиля, что повышает расход топлива. Замкнутый круг.

Безусловно, может быть задействована схема шим регулятора силы тока, использован более эффективный импульсный блок питания или другие хитрости, позволяющие снизить расход энергии. Иногда в интернете попадаются предложения приобрести низкоамперный БП для электролизера, что вообще является нонсенсом, поскольку производительность процесса напрямую зависит от силы тока.

Это как система Кузнецова, активатор воды которой утерян, а патент отсутствует и т.д. В приведенных видео, где рассказывают о неоспоримых преимуществах таких систем, практически нет аргументированных доводов. Это не значит, что идея не имеет прав на существование, но заявленная экономия «слегка» преувеличена.

Электролизер своими руками для отопления дома

Делать самодельный электролизер для отопления дома на данный момент не имеет смысла, поскольку стоимость водорода, полученного путем электролиза значительно дороже природного газа или других теплоносителей.

Также следует учитывать, что температуру горения водорода не выдержит никакой металл. Правда имеется решение, которое запатентовал Стен Мартин, позволяющее обойти эту проблему. Необходимо обратить внимание на ключевой момент, позволяющий отличить достойную идею от очевидного бреда. Разница между ними заключается в том, что на первый выдают патент, а второй находит своих сторонников в интернете.

На этом можно было бы и закончить статью о бытовых и промышленных электролизерах, но имеет смысл сделать небольшой обзор компаний, производящих эти устройства.

Обзор производителей электролизеров

Перечислим производителей, выпускающих топливные элементы на базе электролизеров, некоторые компании также выпускают и бытовые устройства: NEL Hydrogen (Норвегия, на рынке с 1927 года), Hydrogenics (Бельгия), Teledyne Inc (США), Уралхиммаш (Россия), РусАл (Россия, существенно усовершенствовали технологию Содерберга), РутТех (Россия).

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.