Закон тициуса боде и дифракция гравитационных волн. Правило Тициуса—Боде

В продолжение темы соотношения

Правило, о котором речь идёт ниже (Тициуса-Боде), моогло быть установлено только натуралистически. Гипотетико-дедуктивный метод эффективно работает там, где у нас есть уверенность, что последовательно выдвигая гипотезы и развивая в теории те, которые прошли фальсификационный тест, мы «на длинной дистанции» приближаемся к истине, а не удаляемся от неё. Она даётся именно и только натуралистическим бэкграундом, с развитым выделением систем, далее ставших объектом исследования, при помощи сравнительного метода, их систематикой и пр. См., например, возражения к правилу Тициуса-Боде с позиций гипотез небулярного типа.

=================================

Правило XVIII века в большинстве планетарных систем выполняется лучше, чем в Солнечной

Александр Березин

Четверть тысячелетия тому назад немецкий астроном Иоганн Тициус заявил, что нашёл закономерность в нарастании радиусов орбит планет, вращающихся вокруг Солнца. Если начать с ряда чисел 0, 3, 6, 12 и далее с последующим удвоением (начиная с тройки), а затем добавлять к каждому числу в этой последовательности 4, а результат разделить на 10, то получится таблица расстояний до известных в ту пору планет Солнечной системы — в астрономических единицах, конечно, то есть в расстояниях от Солнца до Земли (сейчас, разумеется, правило формулируют более изощрённо).

Соответственно, по Тициусу, для нашей системы расстояния от планет до звезды равнялись 0,4, 0,7, 1,0, 1,6 а. е. и т. д. Фактически планеты были, конечно, лишь близки к этим значениям: 0,39 а. е. для Меркурия, 0,72 для Венеры, 1,00 для Земли, 1,52 для Марса.

Эта идея привлекла огромное внимание после того, как через 15 лет был открыт Уран, точно вписавшийся в правило Тициуса — Боде (19,22 а. е. против 19,6 а. е. по правилу). Тогда начали искать пропущенную пятую планету и нашли сначала Цереру, а затем и пояс астероидов. И хотя позже выяснилось, что Нептун не соответствует правилу, обаяние предложенной системы во многом сохранилось. Хотя бы потому, что по некоторым планетам расхождение с правилом равнялось 0,00%: такое не часто случается в науке, а уж в предсказании радиусов орбит — и того реже .

Эмпирическое правило Тициуса — Боде работает для Солнечной системы неидеально. Но удивляет не это, а то, что оно вообще работает. (Здесь и ниже иллюстрации Wikimedia Commons.)

Как это объясняется теоретически? Да никак. Часто можно услышать, что раз уж планеты в системе есть, то им надо где-то вращаться, и рассуждать о том, почему они вращаются именно там, бессмысленно, поскольку, если бы они вращались не там, то делали бы это в другом месте. Любителям истории нашей страны похожий подход известен по модной нынче фразе неизвестного авторства «История не знает сослагательного наклонения». Некоторые же исследователи характеризуют правило Тициуса — Боде ещё резче: «Нумерология!» То есть никаких объективных предпосылок для его срабатывания нет, и всё это чистое совпадение. Цифры, входящие в его формулу и описывающие удаление планет от Солнца, можно подставить в бесконечное количество формул, и часть из них просто по теории вероятности даст результат, более или менее совпадающий с реальным.

Если правильные предсказания дало именно «правило Тициуса — Боде», а не какое-то иное — значит, такова была воля случая, а к собственно астрономии это «правило» не относится. В общем, пока у него не будет физического обоснования, оно так и не удостоится чести быть раскавыченным. А внятное физическое обоснование, увы, отсутствует: ведь мы даже задачу трёх тел применительно к реальным телам решить не можем . А уж задачу n тел (то есть Солнечную систему) решить удастся разве что на «мощных» квантовых компьютерах, в реальность которых многие вообще не верят.

Тимоти Бовард (Timothy Bovaird) из Австралийского национального университета попробовал применить данное правило к 27 экзопланетным системам, для которых известны хотя бы несколько планет с относительно правильными орбитами.

Оказалось, что 22 системы удовлетворяли взаимным соотношениям радиусов орбит лучше, чем Солнечная, где, напомним, есть Нептун, которого по правилу не должно быть, и отсутствует целостная планета между Марсом и Юпитером, предсказываемая правилом. Три системы подходят под правило хуже Солнечной, а ещё две — примерно в той же мере, что и последняя. Итак, 89% планетных систем, которые известны в степени, достаточной для проверки правила Тициуса — Боде, соответствуют ему не хуже той системы, в которой оно было открыто. Конечно, 89% не слишком хороший результат, однако он значительно лучше, чем можно было бы предположить априори.

Достаточно напомнить, что по современным представлениям планеты нередко мигрируют и сталкиваются; в итоге часть их погибает, а часть навсегда вылетает в межзвёздное пространство. Причём это было свойственно и нашей системе, может быть, вплоть до потери одного газового гиганта. Теоретически всё это должно было найти отражение в таком распределении орбит, которое невозможно назвать иначе как случайным в долгосрочном отношении. Какие уж тут, казалось бы, правила после такой bella omnimus contra omnes...

Чтобы проверить предсказательные возможности правила для экзопланет, авторы работы убрали из данных по наиболее хорошо известным системам ряд достоверных планет-кандидатов и затем попытались установить, требует ли правило «вернуть» их на место. В 100% случаях так и случилось — впрочем, иного трудно было ожидать, учитывая характер проверочной методики.

Т.Бовард осознаёт, что поиск планет там, где они уже найдены, не идеальный метод проверки, поэтому он предложил другой способ. Используя генерализованную формулу Тициуса — Боде (для соотношений радиусов орбит), он предсказал наличие 126 не открытых пока экзопланет в других планетарных системах, 62 из которых предсказаны интерполяцией, а 64 — экстраполяцией.


Вплоть до Урана отклонения от правила малы. Нептун, конечно, подкачал, ибо он ближе, а на его месте почему-то находится Плутон, вообще не являющийся полноценной планетой.

Что ещё более интересно, две из предсказанных планет должны находиться в зоне обитаемости при радиусе в 2,3 раза крупнее земного. Попросту говоря, это землеподобные планеты в зоне обитаемости. Причём такие, которые «Кеплер » ещё не открыл. Располагаются они, предположительно, в системе KOI-490. Как удалось установить, что планеты невелики? Тимоти Бовард исходил из того, что при радиусе выше указанного и правильной орбите эти экзопланеты были бы уже обнаружены. А если этого ещё не произошло, значит, фактически их радиус меньше 2,2-2,3 земного.

Кроме того, вероятны планеты земной группы в обитаемой зоне для системы KOI-812 (пятая планета), а также для KOI-571 и KOI-904. Интересно, что в среднем при анализе этого списка систем количество планет в зоне обитаемости было равно 1-2, хотя иногда речь шла о планетах-гигантах, способных, впрочем, иметь крупные скалистые спутники с атмосферой.

Разумеется, если предсказанные экзопланеты будут найдены, правило Тициуса — Боде останется всего лишь «правилом», так как его физическая обоснованность, при всех сделанных спекуляциях, по-прежнему загадочна. Однако даже при сохранении этой неясности оно окажется полезным, особенно для некомпактных планетных систем типа Солнечной, где значительная часть планет настолько удалена от светила, что найти их методом транзита по диску при нынешнем уровне телескопной техники слишком сложно.

Подготовлено по материалам arXiv .

P.S . Поскольку здесь я профан, буду признателен зат реплики специалистов.

P.P.S . В книге Г.С.Розенберга, Дж.П.Мозгового и Д.Б.Гелашвили «Экология. Обзор теоретических конструкций современной экологии .» (Самара, 1999). отлично систематизирована терминология, относящаяся к делу - чем закон отличается от правила и эмпирической зависимости, гипотеза от модели и теории и пр.

«Преждечем"наводитьпорядок"втеоретико-терминологическойпутанице,примем вслед за Большой Советской Энциклопедией(3-еизд.)ряд определений основных понятий.

АКСИОМА -положениенекоторойтеории,котороепридедуктивном построении этой теории не доказывается в ней,апринимаетсязаисходное. Обычно в качестве аксиом выбираются те предложения рассматриваемой теории,которые являются заведомо истинными или в рамках этойтеории считаются таковыми.

ГИПОТЕЗА -предположение;то,что лежит в основе-причина или сущность.Гипотеза-выраженное в форме суждения (или системы суждений) предположение или предугадывание чего-либо.Гипотезы создаются по правилу:"то,что мы хотим объяснить,аналогично тому,что мы уже знаем".Естественно,что гипотеза должна быть проверяемой.

ЗАКОН -необходимое,существенное,устойчивоеиповторяющееся отношение между явлениями.Заметим,что не всякая связь-закон(связь может быть случайной и необходимой);закон-необходимая связь.Различают законы функционирования (связьвпространстве,структурасистемы)и развития(связьвовремени), динамические (детерминированные)и статистические.Одни законы выражают строгую количественную зависимость между явлениями и фиксируются с помощью математических формализмов, уравнений(закон всемирного тяготения),другие-не поддаются строгой математической записи(закон биогенной миграции атомов В.И.Вернадского или закон естественного отбора Ч.Дарвина).А.А.Любищев (1990) вообщесчитает законы в качественной форме не строго научными,а преднаучными законами, которые надлежит еще только открыть в будущем.

КОНЦЕПЦИЯ -определенныйспособпонимания,трактовкикакого-либо явления,процесса;основная точка зрения на предмет.

МОДЕЛЬ (в широком понимании)-образ или прообраз какой-либо системы объектов,используемый при определенных условиях в качестве ее "заменителя" или "представителя".

ПОСТУЛАТ -предложение (правило)всилукаких-либосоображений "принимаемое"без доказательства,нособоснованием,котороеслужитв пользу его "принятия".Постулат,принимаемый как истина-аксиома,в противном случае требуется его доказуемость вдальнейшем.А.А.Любищев (1990) считает"постулат"как нечто промежуточное между"аксиомой"и"теоремой",а различие между "постулатами"и"законами"он видит в неоспоримом эмпирическом происхождении законов и скрытом эмпиризме постулатов.

ПРАВИЛО -предложение,выражающеепри определенных условиях разрешение или требование совершить (или воздержаться от совершения) некоторого действия;классическим примером могут служить правила грамматики.

ПРИНЦИП -основное исходное положениекакой-либотеории("главный"закон).

ТЕОРЕМА -предложениенекоторойдедуктивнопостроеннойтеории, устанавливаемое при помощи доказательства на базе системы аксиом этой теории.В формулировке теоремы различают два"блока"-условиеизаключение(любая теорема может быть приведена к виду:"если.., то...").

ТЕОРИЯ (в широком понимании)-комплекс взглядов,представлений, идей,направленных на истолкование и объяснение какого-либо явления.Теория (в более узком и специальном смысле)-высшая форма организации научного знания.Посвоемустроениютеорияпредставляетвнутреннедифференцированную,но целостную систему знания,которую характеризует логическая зависимость одних элементов от других,выводимость ее содержания из некоторой совокупности утверждений и понятий (аксиом)поопределенным правилам и принципам.По определениюВ.В.Налимова (1979),теория-это логическое построение,котороепозволяетописатьявлениесущественнокороче,чем это удается при непосредственном наблюдении.

УРАВНЕНИЕ -аналитическая запись задачи о разыскании значений аргументов,при которых значение двух данных функций равны.В другом смысле,например,используютсяхимическиеуравнения-для изображения химических реакций.Но и в том,и в другом случаях подразумевается использование законов сохранения (массы,энергии,числачастицит.п.).Л.Г.Раменский (1934, с. 69) отмечал: “...теоретической задачей экологии является изыскание общезначимых количественных закономерностей в связях организмов и их группировок (ценозов) со средою (экологические оптимумы,факторы разной биологической значимости,средообразующая способность различных растенийи т.д.)”.

На рис. 4показано "соподчинение" основных понятий,которые призваны описать "ядро теории"(Кузнецов, 1967;Розенберг, 1990) или"центральное понятийное звено"(Реймерс, 1990,с. 8).Горизонтальныесвязи наэтой схеме указывают направление возрастания "истинности" тех или иных положений теории,вертикальные-возрастание"важности","главенства этих положений".Координатные оси указывают количественное соотношение различных понятий(очевидно,чточастныхуравнений будетзначительно больше,чем основополагающих принципов,а гипотез-больше,чем теорем)».

С.151-152.
Схема соподчинения основных теоретических терминов

Расстояния от планет Солнечной системы до Солнца возрастают согласно простому арифметическому правилу

Есть что-то такое в нумерологии, что буквально завораживает людей. Будучи ученым, занимающимся общественно-просветительской деятельностью, я регулярно получаю письма от людей, нашедших очередную «разгадку» какой-либо тайны Вселенной посредством анализа последовательности десятичных знаков в записи числа % или массы одной из элементарных частиц. Логика у них простая: если найдена какая-то закономерность в числовой последовательности, благодаря которой удается объяснить какое-либо природное явление, значит, за этим кроется что-то фундаментальное. Надуманным «законам» подобного рода в этой книге уделяется мало внимания, однако для правила Тициуса-Боде, хотя оно и относится к вышеупомянутой категории, следует сделать исключение (ничего предосудительного в том, как оно изначально было выведено и проверено, нет; просто со временем выяснилось, что оно не всегда работает, - и мы это увидим).

В 1766 году немецкий астроном и математик Иоганн Тициус заявил, что выявил простую закономерность в нарастании радиусов околосолнечных орбит планет. Он начал с последовательности 0, 3, 6, 12, в которой каждый следующий член образуется путем удвоения предыдущего (начиная с 3; то есть 3 х 2 П, где п = 0, 1, 2, 3, ...), затем добавил к каждому члену последовательности 4 и поделил полученные суммы на 10. В итоге получились весьма точные предсказания (см. таблицу) расстояний известных на то время планет Солнечной системы от Солнца в астрономических единицах (1 а.е. равна среднему расстоянию от Земли до Солнца).

Радиусы планет (в астрономических единицах), предсказанные правилом Тициуса-Боде (средняя колонка). Для сравнения даны их реальные радиусы (правая колонка)

Совпадение прогноза с результатом действительно впечатляет, особенно если учесть, что открытый лишь в 1781 году Уран также вписался в предложенную Тициусом схему: по Тициусу - 19,6 а.е., фактически - 19,2 а.е. Открытие Урана подогрело интерес к «закону», прежде всего к таинственному провалу на удалении 2,8 а.е. от Солнца. Там, между орбитами Марса и Юпитера, должна быть планета - считали все. Неужели она столь мала, что ее невозможно обнаружить в телескопы?



В 1800 году даже была создана группа из 24 астрономов, ведших круглосуточные ежедневные наблюдения на нескольких самых мощных в ту эпоху телескопах, они даже дали своему проекту громкое название «Небесная стража», но увы... Первую

малую планету, обращающуюся по орбите между Марсом и Юпитером, открыли не они, а итальянский астроном Джузеппе Пиацци (вішерре Ріа77І, 1746-1826), и произошло это не когда-нибудь, а в новогоднюю ночь 1 января 1801 года, и открытие это ознаменовало наступление XIX столетия. Новогодний подарок оказался удален от Солнца на расстояние 2,77 а.е. Однако диаметр этого космического объекта (933 км) явно не позволял счесть ее искомой крупной планетой. Однако в течение всего нескольких лет после открытия Пиацци было обнаружено еще несколько малых планет, которые назвали астероидами, и сегодня их насчитывается много тысяч. Подавляющее большинство из них обращается по орбитам, близким к предсказываемым правилом Тициуса-Воде, и по последним гипотезам они представляют собой «строительный материал», который так и не сформировался в планету (см. гипотеза

газопылевого облака).

Немецкий астроном Иоганн Воде, будучи под большим впечатлением от выводов Тициуса, включил их в свой учебник по астрономии, изданный в 1772 году. Именно благодаря его роли как популяризатора его имя возникло в названии правила. Иногда его даже несправедливо называют просто правилом Воде.

И как реагировать человеку, столкнувшемуся с такой «магией» последовательности чисел? Я всегда рекомендую задающимся подобными вопросами придерживаться умного совета, который дал мне в свое время умудренный опытом преподаватель теории вероятностей и статистики. Он часто приводил пример поля для гольфа. «Предположим, - рассуждал он, - что мы задались целью рассчитать вероятность того, что шар для гольфа приземлится на точно заданную травинку. Такая вероятность будет практически нулевой. Но после того, как мы ударили клюшкой по шару, шару ведь надо куда-то упасть. И рассуждать о том, почему шар упал именно на эту травинку, бессмысленно, поскольку, если бы он упал не на нее, он упал бы на одну из соседних».

Применительно к правилу Тициуса-Воде: шесть цифр, входящих в эту формулу и описывающих удаление планет от Солнца, можно уподобить шести шарам для гольфа. Представим себе вместо травинок всевозможные арифметические комбинации чисел, которые призваны дать результаты для расчета радиусов орбит. Из бесчисленного множества формул (а их можно насочинять даже больше, чем имеется травинок на поляне для гольфа) обязательно найдутся и такие, что по ним будут получены результаты, близкие к предсказываемым правилом Тициуса-Воде. И то, что правильные предсказания дала именно их формула, а не чья-либо еще, не более чем игра случая, и к настоящей науке это «открытие» отношения не имеет.

В реальной жизни все оказалось даже проще, и к статистическим доводам для опровержения правила Тициуса-Воде прибегать не пришлось. Как это часто бывает, ложная теория была опровергнута новыми фактами, а именно открытием Нептуна и Плу-

тона. Нептун обращается по очень неправильной, с точки зрения Тициуса-Воде, орбите (прогноз для его радиуса 38,8 а.е., в действительности - 30,1 а.е.). Что касается Плутона, то его орбита вообще лежит в плоскости, заметно отличающейся от орбит других планет, и характеризуется значительным эксцентриситетом, так что само упражнение с применением правила становится бессмысленным.

Так что же, выходит, правило Тициуса-Воде относится к разряду псевдонаучных? Не думаю. И Тициус, и Воде искренне пытались отыскать математическую закономерность в строении Солнечной системы, и ученые продолжали и продолжают заниматься поисками подобного рода. Проблема в том, что ни тот, ни другой не пошли дальше игры чисел и не попытались отыскать физическую причину того, почему орбиты ближних планет подчиняются подмеченной ими закономерности. А без физического обоснования «законы» и «правила» подобного рода остаются чистой нумерологией - и, как показывают имеющиеся сегодня данные, весьма некорректной нумерологией.

ИОГАНН ЭЛЕРТ ВОДЕ (Johann Elert Bode, 1748-1826) - немецкий астроном и математик, родился в Гамбурге. Астроном-самоучка, первый трактат по астрономии опубликовал в возрасте 17 лет. С 1772 года и до самой своей смерти - главный редактор «Астрономического ежегодника» (Astronomisches Jahrbuch) Берлинской академии наук, превративший его в прибыльное и престижное издание. В 1781 году предложил для открытой Вильямом Гер-шелем (William Herschel) новой планеты название Уран. С 1786 года - директор Астрономической обсерватории Берлинской академии. Составитель звездных атласов, которые переиздаются до наших дней. Самый известный из них - «Уранография» (Uranographia, 1801), который до сих пор считается лучшим и самым красочным звездным атласом в истории человечества. Автор геометрических границ между созвездиями,

И (средние радиусы орбит). Правило было предложено И. Д. Тициусом в г. и получило известность благодаря работам в г.

Правило формулируется следующим образом.

К каждому элементу последовательности D i = 0, 3, 6, 12, … прибавляется 4, затем результат делится на 10. Полученное число считается радиусом в . То есть,

R_i = {D_i + 4 \over 10}

Последовательность D i - , кроме первого числа. То есть, D_{-1} = 0; D_i = 3 \cdot 2^i, i >= 0

Эту же формулу можно записать по-другому:

R_i = 0.4 + 0.3 \cdot k

где k = 0, 1, 2, 4, 8, 16, 32, 64, 128 (т.е. первое число - ноль, а следующие - степени числа 2).

Встречается, также, другая формулировка:

Для любой планеты, расстояние от неё до самой внутренней планеты (Меркурия) в два раза больше, чем расстояние от предыдущей планеты до внутреннй планеты : {R_i - R_{Mercury}} = 2 \cdot \left({R_{i-1} - R_{Mercury}} \right)

Результаты вычислений приведены в таблице. Видно, что в закономерность попадает и , а , наоборот, из закономерности выпадает, причём его место странным образом занимает , который многими вообще не рассматривается как планета.

Планета i k Радиус орбиты () {R_i - R_{Mercury}}\over{R_{i-1} - R_{Mercury}}
по правилу фактический
−1 0 0,4 0,39
0 1 0,7 0,72
1 2 1,0 1,00 1,825
2 4 1,6 1,52 1,855
3 8 2,8 в сред. 2,2-3,6 2,096 (по орбите )
4 16 5,2 5,20 2,021
5 32 10,0 9,54 1,9
6 64 19,6 19,22 2,053
выпадает 30,06 1,579
7 128 38,8 39,5 2,078 (по отношению к Урану)

Когда Тициус впервые сформулировал это правило, ему удовлетворяли все известные в то время планеты (от Меркутия до Сатурна), имелся лишь пропуск на месте пятой планеты. Тем не менее, правило не привлекло большого внимания, до тех пор, пока в году не был открыт Уран, который почти точно лёг на предсказанную последовательность. После этого Боде призвал начать поиски недостающей планеты между Марсом и Юпитером. Именно в том месте, где должна была располагаться эта планета была обнаружена . Это вызвало большое доверие к правилу Тициуса - Боде среди астрономов, которое сохранялось до открытия Нептуна. Когда выяснилось, что кроме Цереры, примерно на том же расстоянии от Солнца находится множество тел, формирующих пояс астероидов, была выдвинута гипотеза, что они образовались в результате разрушения планеты (), которая реньше находилась на этой орбите. Эта гипотеза появилась во многом благодаря доверию к правилу Тициуса - Боде.

Правило не имеет достоверного физического объяснения по сегодняшний день (2005). Наиболее вероятное объяснение, кроме предположения о простом совпадении, заключается в следующем. На стадии формирования Солнечной системы, в результате гравитационных возмущений вызванных протопланетами, формировалась регулярная структура из чередующихся областей, в которых могли или не могли существовать стабильные орбиты.

Две планеты Солнечной системы - Юпитер и Уран - имеют систему спутников, которые, возможно, сформировались в результате таких же процессов, как и в случае самих планет. Эти системы спутников образуют регулярные структуры, которые, правда, не подчиняются правилу Тициуса - Боде.

При создании электромагнитной теории гравитации ЭМТГ) была получена формула

R=R 0 1.6) n (1)

Где: n =0,1,2,3… - целочисленный показатель степени.

√5 +1)/2 = 1,61803398875....≈ 1.618 - так называемое "золотое сечение"

которая является универсальной во многих .

На некоторых форумах (например, форум МИФИ corum.mephist.ru/index.php?showtopic=36102) оппоненты отмечали, что данная формула получена из правила Тициуса-Боде. Напомню:

Ти циуса — Бо де правило , эмпирическое правило (иногда неправильно называемое законом), устанавливающее зависимость между расстояниями планет от Солнца. Правило было предложено И. Д. Тициусом в 1766 и получило всеобщую известность благодаря работам И. Э. Боде в 1772. По Т. — Б. правилу, выраженные в астрономических единицах расстояния Меркурия, Венеры, Земли, Марса, средней части кольца малых планет, Юпитера, Сатурна, Урана и Плутона от Солнца (Нептун выпадает из этой зависимости) получаются следующим образом. К каждому числу последовательности 0, 3, 6, 12, 24, 48, 96, 192, 384, образующей, начиная с 3, геометрическую прогрессию, прибавляется число 4, а затем все числа делятся на 10. Полученная новая последовательность чисел: 0,4; 0,7; 1,0; 1,6; 2,8; 5,2; 10,0; 19,6; 38,8 с точностью около 3% представляет расстояния от Солнца в астрономических единицах перечисленных тел Солнечной системы. Удовлетворительного теоретического объяснения этой эмпирической зависимости не имеется.

http://slovari.yandex.ru/~книги/БСЭ/Тициуса%20-%20Боде%20правило/

Кроме того, мол имеется сходство с формулой Стенли Дермотта:

Три планеты Солнечной системы — Юпитер, Сатурн и Уран — имеют систему спутников, которые, возможно, сформировались в результате таких же процессов, как и в случае самих планет. Эти системы спутников образуют регулярные структуры, на основе орбитальных резонансов , которые, правда, не подчиняются правилу Тициуса — Боде в его первоначальном виде. Однако, как выяснил в 1960-е годы астроном Стенли Дермотт (Stanley Dermott), если немного обобщить правило Тициуса — Боде:

,

где — орбитальный период (дней), то новая формула с хорошей точностью охватывает системы спутников Юпитера, Сатурна и Урана

http://ru.wikipedia.org/wiki/%CF%F0%E0%E2%E8%EB%EE_%D2%E8%F6%E8%F3%F1%E0_%97_%C1%EE%E4%E5

Формула (1) получена теоретически. При публикации ЭМТГ всякий сможет убедится в ее фундаментальности. Пока же приведу некоторые "головоломки":

Как уже упоминалось, число (√5 +1)/2 = 1,61803398875....≈ 1.618 - это так называемое "золотое сечение"

1.6 ≈ (√5 +1)/2)

Е ≈ 1.5[(√5 +1)/2] 5/4

Е ≈ 2{1.5[(√5 +1)/2] 5/4 } 1/(√5 +1) }

Эти формулы с золотым сечением получены при создании ЭМТГ и имеют определенный смысл - смысл квантования параметров полевого вихря. Любой желающий может задаться вопросом: какое же отношение формула (1) имеет к правилу Тициуса-Боде и к формуле Стенли Дермотта?

Аза несколько лет до этого произошло никем не замеченное событие - была обнаружена математическая закономерность в размерах планетных орбит. Впрочем, первые успешные опыты в этом деле принадлежат немецкому математику и астроному, мистику и астрологу Иоганну Кеплеру (1571-1630). Именно он, увлеченный «гармонией сфер», нашел соответствие между идеальными геометрическими фигурами и орбитами планет. Оказалось, что пять правильных многогранников, так называемых Платоновых тел - тетраэдр, куб, октаэдр, додекаэдр, икосаэдр - можно разместить внутри совокупности концентрических сфер, радиусы которых соотносятся так же, как радиусы планетных орбит (рис. 4.4). Кеплер опубликовал свою находку в знаменитой книге «Космографическая тайна» (1596 г.) и там же отметил, что между орбитами Марса и Юпитера существует слишком уж большой промежуток, в котором без труда уместилась бы орбита еще одной планеты.

Нельзя сказать, что геометрическая находка Кеплера привлекла всеобщее внимание: человеку, не обладающему пространственным воображением в той же мере, что и и Кеплер, трудно было уловить найденную им тонкую геометрическую связь и тем более восхититься ею. К тому же в геометрических построениях Кеплера все правильные многогранники были исчерпаны, поэтому его «теория» не давала прогноза для положения неизвестных планет. Да и сам Кеплер вскоре доказал, что орбиты планет - не окружности, а эллипсы, так что простые геометрические аналогии с многогранниками оказались совершенно неуместны. И все же разрыв между орбитами Марса и Юпитера был так велик, что время от времени среди астрономов раздавались призывы поискать там планету.


Спустя полтора столетия после работы Кеплера была сделана значительно более простая и убедительная математическая находка, подтвердившая существование «гармонии сфер» и позволившая прогнозировать орбиты неизвестных планет. В 1766 г. немецкий математик Иоганн Даниель Тициус фон Виттенберг (1729-1797) опубликовал свой перевод книги известного естествоиспытателя Шарля Боне «Созерцание природы». Но Тициус не ограничился переводом текста, а сделал к нему небольшое примечание, причем в очень необычной и скромной форме: он попросту внес свое добавление в основной текст. Смысл этого примечания состоял в следующем: расстояния планет от Солнца подчиняются простому эмпирическому правилу, а точнее говоря - простой числовой последовательности. Если принять расстояние Земли от Солнца за 10 условных единиц, то расстояния остальных планет составят R n = 4 + 3 2″, где n = -∞ для Меркурия и n = 0, 1, 2,... для последующих планет. Табл. 4.1. иллюстрирует это правило. Все расстояния даны в ней в астрономических единицах (а. е.), равных расстоянию Земли от Солнца. Плутон и астероиды вставлены для полноты картины. Оценивая точность формулы Тициуса, нужно иметь в виду, что в то время ни один из астероидов, а также Уран, Нептун и Плутон еще не были открыты.

Таблица 4.1 . К правилу Тициуса - Боде

Планета n Расстояние, а. е.
По правилу Тициуса-Боде Истинное
Меркурий -∞ 0,4 0,39
Венера 0 0,7 0,72
Земля 1 1,0 1,0
Марс 2 1,6 1,52
Астероиды 3 2,8 2,1-3,5
Юпитер 4 5,2 5,2
Сатурн 5 10,0 9,6
Уран 6 19,6 19,2
Нептун 7 38,8 30,0
Плутон 8 77,2 39,2

Таблица показывает, что простая формула Тициуса очень хорошо описывает размеры орбит известных в те годы планет. Но этот замечательный факт вызвал интерес лишь у нескольких специалистов. Имя Тициуса не стало известным.

Шесть лет спустя, в 1772 г., немецкий астроном Иоганн Элерт Боде (1747-1826) опубликовал «Руководство по изучению звездного неба» и включил туда правило Тициуса, пересказав его почти дословно, но не сославшись при этом на первоисточник. В наши дни такой поступок сочли бы недостойным, но в те годы правила научной этики еще только вырабатывались. К чести Иоганна Боде следует заметить, что в последующих изданиях своей книги он отмечал приоритет Тициуса.

Числовая прогрессия планетных орбит глубоко поразила Боде, и он постарался передать свое восхищение читателям «Руководства». Особенно странным казался ему разрыв между Марсом и Юпитером. «Можно ли поверить, что творец Вселенной оставил это место пустым? Конечно, нет!» - писал Боде.

Научный авторитет Иоганна Боде рос год от года. Он прожил долгую и плодотворную жизнь: 40 лет был директором Берлинской обсерватории, открыл несколько комет, опубликовал много интересных книг и прекрасный атлас неба «Уранография». Поэтому стоит ли удивляться, что 1781 год добавил славы именно Боде, а не Тициусу. Как мы помним, в тот год Вильям Гершель открыл новую планету, расстояние которой от Солнца прекрасно - с ошибкой лишь в 2% - вписалось в числовую прогрессию Тициуса, опубликованную в популярном «Руководстве» Боде. Возможно, как раз поэтому Боде стал «крестным отцом» новой планеты: ведь именно он предложил назвать ее Ураном.

Открытие Урана потрясло астрономов, а числовой ряд Тициуса совершенно неожиданно получил новый смысл: он «предсказал» существование неизвестной планеты. После этого Боде приобрел полную уверенность в справедливости «планетной прогрессии» и веру в то, что между Марсом и Юпитером непременно должна быть еще одна планета.


Известный германский астроном (венгерского происхождения) барон Франц Ксавер фон Цах (1754-1832) также был убежден в этом. В качестве главного астронома Австрийской империи он в 1787 г. возглавил строительство обсерватории в Зеберге, близ Готы, и с 1791 г. стал ее директором. Уже не первый год он вынашивал мечту об открытии трансмарсианской планеты, но для этого требовались поиски на огромном пространстве неба, непосильные для одного астронома.

В 1796 г. участники астрономической конференции в Готе по инициативе фон Цаха решили организовать систематический поиск планеты-невидимки в районе зодиакальных созвездий. Но в разрозненной Европе это было непросто. В 1800 г. фон Цах основал журнал «Ежемесячные корреспонденции для покровительства изучению Земли и Неба», вокруг которого объединялось европейское научное сообщество весь XIX век, вплоть до Первой мировой войны. В том же году неутомимый фон Цах предложил схему деления неба на 24 зоны, в которых поиски неизвестной планеты должны вести 24 астронома. Правда, к 1800 г. ему удалось собрать группу лишь из пяти астрономов-энтузиастов. В шутку фон Цах называл свою группу «отрядом небесной полиции», целью которого было «выследить и арестовать беглого подданного Солнца».

Была проведена серьезная подготовка, область зодиакальных созвездий разделили на 24 участка, распределили по ним наблюдателей и подготовили для них карты звездного неба. Но как раз перед тем, как должны были разослать эти карты, вечером 1 января 1801 г. - в первый день XIX столетия - один из этих астрономов, итальянец Джузеппе Пиацци (1746-1826), случайно открыл новую планету между Марсом и Юпитером. (Пиацци был заочно включен в группу поисков неизвестной планеты, но фон Цах даже не успел сообщить ему об этом.)

Днем Пиацци был профессором астрономии Палермского университета на Сицилии, а ночью измерял координаты звезд для своего нового каталога. В тот вечер он проверял одну область неба, ранее недостаточно точно описанную другими астрономами, и при этом отметил в созвездии Овна среди прочих слабую звездочку 8 m , а на следующую ночь обнаружил ее небольшое смещение относительно других звезд. Решив, что им открыта необычная комета (без хвоста и туманной оболочки!), он продолжил наблюдения и 14 января обнаружил, что движение тела сменилось с попятного на прямое. О своем открытии неизвестного блуждающего светила Пиацци написал 23 января астроному Ориани в Милан и на следующий день отправил такое же сообщение Боде в Берлин. Но время в Европе было неспокойное, и письма дошли до адресатов только 5 апреля и 20 марта соответственно.

А к тому моменту Пиацци уже потерял свою находку. Дело в том, что 11 февраля он вынужден был прервать наблюдения в связи с болезнью. А к середине февраля 1801 г. «звездочка» подошла на небе так близко к Солнцу, что совершенно скрылась в его лучах. Имевшихся наблюдений было еще недостаточно для вычисления точной орбиты тела, чтобы прогнозировать его будущее положение среди звезд. Попытки обнаружить новое светило после его предполагаемого появления из-за Солнца оказались безрезультатными. На небосводе около 40 тысяч звезд 8-й величины! Поди узнай, какая из них - та самая.

Выручил молодой немецкий математик Карл Фридрих Гаусс (1777-1855). Как раз накануне он разработал метод вычисления эллиптической орбиты планеты всего по трем наблюдавшимся с Земли ее положениям на небе, а также изобрел мощный метод обработки наблюдений - метод наименьших квадратов. Вооруженный этими математическими орудиями, Гаусс сумел по небольшому числу наблюдательных данных Пиацци вычислить к ноябрю 1801 г. элементы орбиты неизвестного объекта. Оказалось, что потерянная планета движется между орбитами Марса и Юпитера! Гаусс рассчитал и эфемериды находки Пиацци, т. е. ее ожидаемое положение на небе в ближайшие дни.

Следуя указаниям Гаусса, фон Цах на своей обсерватории в Готе заметил подозрительный объект 7 декабря 1801 г., но скверная декабрьская погода, затянувшая небо облаками, не позволила ему подтвердить открытие. Только в последнюю ночь 1801 г., а именно 31 декабря, фон Цах обнаружил наконец «подозрительную звездочку». Она находилась в северо-западной части созвездия Девы, в месте, близком к вычисленному Гауссом. На следующую ночь, ровно через год после первого открытия Пиацци, эту планету обнаружил и немецкий врач Генрих Вильгельм Ольберс (1758-1840), увлеченный астрономией и наблюдавший на собственной обсерватории в Бремене.

По виду объект был неотличим от звезды, и астрономы справедливо заключили, что если это и планета, то очень маленькая. Так оно и оказалось: новое тело, которое Пиацци впоследствии назвал Церерой (по имени богини плодородия и земледелия - покровительницы Сицилии) имеет диаметр около 950 км. Позже в пространстве между Марсом и Юпитером были открыты тысячи других подобных тел, и все они оказались меньше Цереры. Для наземных телескопов такие «малые планеты» неотличимы от звезд. По этой причине Вильям Гершель предложил все эти тела называть астероидами, т. е. «звездообразными». Термин оказался удачным и сохранился до наших дней. А вот от понятия «малые планеты» спустя два столетия отказались.

Но вернемся в начало XIX в. Итак, планета Кеплера найдена! Среднее расстояние Цереры от Солнца, вычисленное Гауссом, составило 2,767 а. е., что очень хорошо согласовалось со значением 2,8 а. е., отвечающим правилу Тициуса и ожиданиям Боде (см. табл. 4.1). Закон планетных расстояний получил новое подтверждение! Теперь его именовали не иначе как «законом Боде». И до сих пор еще у многих авторов мы встречаем его как закон Боде, хотя всем ясно, что это не фундаментальный закон природы, а некое правило, и сформулировал его Тициус, а Боде лишь «продвигал». И несмотря на то, что за прошедшие два столетия астрономия Солнечной системы обогатилась колоссальным числом открытий и новых мощных теорий, до сих пор остается неясным статус правила Тициуса - Боде: есть ли в нем глубокий физический смысл, или это просто математический курьез?

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.