Струны вселенной. Коротко о теории струн

Приходила ли вам в голову мысль, что Вселенная похожа на виолончель? Правильно – не приходила. Потому что Вселенная не похожа на виолончель. Но это не означает, что у нее нет струн. Поговорим сегодня про Теорию струн.

Конечно, струны мироздания едва ли похожи на те, которые мы себе представляем. В теории струн ими называются невероятно малые вибрирующие нити энергии. Эти нити похожи, скорее, на крошечные «резинки», способные извиваться, растягиваться и сжиматься на все лады. Все это, однако, не означает, что на них нельзя «сыграть» симфонию Вселенной, ведь из этих «нитей», по мнению струнных теоретиков, состоит все сущее.

Противоречие физики

Во второй половине XIX века физикам казалось, что ничего серьезного в их науке открыть больше нельзя. Классическая физика считала, что серьезных проблем в ней не осталось, а все устройство мира выглядело идеально отлаженной и предсказуемой машиной. Беда, как и водится, случилась из-за ерунды – одного из мелких «облачков», еще остававшихся на чистом, понятном небе науки. А именно – при расчете энергии излучения абсолютно черного тела (гипотетическое тело, которое при любой температуре полностью поглощает падающее на него излучение, независимо от длины волны – NS).

Расчеты показывали, что общая энергия излучения любого абсолютно черного тела должна быть бесконечно большой. Чтобы уйти от столь явного абсурда, немецкий ученый Макс Планк в 1900 году предположил, что видимый свет, рентгеновские лучи и другие электромагнитные волны могут испускаться только некоторыми дискретными порциями энергии, которые он назвал квантами. С их помощью удалось решить частную проблему абсолютно черного тела. Однако последствия квантовой гипотезы для детерминизма тогда еще не осознавались. Пока в 1926 году другой немецкий ученый, Вернер Гейзенберг, не сформулировал знаменитый принцип неопределенности.

Суть его сводится к тому, что вопреки всем господствующим до того утверждениям, природа ограничивает нашу способность предсказывать будущее на основе физических законов. Речь, конечно, идет о будущем и настоящем субатомных частиц. Выяснилось, что они ведут себя совершенно не так, как это делают любые вещи в окружающем нас макромире. На субатомном уровне ткань пространства становится неровной и хаотичной. Мир крошечных частиц настолько бурный и непонятный, что это противоречит здравому смыслу. Пространство и время в нем настолько искривлены и переплетены, что там нет обычных понятий левого и правого, верха и низа, и даже до и после.

Не существует способа сказать наверняка, в какой именно точке пространства находится в данный момент та или иная частица, и каков при этом момент ее импульса. Существует лишь некая вероятность нахождения частицы во множестве областей пространства-времени. Частицы на субатомном уровне словно «размазаны» по пространству. Мало этого, не определен и сам «статус» частиц: в одних случаях они ведут себя как волны, в других – проявляют свойства частиц. Это то, что физики называют корпускулярно-волновым дуализмом квантовой механики.

Уровни строения мира: 1. Макроскопический уровень – вещество 2. Молекулярный уровень 3. Атомный уровень – протоны, нейтроны и электроны 4. Субатомный уровень – электрон 5. Субатомный уровень – кварки 6. Струнный уровень

В Общей теории относительности, словно в государстве с противоположными законами, дело обстоит принципиально иначе. Пространство представляется похожим на батут – гладкую ткань, которую могут изгибать и растягивать объекты, обладающие массой. Они создают деформации пространства-времени – то, что мы ощущаем как гравитацию. Стоит ли говорить, что стройная, правильная и предсказуемая Общая теория относительности находится в неразрешимом конфликте с «взбалмошной хулиганкой» – квантовой механикой, и, как следствие, макромир не может «помириться» с микромиром. Вот тут на помощь и приходит теория струн.

2D-Вселенная. Граф полиэдра E8 Теория Всего

Теория струн воплощает мечту всех физиков по объединению двух, в корне противоречащих друг другу ОТО и квантовой механики, мечту, которая до конца дней не давала покоя величайшему «цыгану и бродяге» Альберту Эйнштейну.

Многие ученые уверены, что всё, от изысканного танца галактик до безумной пляски субатомных частиц, может в итоге объясняться всего одним фундаментальным физическим принципом. Может быть – даже единым законом, который объединяет все виды энергии, частиц и взаимодействий в какой-нибудь элегантной формуле.

ОТО описывает одну из самых известных сил Вселенной – гравитацию. Квантовая механика описывает три других силы: сильное ядерное взаимодействие, которое склеивает протоны и нейтроны в атомах, электромагнетизм и слабое взаимодействие, которое участвует в радиоактивном распаде. Любое событие в мироздании, от ионизации атома до рождения звезды, описывается взаимодействиями материи посредством этих четырех сил.

С помощью сложнейшей математики удалось показать, что электромагнитное и слабое взаимодействия имеют общую природу, объединив их в единое электрослабое. Впоследствии к ним добавилось и сильное ядерное взаимодействие – но вот гравитация к ним не присоединяется никак. Теория струн – одна из самых серьезных кандидаток на то, чтобы соединить все четыре силы, а, значит, объять все явления во Вселенной – недаром ее еще называют «Теорией Всего».

Вначале был миф

До сих пор далеко не все физики пребывают в восторге от теории струн. А на заре ее появления она и вовсе казалась бесконечно далекой от реальности. Само ее рождение – легенда.

График бета-функции Эйлера при вещественных аргументах

В конце 1960-х годов молодой итальянский физик-теоретик Габриэле Венециано искал уравнения, которые смогли бы объяснить сильные ядерные взаимодействия – чрезвычайно мощный «клей», который скрепляет ядра атомов, связывая воедино протоны и нейтроны. Согласно легенде, как-то он случайно наткнулся на пыльную книгу по истории математики, в которой нашел функцию двухсотлетней давности, впервые записанную швейцарским математиком Леонардом Эйлером. Каково же было удивление Венециано, когда он обнаружил, что функция Эйлера, которую долгое время считали ничем иным, как математической диковинкой, описывает это сильное взаимодействие.

Как же было на самом деле? Формула, вероятно, стала результатом долгих лет работы Венециано, а случай лишь помог сделать первый шаг к открытию теории струн. Функция Эйлера, чудесным образом объяснившая сильное взаимодействие, обрела новую жизнь.

В конце концов, она попалось на глаза молодому американскому физику-теоретику Леонарду Сасскинду, который увидел, что в первую очередь формула описывала час­тицы, которые не имели внутренней структуры и могли вибрировать. Эти частицы вели себя так, что не могли быть просто точечными частицами. Сасскинд понял – формула описывает нить, которая подобна упругой резинке. Она могла не только растягиваться и сжиматься, но и колебаться, извиваться. Описав свое открытие, Сасскинд представил революционную идею струн.

К сожалению, подавляющее большинство его коллег встретили теорию весьма прохладно.

Стандартная модель

В то время общепринятая наука представляла частицы точками, а не струнами. В течение многих лет физики исследовали поведение субатомных частиц, сталкивая их на высоких скоростях и изучая последствия этих столкновений. Выяснилось, что Вселенная намного богаче, чем это можно было себе представить. Это был настоящий «демографический взрыв» элементарных частиц. Аспиранты физических вузов бегали по коридорам с криками, что открыли новую частицу, – не хватало даже букв для их обозначения. Но, увы, в «родильном доме» новых частиц ученые так и не смогли отыскать ответ на вопрос – зачем их так много и откуда они берутся?

Это подтолкнуло физиков к необычному и потрясающему предсказанию – они поняли, что силы, действующие в природе, также можно объяснить с помощью частиц. То есть существуют частицы материи, а есть частицы-переносчики взаимодействий. Таковым, например, является фотон – частица света. Чем больше этих частиц-перенос­чиков – тех же фотонов, которыми обмениваются частицы материи, тем ярче свет. Ученые предсказывали, что именно этот обмен частицами-переносчиками – есть не что иное, как то, что мы воспринимаем как силу. Это подтвердилось экспериментами. Так физикам удалось приблизиться к мечте Эйнштейна по объединению сил.

Ученые считают, что если мы перенесемся к моменту сразу после Большого взрыва, когда Вселенная была на триллионы градусов горячее, частицы-переносчики электромагнетизма и слабого взаимодействия станут неразличимы и объединятся в одну-е­дин­ственную силу, называемую электрослабой. А если вернуться во времени еще дальше, то электрослабое взаимодействие соединилось бы с сильным в одну суммарную «суперсилу».

Несмотря на то, что все это еще ждет своих доказательств, квантовая механика вдруг объяснила, как три из четырех сил взаимодействуют на субатомном уровне. Причем объяснила красиво и непротиворечиво. Эта стройная картина взаимодействий, в конечном счете, получила название Стандартной модели. Но, увы, и в этой совершенной теории была одна большая проблема – она не включала в себя самую известную силу макроуровня – гравитацию.

Взаимодействия между различными частицами в Стандартной модели
Гравитон

Для не успевшей «расцвести» теории струн наступила «осень», уж слишком много проблем она содержала с самого рождения. Например, выкладки теории предсказали существование частиц, которых, как точно установили вскоре, не существует. Это так называемый тахион – частица, которая движется в вакууме быстрее света. Помимо прочего выяснилось, что теория требует целых 10 измерений. Неудивительно, что это очень смущало физиков, ведь это очевидно больше, чем то, что мы видим.

К 1973 году только несколько молодых физиков все еще боролись с загадочными выкладками теории струн. Одним из них был американский физик-теоретик Джон Шварц. В течение четырех лет Шварц пытался приручить непослушные уравнения, но без толку. Помимо других проблем, одно из этих уравнений упорно описывало таинственную частицу, которая не имела массы и не наблюдалась в природе.

Ученый уже решил забросить свое гиблое дело, и тут его осенило – может быть, уравнения теории струн описывают, в том числе, и гравитацию? Впрочем, это подразумевало пересмотр размеров главных «героев» теории – струн. Предположив, что струны в миллиарды и миллиарды раз меньше атома, «струнщики» превратили недостаток теории в ее достоинство. Таинственная частица, от которой Джон Шварц так настойчиво пытался избавиться, теперь выступала в качестве гравитона – частицы, которую долго искали и которая позволила бы перенести гравитацию на квантовый уровень. Именно так теория струн дополнила пазл гравитацией, отсутствующей в Стандартной модели. Но, увы, даже на это открытие научное сообщество никак не отреагировало. Теория струн оставалась на грани выживания. Но Шварца это не остановило. Присоединиться к его поискам захотел только один ученый, готовый рискнуть своей карьерой ради таинственных струн – Майкл Грин.

Субатомные матрешки

Несмотря ни на что, в начале 1980?х годов теория струн все еще имела неразрешимые противоречия, называемые в науке аномалиями. Шварц и Грин принялись за их устранение. И усилия их не прошли даром: ученые сумели устранить некоторые противоречия теории. Каково же было изумление этих двоих, уже привыкших к тому, что их теорию пропускают мимо ушей, когда реакция ученого сообщес­тва взорвала научный мир. Меньше чем за год число струнных теоретиков подпрыгнуло до сотен человек. Именно тогда теорию струн наградили титулом Теории Всего. Новая теория, казалось, способна описать все составляющие мироздания. И вот эти составляющие.

Каждый атом, как известно, состоит из еще меньших частиц – электронов, которые кружатся вокруг ядра, состоящего из протонов и нейтронов. Протоны и нейтроны, в свою очередь, состоят из еще меньших частиц – кварков. Но теория струн утверждает, что на кварках дело не заканчивается. Кварки состоят из крошечных извивающихся нитей энергии, которые напоминают струны. Каждая из таких струн невообразимо мала.

Мала настолько, что если бы атом был увеличен до размеров Солнечной системы, струна была бы размером с дерево. Так же, как различные колебания струны виолончели создают то, что мы слышим, как разные музыкальные ноты, различные способы (моды) вибрации струны придают частицам их уникальные свойства – массу, заряд и прочее. Знаете, чем, условно говоря, отличаются протоны в кончике вашего ногтя от пока не открытого гравитона? Только набором крошечных струн, которые их составляют, и тем, как эти струны колеблются.

Конечно, все это более чем удивительно. Еще со времен Древней Греции физики привыкли к тому, что все в этом мире состоит из чего-то вроде шаров, крошечных частиц. И вот, не успев привыкнуть к алогичному поведению этих шаров, вытекающему из квантовой механики, им предлагается вовсе оставить парадигму и оперировать какими-то обрезками спагетти...

Пятое измерение

Хотя многие ученые называют теорию струн триумфом математики, некоторые проблемы у нее все же остаются – прежде всего, отсутствие какой-либо возможности в ближайшее время проверить ее экспериментально. Ни один инструмент в мире, ни существующий, ни способный появиться в перспективе, «увидеть» струны неспособен. Поэтому некоторые ученые, кстати, даже задаются вопросом: теория струн – это теория физики или философии?.. Правда, видеть струны «воочию» вовсе не обязательно. Для доказательства теории струн требуется, скорее, другое – то, что звучит как научная фантастика – подтверждение существования дополнительных измерений пространства.

О чем идет речь? Все мы привыкли к трем измерениям пространства и одному – времени. Но теория струн предсказывает наличие и других – дополнительных – измерений. Но начнем по порядку.

На самом деле, идея о существовании других измерений возникла почти сто лет назад. Пришла она в голову никому не известному тогда немецкому математику Теодору Калуца в 1919 году. Он предположил возможность наличия в нашей Вселенной еще одного измерения, которое мы не видим. Об этой идее узнал Альберт Эйнштейн, и сначала она ему очень понравилась. Позже, однако, он засомневался в ее правильности, и задержал публикацию Калуцы на целых два года. В конечном счете, правда, статья все-таки была опубликована, а дополнительное измерение стало своеобразным увлечением гения физики.

Как известно, Эйнштейн показал, что гравитация есть не что иное, как деформация измерений пространства-времени. Калуца предположил, что электромагнетизм тоже может быть рябью. Почему же мы ее не наблюдаем? Калуца нашел ответ на этот вопрос – рябь электромагнетизма может существовать в дополнительном, скрытом измерении. Но где оно?

Ответ на этот вопрос дал шведский физик Оскар Клейн, который предположил, что пятое измерение Калуцы свернуто в миллиарды раз сильнее, чем размеры одного атома, поэтому мы и не можем его видеть. Идея о существовании этого крошечного измерения, которое находится повсюду вокруг нас, и лежит в основе теории струн.

Одна из предполагаемых форм дополнительных закрученных измерений. Внутри каждой из таких форм вибрирует и движется струна – основной компонент Вселенной. Каждая форма шестимерна – по числу шести дополнительных измерений

Десять измерений

Но на самом деле уравнения теории струн требуют даже не одного, а шести дополнительных измерений (итого, с известными нам четырьмя, их получается ровно 10). Все они имеют очень закрученную и искривленную сложную форму. И все – невообразимо малы.

Каким же образом эти крошечные измерения могут оказывать влияние на наш большой мир? Согласно теории струн, решающее: для нее все определяет форма. Когда на саксофоне вы нажимаете разные клавиши, вы получаете и разные звуки. Это происходит потому, что при нажатии той или иной клавиши или их комбинации, вы меняете форму пространства в музыкальном инструменте, где циркулирует воздух. Благодаря этому и рождаются разные звуки.

Теория струн полагает, что дополнительные искривленные и закрученные измерения пространства проявляются похожим образом. Формы этих дополнительных измерений сложны и разнообразны, и каждое заставляет вибрировать струну, находящуюся внутри таких измерений, по-разному именно благодаря своим формам. Ведь если предположить, например, что одна струна вибрирует внутри кувшина, а другая – внутри изогнутого почтового рожка, это будут совершенно разные вибрации. Впрочем, если верить теории струн, на деле формы дополнительных измерений выглядят куда сложнее кувшина.

Как устроен мир

Науке сегодня известен набор чисел, которые являются фундаментальными постоянными Вселенной. Именно они определяют свойства и характеристики всего вокруг нас. Среди таких констант, например, заряд электрона, гравитационная постоянная, скорость света в вакууме... И если мы изменим эти числа даже в незначительное число раз – последствия будут катастрофическими. Предположим, мы увеличили силу электромагнитного взаимодействия. Что же произошло? Мы можем вдруг обнаружить, что ионы стали сильнее отталкиваться друг от друга, и термоядерный синтез, который заставляет звезды светить и излучать тепло, вдруг дал сбой. Все звезды погаснут.

Но причем здесь теория струн с ее дополнительными измерениями? Дело в том, что, согласно ей, именно дополнительные измерения определяют точное значение фундаментальных констант. Одни формы измерений заставляют одну струну вибрировать определенным образом, и порождают то, что мы видим, как фотон. В других формах струны вибрируют по-другому, и порождают электрон. Воистину бог кроется в «мелочах» – именно эти крошечные формы определяют все основополагающие константы этого мира.

Теория суперструн

В середине 1980-х годов теория струн приобрела величественный и стройный вид, но внутри этого монумента царила путаница. Всего за несколько лет возникло целых пять версий теории струн. И хотя каждая из них построена на струнах и дополнительных измерениях (все пять версий объединены в общую теорию суперструн – NS), в деталях эти версии расходились значительно.

Так, в одних версиях струны имели открытые концы, в других – напоминали кольца. А в некоторых вариантах теория даже требовала не 10, а целых 26 измерений. Парадокс в том, что все пять версий на сегодняшний день можно назвать одинаково верными. Но какая из них действительно описывает нашу Вселенную? Это очередная загадка теории струн. Именно поэтому многие физики снова махнули рукой на «сумасбродную» теорию.

Но самая главная проблема струн, как уже было сказано, в невозможности (по крайней мере, пока) доказать их наличие экспериментальным путем.

Некоторые ученые, однако, все же поговаривают, что на следующем поколении ускорителей есть очень минимальная, но все же возможность проверить гипотезу о дополнительных измерениях. Хотя большинство, конечно, уверено, что если это и возможно, то произойти это, увы, должно еще очень нескоро – как минимум через десятилетия, как максимум – даже через сотню лет.

Физики привыкли работать с частицами: теория отработана, эксперименты сходятся. Ядерные реакторы и атомные бомбы рассчитываются с помощью частиц. С одной оговоркой - во всех расчетах не учитывается гравитация.

Гравитация - это притяжение тел. Когда говорим о гравитации, представляем земное притяжение. Телефон падает из рук на асфальт под действием гравитации. В космосе Луна притягивается к Земле, Земля к Солнцу. Все в мире притягивается друг к другу, но чтобы почувствовать это, нужны очень тяжелые объекты. Мы ощущаем притяжение Земли, которая в 7,5×10 22 раз тяжелее человека, и не замечаем притяжения небоскреба, который тяжелее в 4×10 6 раз.

7,5×10 22 = 75 000 000 000 000 000 000 000

4×10 6 = 4 000 000

Гравитацию описывает общая теория относительности Эйнштейна. В теории массивные объекты искривляют пространство. Чтобы понять, выйдите в детский парк и положите на батут тяжелый камень. На резине батута появится воронка. Если положить на батут маленький шарик, то он скатится по воронке к камню. Примерно так планеты образуют воронку в пространстве, а мы, как шарики, падаем на них.

Планеты настолько массивные, что искривляют пространство

Для того чтобы описать все на уровне элементарных частиц, гравитация не нужна. По сравнению с другими силами, гравитация так мала, что ее просто выкинули из квантовых расчетов. Сила земной гравитации меньше силы, удерживающей частицы атомного ядра, в 10 38 раз. Это справедливо почти для всей вселенной.

10 38 = 100 000 000 000 000 000 000 000 000 000 000 000 000

Единственное место, где гравитация так же сильна, как и другие взаимодействия - внутри черной дыры. Это гигантская воронка, в которой гравитация сворачивает само пространство и втягивает все, что рядом. Даже свет залетает в черную дыру и обратно не возвращается.

Чтобы работать с гравитацией как с другими частицами, физики придумали квант гравитации - гравитон. Провели расчеты, но они не сошлись. Вычисления показывали, что энергия гравитона растет до бесконечности. А такого быть не должно.

Физики сначала придумывают, потом ищут. Бозон Хиггса придумали за 50 лет до открытия.

Проблемы с расходимостями в расчетах пропали, когда гравитон рассмотрели не как частицу, а как струну. Струны имеют конечную длину и энергию, поэтому энергия гравитона может расти только до определенного предела. Так у ученых появился работающий инструмент, с помощью которого они изучают черные дыры.

Успехи в изучении черных дыр помогают понять, как появилась вселенная. По теории Большого взрыва мир вырос из микроскопической точки. В первые мгновения жизни вселенная была очень плотной - в малом объеме собрались все современные звезды и планеты. Гравитация не уступала в силе другим взаимодействиям, поэтому знание эффектов гравитации важно для понимания ранней вселенной.

Успехи в описании квантовой гравитации - шаг к созданию теории, которая опишет все на свете. Такая теория объяснит, как вселенная родилась, что в ней происходит сейчас, и каким будет ее конец.

  • Перевод

В основе теории струн лежит идея о том, что вместо нульмерных элементарных частиц Вселенная состоит из одномерных струн

Теория струн – одна из самых гениальных, противоречивых и недоказанных идей физики. В её основе лежит физический тренд, живущий много столетий – что на некоем фундаментальном уровне все различные силы, частицы, взаимодействия и проявления реальности связываются вместе как разные части одной платформы. Вместо четырёх независимых фундаментальных взаимодействий – сильного, электромагнитного, слабого и гравитационного – есть одна объединённая теория, охватывающая их всех.

Во многих смыслах, теория струн – лучший кандидат на квантовую теорию гравитации, объединяющую взаимодействия на высочайших уровнях энергий. И хотя тому нет экспериментальных подтверждений, существуют убедительные теоретические причины считать, что это так и есть. В 2015 году крупнейший из живущих специалистов по теории струн, Эдвард Виттен, написал работу о том, что каждый физик должен знать о теории струн. И вот, что она означает – даже если вы не физик.



Разница между стандартными взаимодействиями квантовой теории поля (слева) для точечных частиц и взаимодействиями в теории струн (справа) для закрытых струн.

Удивительно, как иногда много общего встречается в законах природы, касающихся вроде бы не связанных между собой явлений. Математические структуры таких явлений часто очень похожи, а иногда даже идентичны. Притяжение двух массивных тел по законам Ньютона практически идентично притяжению/отталкиванию электрически заряженных частиц. Колебания маятника полностью аналогичны движению массы на пружине или планеты вокруг звезды. Гравитационные волны, волны на воде, световые волны – все они обладают удивительно похожими свойствами, несмотря на то, что происходит из фундаментально различных физических источников. И в том же ключе, хотя многие этого не осознают, квантовая теория одной частицы и подход к квантовой теории гравитации также аналогичны друг другу.


Диаграмма Фейнмана, представляющая рассеяние двух электронов – для этого требуется суммировать все возможные истории взаимодействий частиц

Работает квантовая теория поля так: берём частицу и производим математическое «суммирование всех её историй». Нельзя просто подсчитать, где была частица, и где она сейчас, и как она туда попала – поскольку в природе существует внутренняя и фундаментальная квантовая неопределённость. Вместо этого мы суммируем все возможные способы, которыми она могла прибыть в текущее состояние («прошлая история»), с соответствующими вероятностными весами, а потом подсчитываем квантовое состояние одной частицы.

Чтобы работать с гравитацией, а не с квантовыми частицами, нужно кое-что немного поменять. Поскольку Общая теория относительности Эйнштейна связана не с частицами, а с кривизной пространства-времени, мы не будем усреднять все возможные истории частицы. Вместо этого мы усредняем все возможные геометрии пространства-времени.


Гравитация по правилам Эйнштейна и всё остальное (сильные, слабые и электромагнитные взаимодействия) по правилам квантовой физики – это два разных набора законов, управляющих всем во Вселенной.

Работать в трёх пространственных измерениях очень тяжело, и когда мы встречаемся со сложной физической проблемой, мы часто пытаемся решить сначала более простую её версию. Если спуститься на одно измерение, всё станет проще. Единственные из возможных одномерных поверхностей – это открытая струна, с двумя отдельными концами, не связанными друг с другом, или закрытая струна, концы которой соединены и формируют петлю. Кроме того, кривизна пространства – очень сложная в трёх измерениях – становится тривиальным вопросом. Поэтому, если мы хотим добавить материю, мы используем набор скалярных полей (точно так же, как для определённого рода частиц) и космологическую константу (работающую точно как член уравнения, отвечающий за массу): прекрасная аналогия.

Дополнительные степени свободы, которая получает частица в нескольких измерениях, не играют особенной роли; пока мы можем определить вектор импульса, это остаётся главным измерением. Поэтому в одном измерении квантовая гравитация выглядит так же, как свободная квантовая частица в любом произвольном количестве измерений.


Граф с вершинами, где сходятся по три ребра – ключевой компонент построения интеграла по траектории, относящегося к одномерной квантовой гравитации

Следующий шаг – включить взаимодействия, и перейти от свободной частицы без амплитуд рассеяния или эффективных поперечных сечений к той, что может иметь физическую роль, связанную со Вселенной. Графы, похожие на приведённый выше, позволяют нам описывать физическую концепцию действия в квантовой гравитации. Если записать все возможные комбинации подобных графов и провести суммирование по ним – применяя те же законы, что и обычно, например, закон сохранения импульса – мы можем завершить аналогию. Квантовая гравитация в одном измерении очень похожа на взаимодействие одной частицы в любом числе измерений.


Вероятность обнаружить квантовую частицу в каком-то определённом месте никогда не равняется 100%; вероятность распределяется по пространству и по времени.

Следующий шаг – перейти от одного пространственного измерения в 3+1 измерения: туда, где у Вселенной есть три пространственных и одно временное измерение. Но этот теоретический «апгрейд» для гравитации может оказаться очень сложным. Можно найти другой подход, если мы решим работать в противоположном направлении.

Вместо подсчёта поведения одной частицы (нульмерной сущности) в любом количестве измерений, возможно, мы могли бы подсчитать поведение струны, открытой или закрытой (одномерной сущности). А исходя из этого уже поискать аналогии к более полной теории квантовой гравитации в более реалистичном количестве измерений.


Диаграммы Фейнмана (вверху) основаны на точечных частицах и их взаимодействиях. Превратив их в аналоги для теории струн (внизу), мы получим поверхности, способные обладать нетривиальной кривизной.

Вместо точек и взаимодействий мы сразу начинаем работать с поверхностями, мембранами, и так далее. Получив настоящую многомерную поверхность, мы можем искривить её нетривиальными способами. Мы начинаем наблюдать у неё очень интересное поведение; такое, которое может находиться в основе кривизны пространства-времени, наблюдаемого во Вселенной в рамках ОТО.

Но хотя одномерная квантовая гравитация даёт нам квантовую теорию поля для частиц в возможно искривлённом пространстве-времени, сама по себе она не описывает гравитацию. Чего не хватает в этой головоломке? Нет соответствия между операторами, или функциями, представляющими квантово-механические взаимодействия и свойства, а также состояния, то есть, как частицы и их свойства изменяются со временем. Это соответствие «операторов-состояний» было необходимым, но недостающим ингредиентом.

Но если перейти от точечных частиц к струнным сущностям, это соответствие проявляется.


Деформирование метрики пространства-времени можно представить флуктуацией ("p"), а если применить её к струнной аналогии, она будет описывать флуктуацию пространства-времени и соответствовать квантовому состоянию струны.

При переходе от частиц к струнам появляется реальное соответствие операторов-состояний. Флуктуация в метрике пространства-времени (то есть, оператор) автоматически представляет состояние в квантово-механическом описании свойств струны. Поэтому квантовую теорию гравитации в пространстве-времени можно создать на основе теории струн.

Но это не всё, что мы получим: мы также получим квантовую гравитацию, объединённую с другими частицами и взаимодействиями в пространстве-времени, с теми, что соответствуют другим операторам струны в теории поля. Также существует оператор, описывающий флуктуации геометрии пространства-времени, а ещё один – для квантовых состояний струны. Самое интересное в теории струн то, что она способна дать нам рабочую квантовую теорию гравитации.


Брайан Грин делает презентацию по теории струн

Всё это не означает, что вопрос решён, и что теория струн – это путь к квантовой гравитации. Великая надежда теории струн состоит в том, что эти аналогии смогут удержаться на всех масштабах, и что появится недвусмысленное соответствие типа «один к одному» струнной картины мира и Вселенной, которую мы наблюдаем вокруг нас.

Пока что картина мира со струнами и суперструнами непротиворечива лишь в нескольких наборах измерений, и наиболее многообещающий из них не даёт нам четырёхмерной гравитации Эйнштейна, описывающей нашу Вселенную. Вместо этого мы обнаруживаем 10-мерную теорию гравитации Бранса - Дикке . Чтобы восстановить гравитацию, имеющуюся в нашей Вселенной, необходимо «избавиться» от шести измерений и устремить константу связи ω к бесконечности.

Если вы слышали термин «компактификация» в приложении к теории струн – это просто слово, обозначающее, что мы должны разгадать эти загадки. Пока что многие люди предполагают существование полного и убедительного решения, подходящего для компактификации. Но вопрос того, как получить Эйнштейновскую гравитацию и 3+1 измерения из 10-мерной теории, остаётся открытым.


Двумерная проекция многообразия Калаби-Яу , одного из популярных методов компактификации дополнительных, ненужных измерений теории струн

Теория струн предлагает путь к квантовой гравитации, с которым могут сравниться немногие альтернативы. Если сделать разумные выводы по поводу того, как работает математика, мы сможем получить из неё как ОТО, так и Стандартную модель. На сегодня это единственная идея, которая даёт нам это – поэтому за ней так отчаянно гонятся. Неважно, выступаете ли вы за успех теории струн или за провал, или как вы относитесь к отсутствию проверяемых предсказаний, она, без сомнения, остаётся одной из наиболее активных областей исследования теоретической физики. По сути, теория струн выделяется, как лидирующая идея среди мечтаний физиков об окончательной теории.

Теги: Добавить метки

Ключевые вопросы:

Каковы фундаментальные компоненты Вселенной -«первокирпичики материи»? Существуют ли теории, способные объяснить все основные физические явления?

Вопрос: это реально?

На сегодняшний день и в обозримом будущем, непосредственное наблюдение в столь малых масштабах не представляется возможным. Физика находится в поиске, и проводимые эксперименты, например, по обнаружению суперсимметричных частиц или поиску дополнительных измерений на ускорителях могут указать, что теория струн находится на верном пути.

Является теория струн теорией всего, или нет, она дает нам в руки уникальный набор инструментов, позволяющий заглянуть в глубинные структуры реальности.

Теория струн


Макро и микро


При описании Вселенной, физика делит ее на две, казалось-бы, несовместимых половинки - квантовый микромир, и макромир, в рамках которого описывается гравитация.


Теория струн это противоречивая попытка объединения этих половинок в «Теорию всего».


Частицы и взаимодействия


Мир сделан из двух видов элементарных частиц - фермионов и бозонов. Фермионы это всё наблюдаемое вещество, а бозоны являются переносчиками четырех известных фундаментальных взаимодействий: слабого, электромагнитного, сильного и гравитационного. В рамках теории, называемой «Стандартно моделью», физикам удалось изящно описать и проверить три фундаментальных взаимодействи все, кроме самого слабого - гравитационного. Hа сегодняшний день Стандартная модель является наиболее точной и экспериментально подтвержденной моделью нашего мира.


Зачем нужна теория струн


Стандартная модель не включает гравитацию, не может описать центр черной дыры и Большой взрыв, не объясняет результаты некоторых экспериментов. Теория струн - это попытка разрешить эти проблемы и унифицировать материю и взаимодействия, заменив элементарные частицы крошечными вибрирующими струнами.



В основе теории струн лежит идея, что все элементарные частицы можно представить в виде одного элементарного «первокирпичика» - струны. Струны могут вибрировать, и разные моды таких колебании на большом удалении будут выглядеть для нас как различные элементарные частицы. Одна мода вибрации заставит струну выглядеть как фотон, другая - как электрон.


Существует даже мода, описывающая переносчик гра в ита цио н но го взаимодействия - гравитон! Варианты теории струн описывают струны двух видов: открытые (1) и замкнутые (2). Открытые струны имеют два конца (3), расположенных на мембрано-подобных структурах, называемых D-бранами, и их динамикой описываются три из четырех фундаментальных взаимодействии - все, за исключением гравитационного.


Замкнутые струны напоминают петли, они не привязаны к D- бранам - именно колебательные моды замкнутых струн представляются безмассовым гравитоном. Концы открытой струны могут соединяться, образуя замкнутую струну, которая, в свою очередь, может разрываться, превратившись в открытую, или сойтись и расщепиться на две замкнутые струны (5) - таким образом в теории струн гравитационное взаимодействие объединяется со всеми остальными



Струны - самые маленькие из всех объектов, которыми оперирует физика. Диапазон размеров V объектов, представленных на картинке выше, простирается на 34 порядка - если бы атом был размером с солнечную систему, то размер струны мог бы быть чуть больше атомного ядра.



Дополнительные измерения


Непротиворечивые теории струн возможны лишь в пространстве высшей размерности, где в дополнение к знакомым нам 4м пространственно-временным измерениям требуется 6 дополнительных. Теоретики полагают, что эти дополнительные измерения свернуты в неуловимо малые формы -пространства Калаби-Яу. Одной из проблем теории струн является то, что существует почти бесконечное количество вариантов свертки (ком пактификации) Калаби-Яу, позволяющее описать какой угодно мир, и пока нет никакой возможности найти тот вариант ко м па ктифи ка ци и, который бы позволял описать то, что мы видим вокруг.


Суперсимметрия


Большинство версий теории струн требует понятия суперсимметрии, в основе которого лежит идея о том, что фермионы (вещество) и бозоны (взаимодействия) суть есть проявления одного и того-же объекта, и могут превращаться друг в друга.


Теория всего?


Суперсимметрию в теорию струн можно включить 5ю различными способами, что приводит к 5 различным видам теории струн, из чего следует, что сама по себе теория струн не может претендовать на звание «теории всего». Все эти пять видов связаны между собой математическими преобразованиями, называемыми дуальностями, и это привело к пониманию, что все эти виды являются аспектами чего-то более общего. Эту более общую теорию называют М-Теорией.



Известно 5 различных формулировок теории струн, однако при ближайшем рассмотрении, выясняется что все они являются проявлениями более общей теории

В конечном счете все элементарные частицы можно представить в виде микроскопических многомерных струн, в которых возбуждены вибрации различных гармоник.

Внимание, пристегните покрепче ремни — и я попробую описать вам одну из самых странных теорий из числа серьезно обсуждаемых сегодня научных кругах, которая способна дать наконец окончательную разгадку устройства Вселенной. Теория эта выглядит настолько дико, что, вполне возможно, она правильна!

Различные версии теории струн сегодня рассматриваются в качестве главных претендентов на звание всеобъемлющей универсальной теории , объясняющей природу всего сущего. А это — своего рода Священный Грааль физиков-теоретиков, занимающихся теорией элементарных частиц и космологии. Универсальная теория (она же теория всего сущего ) содержит всего несколько уравнений, которые объединяют в себе всю совокупность человеческих знаний о характере взаимодействий и свойствах фундаментальных элементов материи, из которых построена Вселенная. Сегодня теорию струн удалось объединить с концепцией суперсимметрии , в результате чего родилась теория суперструн , и на сегодняшний день это максимум того, что удалось добиться в плане объединения теории всех четырех основных взаимодействий (действующих в природе сил). Сама по себе теория суперсимметрии уже построена на основе априорной современной концепции, согласно которой любое дистанционное (полевое) взаимодействие обусловлено обменом частицами-носителями взаимодействия соответствующего рода между взаимодействующими частицами (см. Стандартная модель). Для наглядности взаимодействующие частицы можно считать «кирпичиками» мироздания, а частицы-носители — цементом.

В рамках стандартной модели в роли кирпичиков выступают кварки, а в роли носителей взаимодействия — калибровочные бозоны , которыми эти кварки обмениваются между собой. Теория же суперсимметрии идет еще дальше и утверждает, что и сами кварки и лептоны не фундаментальны: все они состоят из еще более тяжелых и не открытых экспериментально структур (кирпичиков) материи, скрепленных еще более прочным «цементом» сверхэнергетичных частиц-носителей взаимодействий, нежели кварки в составе адронов и бозонов. Естественно, в лабораторных условиях ни одно из предсказаний теории суперсимметрии до сих пор не проверено, однако гипотетические скрытые компоненты материального мира уже имеют названия — например, сэлектрон (суперсимметричный напарник электрона), скварк и т. д. Существование этих частиц, однако, теориями такого рода предсказывается однозначно.

Картину Вселенной, предлагаемую этими теориями, однако, достаточно легко представить себе наглядно. В масштабах порядка 10 -35 м, то есть на 20 порядков меньше диаметра того же протона, в состав которого входят три связанных кварка, структура материи отличается от привычной нам даже на уровне элементарных частиц. На столь малых расстояниях (и при столь высоких энергиях взаимодействий, что это и представить немыслимо) материя превращается в серию полевых стоячих волн, подобных тем, что возбуждаются в струнах музыкальных инструментов. Подобно гитарной струне, в такой струне могут возбуждаться, помимо основного тона, множество обертонов или гармоник. Каждой гармонике соответствует собственное энергетическое состояние. Согласно принципу относительности (см. Теория относительности), энергия и масса эквивалентны, а значит, чем выше частота гармонической волновой вибрации струны, тем выше его энергия, и тем выше масса наблюдаемой частицы.

Однако, если стоячую волну в гитарной струне представить себе наглядно достаточно просто, стоячие волны, предлагаемые теорией суперструн наглядному представлению поддаются с трудом — дело в том, что колебания суперструн происходят в пространстве, имеющем 11 измерений. Мы привыкли к четырехмерному пространству, которое содержит три пространственных и одно временное измерение (влево-вправо, вверх-вниз, вперед-назад, прошлое-будущее). В пространстве суперструн всё обстоит гораздо сложнее (см. вставку). Физики-теоретики обходят скользкую проблему «лишних» пространственных измерений, утверждая, что они «скрадываются» (или, научным языком выражаясь, «компактифицируются») и потому не наблюдаются при обычных энергиях.

Совсем уже недавно теория струн получила дальнейшее развитие в виде теории многомерных мембран — по сути, это те же струны, но плоские. Как походя пошутил кто-то из ее авторов, мембраны отличаются от струн примерно тем же, чем лапша отличается от вермишели.

Вот, пожалуй, и всё, что можно вкратце рассказать об одной из теорий, не без основания претендующих на сегодняшний день на звание универсальной теории Великого объединения всех силовых взаимодействий. Увы, и эта теория небезгрешна. Прежде всего, она до сих пор не приведена к строгому математическому виду по причине недостаточности математического аппарата для ее приведения в строгое внутреннее соответствие. Прошло уже 20 лет, как эта теория появилась на свет, а непротиворечиво согласовать одни ее аспекты и версии с другими так никому и не удалось. Еще неприятнее то, что никто из теоретиков, предлагающих теорию струн (и, тем более суперструн) до сих пор не предложил ни одного опыта, на котором эти теории можно было бы проверить лабораторно. Увы, боюсь, что до тех пор, пока они этого не сделают, вся их работа так и останется причудливой игрой фантазии и упражнениями в постижении эзотерических знаний за пределами основного русла естествознания.

См. также:

1972

Квантовая хромодинамика

Сколько же всего измерений?

Нам, простым людям, всегда хватало и трех измерений. С незапамятных времен мы привыкли описывать физический мир в столь скромных рамках (саблезубый тигр в 40 метрах спереди, 11 метрах правее и 4 метрах выше меня — булыжник к бою!). Теория относительности приучила большинство из нас к тому, что время — суть четвертое измерение (саблезубый тигр не просто здесь — он здесь и сейчас угрожает нам!). И вот, начиная с середины ХХ века, теоретики повели разговоры, что на самом деле измерений еще больше — не то 10, не то 11, не то вообще 26. Конечно, без объяснений, почему мы, нормальные люди, их не наблюдаем, тут обойтись не могло. И тогда возникла концепция «компактификации» — слипания или схлопывания измерений.

Представим садовый поливочный шланг. Вблизи он воспринимается как нормальный трехмерный объект. Стоит, однако, отойти от шланга на достаточное расстояние — и он представится нам одномерным линейным объектом: его толщину мы попросту перестанем воспринимать. Именно о таком эффекте и принято говорить, как о компактификации измерения: в данном случае «компактифицированной» оказалась толщина шланга — слишком мала шкала масштаба измерения.

Именно так, по утверждениям теоретиков, исчезают из поля нашего экспериментального восприятия реально существующие дополнительные измерения, необходимые для адекватного объяснения свойств материи на субатомном уровне: они компактифицируются, начиная с шкалы масштабов порядка 10 -35 м, и современные методы наблюдения и измерительные приборы просто не в состоянии обнаружить структур столь малого масштаба. Возможно, всё именно так и есть, а возможно, всё обстоит совершенно по-другому. Пока нет таких приборов и методов наблюдения, все вышеприведенные доводы и контрдоводы так и останутся на уровне досужих спекуляций.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.