Одним из положений клеточной теории является. Как менялись представления о клетке и сформировалось современное положение клеточной теории

1а. Все живые организмы на Земле состоят из клеток, сходных по строению,

1б. …химическому составу и функционированию. Это говорит об общем происхождении всего живого на Земле.

1в. Клетка является основной единицей:

  • структурной (организмы состоят из клеток)
  • функциональной (функции организма выполняются за счет работы клеток)
  • размножения (размножение происходит за счет половых клеток).

2а. Все новые клетки образуются из уже существующих клеток путем деления.

2б. Рост и развитие многоклеточного организма происходит за счет роста и размножения одной или нескольких исходных клеток.

Мужики

17 век:
Гук открыл клетки на срезе пробки.
Левенгук открыл одноклеточные организмы (сперматозоиды, эритроциты, инфузории, бактерии)

19 век:
Броун открыл ядро в растительных клетках.
Шлейден выяснил, что ядро есть во всех растительных клетках, сделал вывод, что все растения построены из клеток, сходных по строению.
Шванн открыл ядро в животных клетках, вывел первую клеточную теорию (п.1а).
Вирхов дополнил клеточную теорию (п.2а).

Тесты

1. Из приведенных формулировок укажите положение клеточной теории
А) Оплодотворение - это процесс слияния мужской и женской гамет
Б) Каждая новая дочерняя клетка образуется в результате деления материнской
В) Аллельные гены в процессе митоза оказываются в разных клетках
Г) Развитие организма с момента оплодотворения яйцеклетки до смерти организма называют онтогенезом

2. Сходство строения и жизнедеятельности клеток организмов разных царств живой природы - одно из положений
А) теории эволюции
Б) клеточной теории
В) учения об онтогенезе
Г) законов наследственности

3. Доказательством родства всех видов растений служит
А) клеточное строение растительных организмов
Б) наличие ископаемых остатков
В) вымирание одних видов и образование новых
Г) взаимосвязь растений и окружающей среды

4) Одно из положений клеточной теории
А) при делении клетки хромосомы способны к самоудвоению
Б) новые клетки образуются при делении исходных клеток
В) в цитоплазме клеток содержатся различные органоиды
Г) клетки способны к росту и обмену веществ

5. Согласно клеточной теории, возникновение новой клетки происходит путем
А) обмена веществ
Б) деления исходной клетки
В) размножения организмов
Г) взаимосвязи всех органоидов клетки

6. Клеточное строение организмов всех царств живой природы, сходство строения клеток и их химического состава служат доказательством
А) единства органического мира
Б) единства живой и неживой природы
В) эволюции органического мира
Г) происхождения ядерных организмов от доядерных

7. Единицей размножения организмов является
А) ядро
Б) цитоплазма
В) клетка
Г) ткань

8. Единицей развития организмов является
А) ядро
Б) хлоропласты
В) митохондрии
Г) клетка

9. Что служит доказательством родства растений и животных, единства их происхождения?
А) клеточное строение
Б) наличие разнообразных тканей
В) наличие органов и систем органов
Г) способность к вегетативному размножению

10. В клетке сосредоточена наследственная информация о признаках организма, поэтому ее называют
А) структурной единицей живого
Б) функциональной единицей живого
В) генетической единицей живого
Г) единицей роста

11. Положение клеточной теории
А) хромосомы способны к самоудвоению
Б) клетки размножаются путем деления
В) в цитоплазме клетки имеются органоиды
Г) клетки способны к митозу и мейозу

12. Согласно клеточной теории, клетка - это единица
А) искусственного отбора
Б) естественного отбора
В) строения организмов
Г) мутаций организма

13. Клеточная теория обобщает представления о
А) многообразии органического мира
Б) сходстве строения всех организмов
В) зародышевом развитии организмов
Г) единстве живой и неживой природы

14. «Сходством по строению, химическому составу, обмену веществ обладают клетки всех организмов». Это положение
А) гипотезы возникновения жизни
Б) клеточной теории
В) закона гомологических рядов в наследственной изменчивости
Г) закона независимого распределения генов

15. Какая теория впервые подтвердила единство органического мира
А) хромосомная
Б) эмбриогенеза
В) эволюционная
Г) клеточная

16) Процессы жизнедеятельности у всех организмов протекают в клетке, поэтому ее рассматривают как единицу
А) размножения
Б) строения
В) функциональную
Г) генетическую

17. Какая формулировка соответствует положению клеточной теории
А) клетки растений имеют оболочку, состоящую из клетчатки
Б) клетки всех организмов сходны по строению, химическому составу и жизнедеятельности
В) клетки прокариот и эукариот сходны по строению
Г) клетки всех тканей выполняют сходные функции

18. Какое из приведенных ниже положений относится к клеточной теории
А) зигота образуется в процессе оплодотворения, слияния мужской и женской гамет
Б) в процессе мейоза образуются четыре дочерние клетки с гаплоидным набором хромосом
В) клетки специализированы по выполняемым функциям и образуют ткани, органы, системы органов
Г) клетки растений отличаются от клеток животных по ряду признаков

19. Организмы растений, животных, грибов и бактерий состоят из клеток - это свидетельствует о

Б) разнообразии строения живых организмов
В) связи организмов со средой обитания
Г) сложном строении живых организмов

20. О единстве органического мира свидетельствует
А) круговорот веществ
Б) клеточное строение организмов
В) взаимосвязь организмов и среды
Г) приспособленность организмов к среде

21. Клетку считают единицей роста и развития организмов, так как
А) она имеет сложное строение
Б) организм состоит из тканей
В) число клеток увеличивается в организме путем митоза
Г) в половом размножении участвуют гаметы

22. Сходство строения и жизнедеятельности клеток организмов разных царств живой природы свидетельствует о
А) единстве органического мира
Б) единстве живой и неживой природы
В) взаимосвязи организмов в природе
Г) взаимосвязи организмов и среды их обитания

23. О единстве органического мира свидетельствует
А) наличие ядра в клетках живых организмов
Б) клеточное строение организмов всех царств
В) объединение организмов всех царств в систематические группы
Г) разнообразие организмов, населяющих Землю

24. Согласно клеточной теории, клетки всех организмов
А) сходны по химическому составу
Б) одинаковы по выполняемым функциям
В) имеют ядро и ядрышко
Г) имеют одинаковые органоиды

25. Немецкие ученые М. Шлейден и Т. Шванн, обобщив идеи разных ученых, сформулировали
А) закон зародышевого сходства
Б) хромосомную теорию наследственности
В) клеточную теорию
Г) закон гомологических рядов

26. В клетке происходит синтез и расщепление органических веществ, поэтому ее называют единицей
А) строения
Б) жизнедеятельности
В) роста
Г) размножения

27. Укажите одно из положений клеточной теории
А) Половые клетки содержат всегда гаплоидный набор хромосом
Б) Каждая гамета содержит по одному гену из каждой аллели
В) Клетки всех организмов имеют диплоидный набор хромосом
Г) Наименьшей единицей строения, жизнедеятельности и
развития организмов является клетка

28. В соответствии с какой теорией организмы разных царств имеют сходных химический состав?
А) хромосомной
Б) эволюционной
В) онтогенеза
Г) клеточной

29. Что свидетельствует о родстве организмов всех царств
А) наличие сходных тканей
Б) развитие от простого к сложному
В) клеточное строение
Г) функциональная роль в экосистемах

30. Какая формулировка соответствует положению клеточной теории?
А) клетки всех тканей выполняют сходные функции
Б) в процессе мейоза образуются четыре гаметы с гаплоидным набором хромосом
В) клетки животных не имеют клеточную стенку
Г) каждая клетка возникает в результате деления материнской клетки

31. Одним из утверждений клеточной теории является следующее:
А) клетка - элементарная единица наследственности
Б) клетка - единица размножения и развития
В) все клетки различны по своему строению
Г) у всех клеток различный химический состав

32. В разработку клеточной теории внесли вклад
А) А.И.Опарин
Б) В.И.Вернадский
В) Т.Шванн и М.Шлейден
Г) Г.Мендель

33. В связи стем, что в любой клетке происходит питание, дыхание, образование продуктов жизнедеятельности, ее считают единицей
А) роста и развития
Б) функциональной
В) генетической
Г) строения организма

34. Сходство обмена веществ в клетках организмов всех царств живой природы - это одно из проявлений теории
А) хромосомной
Б) клеточной
В) эволюционной
Г) происхождения жизни

35. Почему структурной единицей живого считают клетку?
А) в ней происходит обмен веществ
Б) клетки способны к делению и росту
В) все клетки имеют сходный химический состав
Г) организмы всех царств живой природы состоят из клеток

36. Вывод о родстве растений и животных можно сделать на основании
А) хромосомной теории
Б) теории гена
В) закона сцепленного наследования
Г) клеточной теории

37. Сходство строения и жизнедеятельности клеток всех организмов свидетельствует о
А) родстве организмов
Б) развитии живой природы
В) приспособленности организмов
Г) многообразии живой природы

38. Клетка - единица роста и развития организма, так как
А) в ней имеется ядро
Б) в ней хранится наследственная информация
В) она способна к делению
Г) из клеток состоят ткани

39. Почему клеточная теория стала одним из выдающихся обобщений биологии?
А) вскрыла механизмы появления различного вида мутаций
Б) объяснила закономерности наследственности и изменчивости
В) установила взаимосвязь онтогенеза и филогенеза
Г) обосновала единство происхождения всего живого

40. Элементарная биологическая система, способная к самовоспроизведению и развитию, -
А) ядро
Б) орган
В) клетка
Г) ткань

41. В соответствии с какой теорией организмы разных царств имеют сходный химический состав?
А) хромосомной
Б) эволюционной
В) онтогенеза
Г) клеточной

42. Единица роста организмов -
А) хромосома
Б) ткань
В) орган
Г) клетка

43. Укажите одно из положений клеточной теории
А) Соматические клетки содержат диплоидный набор хромосом
Б) Гаметы состоят из одной клетки
В) Клетка прокариот содержит кольцевую хромосому
Г) Клетка - наименьшая единица строения и жизнедеятельности организмов

44. Среди указанных формулировок определите положение клеточной теории
А) Аллельные гены в процессе мейоза оказываются в разных половых клетках
Б) Клетки всех организмов сходны по химическому составу и строению
В) Оплодотворение представляет собой процесс соединения мужской и женской клеток
Г) Онтогенез - это развитие организма с момента оплодотворения яйцеклетки до смерти организма

45. Клетка - составная часть тканей многоклеточных растений, поэтому ее считают единицей
А) развития
Б) роста
В) жизнедеятельности
Г) строения

Клетки – это структурные единицы организмов. Впервые этот термин употребил Роберт Гук в 1665 году. К XIX веку усилиями многих учёных (особенно Маттиаса Шлейдена и Теодора Шванна) сложилась клеточная теория. Её основными положениями были следующие утверждения:

Клетка – основная единица строения и развития всех живых организмов;

Клетки всех организмов сходны по своему строению, химическому составу, основным проявлениям жизнедеятельности;

Каждая новая клетка образуется в результате деления исходной (материнской) клетки;

в многоклеточных организмах клетки специализированы по выполняемой ими функции и образуют ткани. Из тканей состоят органы, которые тесно связаны между собой и подчинены системам регуляции.

Практически все ткани многоклеточных организмов состоят из клеток. С другой стороны, слизевики состоят из неразделённой перегородками клеточной массы со множеством ядер. Сходным образом устроена и сердечная мышца животных. Ряд структур организма (раковины, жемчужины, минеральная основа костей) образованы не клетками, а продуктами их секреции.

Мелкие организмы могут состоять всего лишь из сотен клеток. Организм человека включает в себя 10 14 клеток. Самая маленькая из известных сейчас клеток имеет размер 0,2 мкм, самая большая – неоплодотворенное яйцо эпиорниса – весит около 3,5 кг. Типичные размеры растительных и животных клеток составляют от 5 до 20 мкм. При этом между размерами организмов и размерами их клеток прямой зависимости обычно нет.

70–80 % массы клетки – это вода.

Для того, чтобы поддерживать в себе необходимую концентрацию веществ, клетка должна быть физически отделена от своего окружения. Вместе с тем, жизнедеятельность организма предполагает интенсивный обмен веществ между клетками. Роль барьера между клетками играет плазматическая мембрана.

Внутреннее строение клетки долгое время было загадкой для ученых; считалось, что мембрана ограничивает протоплазму – некую жидкость, в которой и происходят все биохимические процессы. Благодаря электронной микроскопии тайну протоплазмы удалось раскрыть, и сейчас известно, что внутри клетки имеются цитоплазма, в которой присутствуют различные органоиды, и генетический материал в виде ДНК, собранный, в основном, в ядре (у эукариот).

Строение клетки является одним из важных принципов классификации организмов. В последующих параграфах мы сначала рассмотрим структуры, общие для растительных и животных клеток, затем характерные особенности клеток растений и доядерных организмов. Закончится этот раздел рассмотрением принципов деления клетки.

Изучением клеток занимается цитология.

Антони ван Левенгук установил, что вещество, находящееся внутри клетки, определенным образом организовано. Он первым обнаружил клеточные ядра. На этом уровне представление о клетке просуществовало еще более 100 лет.

Изучение клетки ускорилось в 1830-х годах, когда появились усовершенствованные микроскопы. В 1838-1839 ботаник Маттиас Шлейден и анатом Теодор Шванн практически одновременно выдвинули идею клеточного строения организма. Т. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Возникновение цитологии тесно связано с созданием клеточной теории - самого широкого и фундаментального из всех биологических обобщений. Согласно клеточной теории, все растения и животные состоят из сходных единиц - клеток, каждая из которых обладает всеми свойствами живого.

Важнейшим дополнение клеточной теории явилось утверждение знаменитого немецкого натуралиста Рудольфа Вирхова, что каждая клетка образуется в результате деления другой клетки.

В 1870-х годах были открыты два способа деления клетки эукариот, впоследствии названные митоз и мейоз. Уже через 10 лет после этого удалось установить главные для генетики особенности этих типов деления. Было установлено, что перед митозом происходит удвоение хромосом и их равномерное распределение между дочерними клетками, так что в дочерних клетках сохраняется прежнее число хромосом. Перед мейозом хромосом также удваивается, но в первом (редукционном) делении к полюсам клетки расходятся двухроматидные хромосомы, так что формируются клетки с гаплоидным набором, число хромосом в них в два раза меньше, чем в материнской клетке. Было установлено, что число, форма и размеры хромосом - кариотип - одинаково во всех соматических клетках животных данного вида, а число хромосом в гаметах в два раза меньше. Впоследствии эти цитологические открытия легли в основу хромосомной теории наследственности.

Цитология наука о клетках – структурных и функциональных единицах почти всех живых организмов

В многоклеточном организме все сложные проявления жизни возникают в результате координированной активности составляющих его клеток. Задача цитолога – установить, как построена живая клетка и как она выполняет свои нормальные функции. Изучением клеток занимаются также патоморфологи, но их интересуют изменения, происходящие в клетках во время болезни или после смерти. Несмотря на то, что учеными давно уже было накоплено немало данных о развитии и строении животных и растений, только в 1839 были сформулированы основные концепции клеточной теории и началось развитие современной цитологии.

Клетки – это самые мелкие единицы живого, о чем наглядно свидетельствует способность тканей распадаться на клетки, которые затем могут продолжать жить в «тканевой» или клеточной культуре и размножаться подобно крошечным организмам. Согласно клеточной теории, все организмы состоят из одной или многих клеток. Из этого правила есть несколько исключений. Например, в теле слизевиков (миксомицетов) и некоторых очень мелких плоских червей клетки не отделены друг от друга, а образуют более или менее слитную структуру – т.н. синцитий. Однако можно считать, что такое строение возникло вторично в результате разрушения участков клеточных мембран, имевшихся у эволюционных предков этих организмов. Многие грибы растут, образуя длинные нитевидные трубки, или гифы. Эти гифы, часто разделенные перегородками – септами – на сегменты, тоже можно рассматривать как своеобразные вытянутые клетки. Из одной клетки состоят тела протистов и бактерий.

Между бактериальными клетками и клетками всех других организмов существует одно важное различие: ядра и органеллы («маленькие органы») бактериальных клеток не окружены мембранами, и поэтому эти клетки называют прокариотическими («доядерными»); все другие клетки называют эукариотическими (с «настоящими ядрами»): их ядра и органеллы заключены в мембраны. В этой статье рассматриваются только эукариотические клетки.

Открытие клетки

Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа, т.е. после 1600. Первое описание и изображения клеток дал в 1665 английский ботаник Р.Гук: рассматривая тонкие срезы высушенной пробки, он обнаружил, что они «состоят из множества коробочек». Каждую из этих коробочек Гук назвал клеткой («камерой»). Итальянский исследователь М.Мальпиги (1674), голландский ученый А. ван Лёвенгук, а также англичанин Н.Грю (1682) вскоре привели множество данных, демонстрирующих клеточное строение растений. Однако ни один из этих наблюдателей не понял, что действительно важным веществом был наполнявший клетки студенистый материал (впоследствии названный протоплазмой), а казавшиеся им столь важными «клетки» были просто безжизненными целлюлозными коробочками, в которых содержалось это вещество. До середины 19 в. в трудах ряда ученых уже просматривались зачатки некой «клеточной теории» как общего структурного принципа. В 1831 Р.Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку. Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой.

Создание клеточной теории. Количество прямых сведений о клетке и ее содержимом чрезвычайно возросло после 1830, когда появились усовершенствованные микроскопы. Затем в 1838–1839 произошло то, что называют «завершающим мазком мастера». Ботаник М. Шлейден и анатом Т.Шванн практически одновременно выдвинули идею клеточного строения. Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Согласно клеточной теории, все растения и животные состоят из сходных единиц – клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления.

Открытие протоплазмы. Сначала незаслуженно большое внимание уделяли стенкам клетки. Однако еще Ф. Дюжарден (1835) описал живой студень у одноклеточных организмов и червей, назвав его «саркодой» (т.е. «похожим на мясо»).

Эта вязкая субстанция была, по его мнению, наделена всеми свойствами живого. Шлейден тоже обнаружил в растительных клетках мелкозернистое вещество и назвал его «растительной слизью» (1838). Спустя 8 лет Г.фон Моль воспользовался термином «протоплазма» (примененным в 1840 Я. Пуркинье для обозначения субстанции, из которой формируются зародыши животных на ранних стадиях развития) и заменил им термин «растительная слизь». В 1861 М. Шультце обнаружил, что саркода содержится также в тканях высших животных и что это вещество идентично как структурно, так и функционально т.н. протоплазме растений. Для этой «физической основы жизни», как определил ее впоследствии Т.Гексли, был принят общий термин «протоплазма». Концепция протоплазмы в свое время сыграла важную роль; однако уже давно стало ясно, что протоплазма не однородна ни по своему химическому составу, ни по структуре, и этот термин постепенно вышел из употребления. В настоящее время главными компонентами клетки обычно считают ядро, цитоплазму и клеточные органеллы. Сочетание цитоплазмы и органелл практически соответствует тому, что имели в виду первые цитологи, говоря о протоплазме.

Основные свойства живых клеток

Изучение живых клеток пролило свет на их жизненно важные функции. Было установлено, что последние можно разбить на четыре категории: подвижность, раздражимость, метаболизм и размножение.

Подвижность проявляется в различных формах: 1) внутриклеточная циркуляция содержимого клетки; 2) перетекание, обеспечивающее перемещение клеток (например, клеток крови); 3) биение крошечных протоплазматических выростов – ресничек и жгутиков; 4) сократимость, наиболее развитая у мышечных клеток.

Раздражимость выражается в способности клеток воспринимать стимул и реагировать на него импульсом, или волной возбуждения. Эта активность выражена в наивысшей степени у нервных клеток.

Метаболизм включает все превращения вещества и энергии, протекающие в клетках.

Размножение обеспечивается способностью клетки к делению и образованию дочерних клеток. Именно способность воспроизводить самих себя и позволяет считать клетки мельчайшими единицами живого. Однако многие высокодифференцированные клетки эту способность утратили.

В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли как важнейших единиц, обеспечивающих физическую основу наследственности и процесса развития.

Развитие новых методов. Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала. Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения. Такие методы создавались и совершенствовались в течение всей второй половины 19 в. Совершенствовался и сам микроскоп. К числу важных достижений в его устройстве следует отнести: осветитель, расположенный под столиком, для фокусировки пучка света; апохроматический объектив для корректировки недостатков окрашивания, искажающих изображение; иммерсионный объектив, дающий более четкое изображение и увеличение в 1000 раз и более.

Было также обнаружено, что основные красители, например гематоксилин, обладают сродством к содержимому ядра, а кислотные красители, например эозин, окрашивают цитоплазму; это наблюдение послужило основой для создания разнообразных методов контрастного или дифференциального окрашивания. Благодаря этим методам и усовершенствованным микроскопам постепенно накапливались важнейшие сведения о строении клетки, ее специализированных «органах» и различных неживых включениях, которые клетка либо сама синтезирует, либо поглощает извне и накапливает.

Закон генетической непрерывности. Фундаментальное значение для дальнейшего развития клеточной теории имела концепция генетической непрерывности клеток. В свое время Шлейден считал, что клетки образуются в результате своего рода кристаллизации из клеточной жидкости, а Шванн в этом ошибочном направлении пошел еще дальше: по его мнению, клетки возникали из некой «бластемной» жидкости, находящейся вне клеток.

Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р.Вирхов сформулировал закон генетической непрерывности в афоризме «Omnis cellula e cellula» («Каждая клетка из клетки»). Когда была установлена роль ядра в клеточном делении, В. Флемминг (1882) перефразировал этот афоризм, провозгласив: «Omnis nucleus e nucleo» («Каждое ядро из ядра»). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином. Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца – хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом. Следовательно, афоризм Вирхова можно распространить и на хромосомы (носители наследственных признаков), поскольку каждая из них происходит от предсуществующей.

В 1865 было установлено, что мужская половая клетка (сперматозоид, или спермий) представляет собой полноценную, хотя и высокоспециализированную клетку, а спустя 10 лет О. Гертвиг проследил путь сперматозоида в процессе оплодотворения яйцеклетки. И наконец, в 1884 Э. ван Бенеден показал, что в процессе образования как сперматозоида, так и яйцеклетки происходит модифицированное клеточное деление (мейоз), в результате которого они получают по одному набору хромосом вместо двух. Таким образом, каждый зрелый сперматозоид и каждая зрелая яйцеклетка содержат лишь половинное число хромосом по сравнению с остальными клетками данного организма, и при оплодотворении происходит просто восстановление нормального числа хромосом. В итоге оплодотворенная яйцеклетка содержит по одному набору хромосом от каждого из родителей, что является основой для наследования признаков и по отцовской, и по материнской линии. Кроме того, оплодотворение стимулирует начало дробления яйцеклетки и развитие нового индивида.

Представление о том, что хромосомы сохраняют свою идентичность и поддерживают генетическую непрерывность от одного поколения клеток к другому, окончательно сформировалось в 1885 (Рабль). Вскоре было установлено, что хромосомы качественно отличаются друг от друга по своему влиянию на развитие (Т.Бовери, 1888). Начали появляться также экспериментальные данные в пользу высказанной ранее гипотезы В.Ру (1883), согласно которой даже отдельные части хромосом влияют на развитие, структуру и функционирование организма.

Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением. Другое – что существует механизм передачи наследственных признаков, который находится в ядре, а точнее – в хромосомах. Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.

Законы наследственности

Второй этап в развитии цитологии как науки охватывает 1900–1935. Он наступил после того, как в 1900 были вторично открыты основные законы наследственности, сформулированные Г. Менделем в 1865, но не привлекшие к себе внимания и надолго преданные забвению. Цитологи, хотя и продолжали заниматься изучением физиологии клетки и такими ее органеллами, как центросома, митохондрии и аппарат Гольджи, основное внимание сосредоточили на строении хромосом и их поведении. Проводившиеся в это же время эксперименты по скрещиванию быстро увеличивали объем знаний о способах наследования, что привело к становлению современной генетики как науки. В результате возник «гибридный» раздел генетики – цитогенетика.

Достижения современной цитологии

Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь огромных успехов в изучении строения клетки. В разработке единой концепции физико-химических аспектов жизни цитология все больше сближается с другими биологическими дисциплинами. При этом ее классические методы, основанные на фиксации, окрашивании и изучении клеток под микроскопом, по-прежнему сохраняют практическое значение.

Цитологические методы используются, в частности, в селекции растений для определения хромосомного состава растительных клеток. Такие исследования оказывают большую помощь в планировании экспериментальных скрещиваний и оценке полученных результатов. Аналогичный цитологический анализ проводится и на клетках человека: он позволяет выявить некоторые наследственные заболевания, связанные с изменением числа и формы хромосом. Такой анализ в сочетании с биохимическими тестами используют, например, при амниоцентезе для диагностики наследственных дефектов плода.

Однако самое важное применение цитологических методов в медицине – это диагностика злокачественных новообразований. В раковых клетках, особенно в их ядрах, возникают специфические изменения, распознаваемые опытными патоморфологами.

Цитология является достаточно простым и высокоинформативным методом скрининговой диагностики различных проявлений папилломавируса. Это исследование проводится как у мужчин, так и у женщин. Однако в большей мере данный вид диагностики выполняется у женщин с различными заболеваниями шейки матки.

Результат исследования напрямую зависит от техники забора материала для исследования. У женщин рекомендуется проводить забор материала с поверхности вульвы, влагалища, шейки матки при помощи шпателя, ложечки Фолькмана или универсального пластикового зонда. Чтобы получить соскоб эпителия из цервикального канала, существует множество цервикальных щеток. Также существуют зонды, при помощи которых можно одновременно получить соскоб как из эндоцервикса, так и из экзоцервикса. Не будет лишним сказать, что исследование стоит проводить после исключения любых воспалительных процессов. Вначале марлевым тампоном удаляется слизь, вагинальные выделения, после чего происходит забор материала. Исследование можно выполнять в любой день цикла за исключением периовуляторного периода и менструации. Кроме того, цитологическое исследование нужно проводить не ранее чем через 2-ое суток после последнего полового акта, во время лечения инфекционно-воспалительных заболеваний (особенно если используются различные антисептики, вагинальные свечи и кремы, спермициды), а также не ранее 48 часов после проведения кольпоскопии, во время которой применялись растворы укуса и Люголя.

Материал наносится на предметное стекло ровным слоем, после чего происходит их фиксация, например, смесью Никифорова. Окраска выполняется по Папаниколау. Исследование цитологических мазков, окрашенных таким образом, считается эталонным и получило название Pap-smear test.

Правильно выполненный забор материала приводит к тому, что в исследуемом образце должно быть не менее 8000 – 15000 клеток.

Диагностика различных состояний шейки матки, оцененных во время проведения цитологического исследования, основывается на классификации Папаниколау. В ней различают:

1. 1-ый класс – это нормальные эпителиальные клетки.

2. 2-ой класс представляет собой эпителиальные клетки практически с нормальным строением, однако наблюдается незначительное увеличение ядер и появление метаплазированного эпителия.

3. 3–й класс характеризуется выраженными изменениями клеток в виде укрупненных ядер. Такое состояние называется дискариоз.

4. 4-ый класс – визуализация клеток, которым можно присвоить значение атипия.

5. 5-ый класс - это типичные раковые клетки.

Однако у классификации Папаниколау нет абсолютно точных критериев для диагностики папилломавируса, поэтому в последнее время трактовка результатов основывается на классификации Бетесда. На основании данных цитологического исследования во многом определяется тактика врача по ведению женщин.

На современном этапе внедряется так называемая жидкостная цитология, которая представляет собой забор материала в жидкий консервант. Далее из одной пробы выполняется типирование ВПЧ методом ПЦР и цитология.

Специфичным признаком наличия папилломавирусной инфекции при проведении цитологического исследования является определение койлоцитов. Койлоциты - это погибающие эпителиальные клетки, имеющие характерные изменения, вызванные нахождением в них вируса папилломы человека. Цитологически это клетка с оксифильной окрашиваемостью. Вокруг ядра имеется зона просветления, в цитоплазме – множество вакуолей, содержащих вирусные частицы. По периферии койлоцитов могут быть цитоплазматические фибриллы.

С момента обнаружения клеток, до того как было сформулировано современное положение клеточной теории, прошло почти 400 лет. Впервые клетку исследовал в 1665 г. естествоиспытатель из Англии Заметив на тонком срезе пробки ячеистые структуры, он дал им название клеток.

В свой примитивный микроскоп Гук еще не мог рассмотреть все особенности, но по мере совершенствования оптических приборов, появления методик окрашивания препаратов ученые все больше погружались в мир тонких цитологических структур.

Как появилась клеточная теория

Знаковое открытие, повлиявшее на дальнейший курс исследований и на современное положение клеточной теории, сделано в 30-х годах XIX века. Шотландец Р. Броун, изучая лист растения при помощи светового микроскопа, обнаружил в растительных клетках сходные округлые уплотнения, которые впоследствии назвал ядрами.

С этого момента появился важный признак для сопоставления между собой структурных единиц различных организмов, что стало основой выводов о единстве происхождения живого. Не зря даже современное положение клеточной теории содержит ссылку на данный вывод.

Вопрос о происхождении клеток был поставлен в 1838 году немецким ботаником Матиасом Шлейденом. Массово исследуя растительный материал, он отметил, что во всех живых растительных тканях присутствие ядер обязательно.

Его соотечественник зоолог Теодор Шванн сделал такие же выводы относительно тканей животных. Изучив работы Шлейдена и сопоставив множество растительных и животных клеток, он сделал заключение: несмотря на многообразие, все они имеют общий признак - оформленное ядро.

Клеточная теория Шванна и Шлейдена

Собрав воедино имеющиеся факты о клетке, Т. Шванн и М. Шлейден выдвинули главный постулат Он состоял в том, что все организмы (растения и животные) состоят из клеток, близких по строению.

В 1858 году было внесено еще одно дополнение в клеточную теорию. доказал, что организм растет за счет увеличения количества клеток путем деления исходных материнских. Нам это кажется очевидным, но для тех времен его открытие было весьма продвинутым и современным.

На тот момент современное положение клеточной теории Шванна в учебниках формулируется следующим образом:

  1. Все ткани живых организмов имеют клеточное строение.
  2. Клетки животных и растений образуются одним и тем же способом (делением клетки) и имеют сходное строение.
  3. Организм состоит из групп клеток, каждая из них способна к самостоятельной жизнедеятельности.

Став одним из важнейших открытий XIX века, клеточная теория заложила основу представления о единстве происхождения и общности эволюционного развития живых организмов.

Дальнейшее развитие цитологических знаний

Совершенствование исследовательских методов и оборудования позволило ученым значительно углубить знания о строении и жизнедеятельности клеток:

  • доказана связь структуры и функции как отдельных органелл, так и клеток в целом (специализация цитоструктур);
  • каждая клетка в отдельности демонстрирует все свойства, присущие живым организмам (растет, размножается, обменивается веществом и энергией с окружающей средой, подвижна в той или иной степени, адаптируется к изменениям и др.);
  • органеллы не могут по отдельности демонстрировать подобные свойства;
  • у животных, грибов, растений обнаруживаются одинаковые по строению и функциям органеллы;
  • все клетки в организме взаимосвязаны и работают слаженно, выполняя комплексные задачи.

Благодаря новым открытиям, положения теории Шванна и Шлейдена были уточнены и дополнены. Современный научный мир пользуется расширенными постулатами основополагающей теории в биологии.

В литературе можно встретить различное количество постулатов современной клеточной теории, наиболее полный вариант содержит пять пунктов:

  1. Клетка является наименьшей (элементарной) живой системой, основой строения, размножения, развития и жизнедеятельности организмов. Неклеточные структуры не могут называться живыми.
  2. Клетки появляются исключительно путем деления уже существующих.
  3. Химический состав и строение структурных единиц всех живых организмов сходны.
  4. Многоклеточный организм развивается и растет за счет деления одной/нескольких первоначальных клеток.
  5. Сходное клеточное строение организмов, населяющих Землю, свидетельствует о едином источнике их происхождения.

Первоначальные и современные положения клеточной теории во многом перекликаются. Углубленные и расширенные постулаты отражают современный уровень знаний по вопросу строения, жизни и взаимодействия клеток.

КЛЕТОЧНАЯ ТЕОРИЯ

ЧАСТЬ I

1. К прокариотам относятся

1)

бактериофаги

2)

бактерии

3)

водоросли

4)

дрожжи

2. Единица роста и развития организма –

1)

ген

2)

хромосома

3)

клетка

4)

орган

3. К эукариотам относят

1)

кишечную палочку

2)

амебу

3)

холерный вибрион

4)

стрептококк

4. Клеточная теория обобщает представления о

1)

2)

сходстве строения организмов

3)

историческом развитии организмов

4)

единстве живой и неживой природы

5. В соответствии с клеточной теорией единицей роста и размножения организмов считают

1)

клетку

2)

особь

3)

ген

4)

гамету

6. Согласно клеточной теории, клетки всех организмов

1)

сходны по химическому составу

2)

одинаковы по выполняемым функциям

3)

имеют ядро и ядрышко

4)

имеют одинаковые органоиды

7. Из приведенных формулировок укажите положение клеточной теории.

1)

Оплодотворение - это процесс слияния мужской и женской гамет.

2)

Онтогенез повторяет историю развития своего вида.

3)

Дочерние клетки образуются в результате деления материнской.

4)

Половые клетки образуются в процессе мейоза.

8. Процессы жизнедеятельности у всех организмов протекают в клетке, поэтому её рассматривают как единицу

1)

размножения

2)

строения

3)

функциональную

4)

генетическую

9. Клетки прокариот, в отличие от клеток эукариот,

1)

не имеют плазматической мембраны

2)

не имеют оформленного ядра

3)

имеют в своём составе одномембранные органоиды

4)

содержат клеточную оболочку из целлюлозы

10. О единстве органического мира свидетельствует

1)

наличие ядра в клетках живых организмов

2)

клеточное строение организмов всех царств

3)

объединение организмов всех царств в систематические группы

4)

разнообразие организмов, населяющих Землю

11. Какая теория обосновала положение о структурно-функциональной единице живого?

1)

филогенеза

2)

клеточная

3)

эволюции

4)

эмбриогенеза

12. Растения, грибы, животные – это эукариоты, так как их клетки

1)

не имеют оформленного ядра

2)

не делятся митозом

3)

имеют оформленное ядро

4)

имеют ядерную ДНК, замкнутую в кольцо

13. Вывод о единстве органического мира позволяет сделать теория

1)

хромосомная

2)

эволюции

3)

клеточная

4)

гена

14. Организмы растений, животных, грибов и бактерий состоят из клеток – это свидетельствует о

1)

единстве органического мира

2)

разнообразии строения живых организмов

3)

связи организмов со средой обитания

4)

сложном строении живых организмов

15. Согласно клеточной теории клетка – это единица

1)

изменчивости

2)

наследственности

3)

эволюции органического мира

4)

роста и развития организмов

16. Клетку бактерии относят к группе прокариот, так как она не содержит

1)

органоидов движения

2)

клеточной оболочки

3)

многих органоидов и ядра

4)

плазматической мембраны

17. Клеточное строение организмов служит доказательством

1)

2)

взаимодействия организмов и среды обитания

3)

единства органического мира

4)

приспособленности организма к среде обитания

18. В организме человека ядро отсутствует в клетках

1)

эпителиальной ткани

2)

нервных узлов

3)

зрелых эритроцитов

4)

половых желёз

19. Что является структурно-функциональной единицей строения организмов всех царств?

1)

клетка

2)

хромосома

3)

ядро

4)

ДНК

20. Особенность прокариотической клетки – отсутствие в ней

1)

цитоплазмы

2)

клеточной мембраны

3)

немембранных органоидов

4)

оформленного ядра

21. Для прокариотической клетки характерно

1)

отсутствие цитоплазмы и оболочки

2)

отсутствие процесса фотосинтеза

3)

деление путём митоза

4)

наличие кольцевых ДНК в цитоплазме

22. Сходство химического состава клеток организмов разных царств свидетельствует о (об)

1)

целостности организмов

2)

единстве органического мира

3)

многообразии органического мира

4)

сложной организации строения организмов

23. Клетку считают единицей роста и развития организмов, так как

1)

она имеет сложное строение

2)

организм состоит из тканей

3)

число клеток увеличивается в организме путем митоза

4)

образуются гаметы путем мейоза

24. Сходство строения клеток организмов разных царств доказывает теория –

1)

эволюционная

2)

хромосомная

3)

клеточная

4)

генетическая

25. Клетки животных относят к группе эукариотных, так как они имеют

1)

хлоропласты

2)

плазматическую мембрану

3)

оболочку

4)

ядро, отделенное от цитоплазмы оболочкой

26. К прокариотам относят

1)

вирусы и бактериофаги

2)

бактерии и синезеленые

3)

водоросли и простейшие

4)

грибы и лишайники

27. Клетки прокариот, так же как и эукариот, имеют

1)

митохондрии

2)

плазматическую мембрану

3)

клеточный центр

4)

пищеварительные вакуоли

28. Сходство химического состава, клеточного строения организмов – доказательство

1)

единства и общности происхождения органического мира

2)

многообразия растительного и животного мира

3)

эволюции органического мира

4)

постоянства живой природы

29. «Сходством по строению, химическому составу, обмену веществ обладают клетки всех организмов»  это положение

1)

гипотезы возникновения жизни

2)

клеточной теории

3)

закона гомологических рядов

4)

закона независимого распределения генов

30. О сходстве клеток эукариот свидетельствует наличие в них

1)

ядра

2)

пластид

3)

оболочки из клетчатки

4)

вакуолей с клеточным соком

31. К прокариотным относят клетки

1)

животных

2)

цианобактерий

3)

грибов

4)

растений

32. Клетки прокариот, в отличие от клеток эукариот, не имеют

1)

хромосом

2)

клеточной оболочки

3)

ядерной мембраны

4)

плазматической мембраны

33. Эукариоты – это организмы, в клетках которых

1)

отсутствуют митохондрии

2)

ядрышки находятся в цитоплазме

3)

ядерная ДНК образует хромосомы

4)

отсутствуют рибосомы

34. В клетках каких организмов ядерное вещество расположено в цитоплазме?

1)

низших растений

2)

бактерий и цианобактерий

3)

одноклеточных животных

4)

плесневых грибов и дрожжей

35. Клетка многоклеточного животного, в отличие от клетки простейшего,

1)

покрыта оболочкой из клетчатки

2)

выполняет все функции организма

3)

выполняет определенную функцию

4)

представляет собой самостоятельный организм

36. В клетке происходит синтез и расщепление органичес­ких веществ, поэтому её называют единицей

1)

строения

2)

жизнедеятельности

3)

роста

4)

размножения

37. В состав всех живых организмов входят нуклеиновые кислоты, что свидетельствует о

1)

многообразии живой природы

2)

единстве органического мира

3)

приспособленности организмов к факторам среды

4)

взаимосвязи организмов в природных сообществах

38. Немецкие ученые М. Шлейден и Т. Шванн, обобщив идеи разных ученых, сформулировали

1)

закон зародышевого сходства

2)

хромосомную теорию наследственности

3)

клеточную теорию

4)

закон гомологических рядов

39.О единстве органического мира свидетельствует

1)

сходство особей одного вида

2)

клеточное строение организмов

3)

4)

существование огромного разнообразия видов в природе

40. «Размножение клеток происходит путём их деления…» – положение теории

1)

онтогенеза

2)

клеточной

3)

филогенеза

4)

мутационной

41. Развитие организмов из одной клетки – свидетельство

1)

взаимосвязи организмов и среды обитания

2)

единства органического мира

3)

единства живой и неживой природы

4)

многообразия органического мира

42. Сходство строения и жизнедеятельности клеток всех организмов свидетельствует о (об) их

1)

родстве

2)

многообразии

3)

эволюционном процессе

4)

приспособленности

43. Что служит доказательством единства органического мира?

1)

специализация клеток в многоклеточных организмах

2)

сходство в строении клеток организмов разных царств

3)

жизнь организмов в природных и искусственных сообществах

4)

способность организмов к воспроизведению

44. Укажите положение клеточной теории.

1)

Оплодотворение представляет собой процесс соединения мужской и женской клеток.

2)

Аллельные гены в процессе мейоза оказываются в разных половых клетках.

3)

Клетки всех организмов сходны по химическому составу и строе­нию.

4)

Онтогенез – это развитие организма с момента оплодотворения яйцеклетки до смерти организма.

45. К эукариотическим относят клетки

1)

клубеньковых бактерий

2)

цианобактерий

3)

растений

4)

кишечной палочки

46. Почему одноклеточных животных относят к эукариотам?

1)

имеют оформленное ядро

2)

содержат кольцевую хромосому

3)

синтезируют на рибосомах белки

4)

окисляют органические вещества и запасают АТФ

47. Вывод о родстве растений и животных можно сделать на основании

1)

хромосомной теории

2)

закона сцепленного наследования

3)

теории гена

4)

клеточной теории

48. К эукариотам относят клетки

1)

бактерий

2)

вирусов

3)

животных

4)

бактериофагов

49. Организмы состоят из клеток, поэтому их считают единицами

1)

развития

2)

размножения

3)

жизнедеятельности

4)

строения

50. Клетка – единица роста и развития организма, так как

1)

в ней хранится наследственная информация

2)

из клеток состоят ткани

3)

она способна к делению

4)

в ней имеется ядро

51. Эукариоты – это организмы, в клетках которых

1)

ядерное вещество не отделено от цитоплазмы

2)

одна кольцевая хромосома

3)

отсутствуют многие органоиды

4)

ядро отделено от цитоплазмы оболочкой

52. Организмы, клетки которых имеют обособленное ядро, - это

1)

вирусы

2)

прокариоты

3)

эукариоты

4)

бактерии

53. Отсутствие в клетке митохондрий, комплекса Гольджи, ядра указывает на её принадлежность к

1)

эукариотам

2)

прокариотам

3)

вирусам

4)

бактериофагам

54. Клетка – единица строения и жизнедеятельности

1)

вируса табачной мозаики

2)

возбудителя СПИДа

3)

бактерии кишечной палочки

4)

белой планарии

5)

обыкновенной амебы

6)

бактериофага

55. Основные положения клеточной теории позволяют сделать выводы о

1)

влиянии среды на приспособленность

2)

родстве организмов

3)

происхождении растений и животных от общего предка

4)

развитии организмов от простого к сложному

5)

сходном строении клеток всех организмов

6)

возможности самозарождения жизни из неживой материи

56. Сходное строение клеток растений и животных – доказательство

1)

их родства

2)

общности происхождения организмов всех царств

3)

происхождения растений от животных

4)

усложнения организмов в процессе эволюции

5)

единства органического мира

6)

многообразия организмов

ЧАСТЬ II

57. Почему бактерии нельзя отнести к эукариотам?

58 . Какое значение для формирования научного мировоззрения имело создание клеточной теории М. Шлейденом и Т. Шванном?

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.