Как получить данные дистанционного зондирования. Понятие дистанционного зондирования

ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ
сбор информации об объекте или явлении с помощью регистрирующего прибора, не находящегося в непосредственном контакте с данным объектом или явлением. Термин "дистанционное зондирование" обычно включает в себя регистрацию (запись) электромагнитных излучений посредством различных камер, сканеров, микроволновых приемников, радиолокаторов и других приборов такого рода. Дистанционное зондирование используется для сбора и записи информации о морском дне, об атмосфере Земли, о Солнечной системе. Оно осуществляется с применением морских судов, самолетов, космических летательных аппаратов и наземных телескопов. Науки, ориентированные на полевые работы, к числу которых относятся такие, как геология, лесоводство и география, также обычно используют дистанционное зондирование для сбора данных в целях проведения своих исследований.
См. также
СПУТНИК СВЯЗИ ;
ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ .

ТЕХНИКА И ТЕХНОЛОГИЯ
Дистанционное зондирование охватывает теоретические исследования, лабораторные работы, полевые наблюдения и сбор данных с борта самолетов и искусственных спутников Земли. Теоретические, лабораторные и полевые методы важны также для получения информации о Солнечной системе, и когда-нибудь их начнут использовать для изучения других планетных систем Галактики. Некоторые наиболее развитые страны регулярно запускают искусственные спутники для сканирования поверхности Земли и межпланетные космические станции для исследований дальнего космоса.
См. также
ОБСЕРВАТОРИЯ ;
СОЛНЕЧНАЯ СИСТЕМА ;
ВНЕАТМОСФЕРНАЯ АСТРОНОМИЯ ;
КОСМОСА ИССЛЕДОВАНИЕ И ИСПОЛЬЗОВАНИЕ .
Системы дистанционного зондирования. В системе такого типа имеются три основных компонента: устройство для формирования изображения, среда для регистрации данных и база для проведения зондирования. В качестве простого примера такой системы можно привести фотографа-любителя (база), использующего для съемки реки 35-мм фотоаппарат (прибор-визуализатор, формирующий изображение), который заряжен высокочувствительной фотопленкой (регистрирующая среда). Фотограф находится на некотором расстоянии от реки, однако регистрирует информацию о ней и затем сохраняет ее на фотопленке.
Устройства формирования изображений, регистрирующая среда и база. Приборы, формирующие изображения, делятся на четыре основные категории: фото- и кинокамеры, многоспектральные сканеры, радиометры и активные радиолокаторы. Современные однообъективные зеркальные фотокамеры создают изображение, фокусируя ультрафиолетовое, видимое или инфракрасное излучение, приходящее от объекта, на фотопленке. После проявления пленки получается постоянное (способное сохраняться длительное время) изображение. Видеокамера позволяет получать изображение на экране; постоянной записью в этом случае будет соответствующая запись на видеоленте или фотоснимок, сделанный с экрана. Во всех других системах визуализации изображений используются детекторы или приемники, обладающие чувствительностью на определенных длинах волн спектра. Фотоэлектронные умножители и полупроводниковые фотоприемники, используемые в сочетании с оптико-механическими сканерами, позволяют регистрировать энергию ультрафиолетового, видимого, а также ближнего, среднего и дальнего ИК-участков спектра и преобразовывать ее в сигналы, которые могут давать изображения на пленке. Энергия микроволн (диапазон сверхвысоких частот, СВЧ) подобным же образом трансформируется радиометрами или радиолокаторами. В сонарах для получения изображений на фотопленке используется энергия звуковых волн.
См. также
СВЕРХВЫСОКИХ ЧАСТОТ ДИАПАЗОН ;
РАДИОЛОКАЦИЯ ;
ГИДРОЛОКАТОР . Приборы, используемые для визуализации изображений, размещают на различных базах, в том числе на земле, судах, самолетах, воздушных шарах и космических летательных аппаратах. Специальные камеры и телевизионные системы повседневно используются для съемки представляющих интерес физических и биологических объектов на земле, на море, в атмосфере и космосе. Специальные камеры замедленной киносъемки применяются для регистрации таких изменений земной поверхности, как эрозия морских берегов, движение ледников и эволюция растительности.
Архивы данных. Фотоснимки и изображения, сделанные в рамках программ аэрокосмической съемки, надлежащим образом обрабатываются и сохраняются. В США и России архивы для таких информационных данных создаются правительствами. Один из основных архивов такого рода в США, EROS (Earth Resources Obsevation Systems) Data Center, подчиненный Министерству внутренних дел, хранит ок. 5 млн. аэрофотоснимков и ок. 2 млн. изображений, полученных со спутников "Лендсат", а также копии всех аэрофотоснимков и космических снимков поверхности Земли, хранящихся в Национальном управлении по аэронавтике и исследованию космического пространства (НАСА). К этой информации имеется открытый доступ. Обширные фотоархивы и архивы других изоматериалов имеются у различных военных и разведывательных организаций.
Анализ изображений. Самая важная часть дистанционного зондирования - анализ изображений. Такой анализ может выполняться визуально, визуальными методами, усиленными применением компьютера, и целиком и полностью компьютером; последние два включают в себя анализ данных в цифровой форме. Первоначально большинство работ по анализу данных, полученных дистанционным зондированием, выполнялось визуальным исследованием индивидуальных аэрофотоснимков или путем использования стереоскопа и наложения фотоснимков с целью создания стереомодели. Фотоснимки были обычно черно-белыми и цветными, иногда черно-белыми и цветными в ИК-лучах или - в редких случаях - многозональными. Основные пользователи данных, получаемых при аэрофотосъемке, - это геологи, географы, лесоводы, агрономы и, конечно, картографы. Исследователь анализирует аэрофотоснимок в лаборатории, чтобы непосредственно извлечь из него полезную информацию, нанести ее затем на одну из базовых карт и определить области, в которых надо будет побывать во время полевых работ. После проведения полевых работ исследователь еще раз оценивает аэрофотоснимки и использует полученные из них и в результате полевых съемок данные для окончательного варианта карты. Такими методами подготавливают к выпуску множество разных тематических карт: геологических, карт землепользования и топографических, карт лесов, почв и посевов. Геологи и другие ученые ведут лабораторные и полевые исследования спектральных характеристик различных природных и цивилизационных изменений, происходящих на Земле. Идеи таких исследований нашли применение в конструкции многоспектральных сканеров MSS, которые используются на самолетах и КЛА. Искусственные спутники Земли "Лендсат" 1, 2 и 4 имели на борту MSS с четырьмя спектральными полосами: от 0,5 до 0,6 мкм (зеленая); от 0,6 до 0,7 мкм (красная); от 0,7 до 0,8 мкм (ближняя ИК); от 0,8 до 1,1 мкм (ИК). На спутнике "Лендсат 3" используется, кроме того, полоса от 10,4 до 12,5 мкм. Стандартные составные изображения с применением метода искусственного окрашивания получаются при комбинированном использовании MSS с первой, второй и четвертой полосами в сочетании с синим, зеленым и красным фильтрами соответственно. На спутнике "Лендсат 4" c усовершенствованным сканером MSS тематический картопостроитель позволяет получать изображения в семи спектральных полосах: трех - в области видимого излучения, одной - в ближней ИК-области, двух - в средней ИК-области и одной - в тепловой ИК-области. Благодаря этому прибору пространственное разрешение было улучшено почти втрое (до 30 м) по сравнению с тем, что давал спутник "Лендсат", на котором использовался только сканер MSS. Поскольку чувствительные датчики спутников не предназначались для стереоскопической съемки, дифференцировать те или иные особенности и явления в пределах одного конкретного изображения пришлось, используя спектральные различия. Сканеры MSS позволяют различать пять широких категорий земных поверхностей: вода, снег и лед, растительность, обнаженная порода и почва, а также объекты, связанные с деятельностью человека. Научный работник, хорошо знакомый с исследуемой областью, может выполнить анализ изображения, полученного в одной широкой полосе спектра, каким, например, является черно-белый аэрофотоснимок, который в типичном случае получается при регистрации излучений с длинами волн от 0,5 до 0,7 мкм (зеленая и красная области спектра). Однако с увеличением числа новых спектральных полос глазам человека становится все труднее проводить различия между важными особенностями похожих тонов в различных участках спектра. Так, например, только один съемочный план, снятый со спутника "Лендсат" с помощью MSS в полосе 0,5-0,6 мкм, содержит ок. 7,5 млн. пикселов (элементов изображения), у каждого из которых может быть до 128 оттенков серого в пределах от 0 (черный цвет) до 128 (белый цвет). При сравнении двух изображений одной и той же области, сделанных со спутника "Лендсат", приходится иметь дело с 60 млн. пикселов; одно изображение, полученное с "Лендсат 4" и обработанное картопостроителем, содержит около 227 млн. пикселов. Отсюда с очевидностью следует, что для анализа таких изображений необходимо использовать компьютеры.
Цифровая обработка изображений. При анализе изображений компьютеры используются для сравнения значений шкалы серого (диапазона дискретных чисел) каждого пиксела снимков, сделанных в один и тот же день либо в несколько разных дней. Системы анализа изображений выполняют классификацию специфических особенностей съемочного плана в целях составления тематической карты местности. Современные системы воспроизведения изображений позволяют воспроизводить на цветном телевизионном мониторе одну или несколько спектральных полос, отработанных спутником со сканером MSS. Подвижный курсор устанавливают при этом на один из пикселов или на матрицу пикселов, находящихся в пределах некоторой конкретной особенности, например водоема. Компьютер выполняет корреляцию всех четырех MSS-полос и классифицирует все другие части изображения, полученного со спутника, которые характеризуются аналогичными наборами цифровых чисел. Исследователь может затем пометить цветным кодом участки "воды" на цветном мониторе, чтобы составить "карту", показывающую все водоемы на спутниковом снимке. Эта процедура, известная под названием регулируемой классификации, позволяет систематически классифицировать все части анализируемого снимка. Имеется возможность идентификации всех основных типов земной поверхности. Описанные схемы классификации с помощью компьютера довольно просты, однако окружающий нас мир сложен. Вода, например, совсем не обязательно имеет единственную спектральную характеристику. В пределах одного съемочного плана водоемы могут быть чистыми или грязными, глубокими или мелкими, частично покрытыми водорослями или замерзшими, и каждый из них обладает собственной спектральной отражательной способностью (а значит, и своей цифровой характеристикой). В системе интерактивного анализа цифрового изображения IDIMS используется схема нерегулируемой классификации. IDIMS автоматически помещает каждый пиксел в один из нескольких десятков классов. После компьютерной классификации сходные классы (например, пять или шесть водных классов) могут быть собраны в один. Однако многие участки земной поверхности имеют довольно сложные спектры, что затрудняет однозначное установление различий между ними. Дубовая роща, например, может оказаться на изображениях, полученных со спутника, спектрально неотличимой от кленовой рощи, хотя на земле эта задача решается очень просто. По спектральным же характеристикам дуб и клен относятся к широколиственным породам. Компьютерная обработка алгоритмами идентификации содержания изображения позволяет заметно улучшить MSS-изображение по сравнению со стандартным.
ПРИМЕНЕНИЯ
Данные дистанционного зондирования служат основным источником информации при подготовке карт землепользования и топографических карт. Метеорологические и геодезические спутники NOAA и GOES используются для наблюдения за изменением облачности и развитием циклонов, в том числе таких, как ураганы и тайфуны. Изображения, получаемые со спутников NOAA, используются также для картирования сезонных изменений снегового покрова в северном полушарии в целях климатических исследований и изучения изменений морских течений, знание которых позволяет сократить продолжительность морских перевозок. Микроволновые приборы на спутниках "Нимбус" используются для картирования сезонных изменений в состоянии ледового покрова в морях Арктики и Антарктики.
См. также
ГОЛЬФСТРИМ ;
МЕТЕОРОЛОГИЯ И КЛИМАТОЛОГИЯ . Данные дистанционного зондирования с самолетов и искусственных спутников во все более широких масштабах используются для наблюдения за природными пастбищами. Аэрофотоснимки очень эффективны в лесоводстве благодаря достигаемому на них высокому разрешению, а также точному измерению растительного покрова и его изменения со временем.


И все же именно в геологических науках дистанционное зондирование получило наиболее широкое применение. Данные дистанционного зондирования используются при составлении геологических карт с указанием типов пород, а также структурных и тектонических особенностей местности. В экономической геологии дистанционное зондирование служит ценным инструментом для поиска месторождений полезных ископаемых и источников геотермальной энергии. Инженерная геология пользуется данными дистанционного зондирования для выбора мест строительства, отвечающих заданным требованиям, определения мест залегания строительных материалов, контроля за проведением горных работ с поверхности и за рекультивацией земель, а также для проведения инженерных работ в приморской зоне. Кроме того, эти данные используются при оценках сейсмической, вулканической, гляциологической и других опасностей геологического происхождения, а также в таких ситуациях, как лесные пожары и промышленные аварии.



Данные, полученные дистанционным зондированием, составляют важную часть исследований в гляциологии (имеющих отношение к характеристикам ледников и снегового покрова), в геоморфологии (формы и характеристики рельефа), в морской геологии (морфология дна морей и океанов), в геоботанике (ввиду зависимости растительности от лежащих под ней месторождений полезных ископаемых) и в археологической геологии. В астрогеологии данные дистанционного зондирования имеют первостепенное значение для изучения других планет и лун Солнечной системы, а также в сравнительной планетологии для изучения истории Земли. Однако наиболее захватывающий аспект дистанционного зондирования состоит в том, что спутники, выведенные на околоземные орбиты, впервые предоставили ученым возможность наблюдать, отслеживать и изучать нашу планету как целостную систему, включая ее динамичную атмосферу и облик суши, изменяющийся под влиянием природных факторов и деятельности человека. Изображения, получаемые со спутников, возможно, помогут найти ключ к предсказанию изменений климата, вызванных в том числе естественными и техногенными факторами. Хотя США и Россия с 1960-х годов ведут дистанционное зондирование, другие страны также вносят свой вклад. Японское и Европейское космические агентства планируют вывести на околоземные орбиты большое число спутников, предназначенных для исследования суши, морей и атмосферы Земли.
ЛИТЕРАТУРА
Бурша М. Основы космической геодезии. М., 1971-1975 Дистанционное зондирование в метеорологии, океанологии и гидрологии. М., 1984 Зейболд Е., Бергер В. Дно океана. М., 1984 Мишев Д. Дистанционные исследования Земли из космоса. М., 1985

Энциклопедия Кольера. - Открытое общество . 2000 .

  • Административно-правовые методы государственного управления. Государственное регулирование.
  • Административные и правовые методы управления. Принуждение как метод управления.
  • Методы дистанционного зондирования основаны на том, что любой объект излучает и отражает электромагнитную энергию в соответствии с особенностями его природы. Различия в длинах волн и интенсивности излучения могут быть использованы для изучения свойств удаленного объекта без непосредственного контакта с ним.

    Дистанционное зондирование сегодня - это огромное разнообразие методов получения изображений практически во всех диапазонах длин волн электромагнитного спектра (от ультрафиолетовой до дальней инфракрасной) и радиодиапазона, самая различная обзорность изображений - от снимков с метеорологических геостационарных спутников, охватывающих практически целое полушарие, до детальных аэросъемок участка в несколько сот квадратных метров.

    Фотосъемки

    Фотографические снимки поверхности Земли получают с пилотируемых кораблей и орбитальных станций или с автоматических спутников. Отличительной чертой КС является высокая степень обзорности, охват одним снимком больших площадей поверхности. В зависимости от типа применяемой аппаратуры и фотопленок, фотографирование может производиться во всем видимом диапазоне электромагнитного спектра, в отдельных его зонах, а также в ближнем ИК (инфракрасном) диапазоне.

    Масштабы съемки зависят от двух важнейших параметров: высоты съемки и фокусного расстояния объектива. Космические фотоаппараты в зависимости от наклона оптической оси позволяют получать плановые и перспективные снимки земной поверхности.

    В настоящее время используется фотоаппаратура с высоким разрешением, позволяющая получать КС с перекрытием 60% и более. Спектральный диапазон фотографирования охватывает видимую часть ближней инфракрасной зоны (до 0,86 мкм).

    Известные недостатки фотографического метода связаны с необходимостью возвращения пленки на Землю и ограниченным ее запасом на борту. Однако фотографическая съемка - в настоящее время самый информативный вид съемки из космического пространства. Оптимальный размер отпечатка 18х18 см, который, как показывает опыт, согласуется с физиологией человеческого зрения, позволяя видеть все изображение одновременно.

    Для удобства пользования из отдельных КС, имеющих перекрытия, монтируются фотосхемы (фотомозаики) или фотокарты с топографической привязкой опорных точек с точностью 0,1 мм и точнее. Для монтажа фотосхем используются только плановые КС.



    Для приведения разномасштабного, обычно перспективного КС к плановому используется специальный процесс, называемый трансформированием. Трансформированные КС с успехом используются для составления космофотосхем и космофотокарт и обычно легко привязываются к географической сетке координат.

    Сканерные съемки

    В настоящее время для съемок из космоса наиболее часто используются многоспектральные оптико-механические системы - сканеры, установленные на ИСЗ различного назначения. При помощи сканеров формируются изображения, состоящие из множества отдельных, последовательно получаемых элементов. Термин «сканирование» обозначает развертку изображения при помощи сканирующего элемента (качающегося или вращающегося зеркала), поэлементно просматривающего местность поперек движения носителя и посылающего лучистый поток в объектив и далее на точечный датчик, преобразующий световой сигнал в электрический. Этот электрический сигнал поступает на приемные станции по каналам связи. Изображение местности получают непрерывно на ленте, составленной из полос - сканов, сложенных отдельными элементами - пикселами. Сканерные изображения можно получить во всех спектральных диапазонах, но особенно эффективным является видимый и ИК-диапазоны. При съемке земной поверхности с помощью сканирующих систем формируется изображение, каждому элементу которого соответствует яркость излучения участка, находящегося в пределах мгновенного поля зрения. Сканерное изображение - упорядоченный пакет яркостных данных, переданных по радиоканалам на Землю, которые фиксируются на магнитную ленту (в цифровом виде) и затем могут быть преобразованы в кадровую форму.



    Различные методы сканирования поверхности Земли

    Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные. У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы.

    Хорошо зарекомендовал себя сканер нового поколения, названный «тематическим картографом», которым были оснащены американские ИСЗ Landsat 5 и Landsat 7. Сканер типа «тематический картограф» работает в семи диапазонах с разрешением 30 м в видимом диапазоне спектра и 120 м в ИК-диапазоне. Этот сканер дает большой поток информации, обработка которой требует большего времени; в связи с чем замедляется скорость передачи изображения (число пикселов на снимках достигает более 36 млн. на каждом из каналов). Сканирующие устройства могут быть использованы не только для получения изображений Земли, но и для измерения радиации - сканирующие радиометры, и излучения - сканирующие спектрометры.

    Радарные съемки

    Радиолокационная (РЛ) или радарная съемка - важнейший вид дистанционных исследований. Используется в условиях, когда непосредственное наблюдение поверхности планет затруднено различными природными условиями: плотной облачностью, туманом и т.п. Она может проводиться в темное время суток, поскольку является активной.

    Особенности оптической и радарной съёмки

    Для радарной съемки обычно используются радиолокаторы бокового обзора (ЛБО), установленные на самолетах и ИСЗ. С помощью ЛБО радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра. Сущность съемки заключается в посылке радиосигнала, отражающегося по нормали от изучаемого объекта и фиксируемого на приемнике, установленном на борту носителя. Радиосигнал вырабатывается специальным генератором. Время возвращения его в приемник зависит от расстояния до изучаемого объекта. Этот принцип работы радиолокатора, фиксирующего различное время прохождения зондирующего импульса до объекта и обратно, используется для получения РЛ-снимков. Изображение формируется бегущим по строке световым пятном. Чем дальше объект, тем больше времени надо на прохождение отражаемого сигнала до его фиксации электронно-лучевой трубкой, совмещенной со специальной кинокамерой.

    При дешифрировании радарных снимков следует учитывать тон изображения и его текстуру. Тоновые неоднородности РЛ-снимка зависят от литологических особенностей пород, размера их зернистости, устойчивости процессам выветривания. Тоновые неоднородности могут варьировать от черного до светлого цвета. Опыт работы с РЛ-снимками показал, что черный тон соответствует гладким поверхностям, где, как правило, происходит почти полное отражение посланного радиосигнала. Крупные реки всегда имеют черный тон. Текстурные неоднородности РЛ-изображения зависят от степени расчлененности рельефа и могут быть тонкосетчатыми, полосчатыми, массивными и др. Полосчатая текстура РЛ-изображения, например, характерна для горных районов, сложенных часто чередующимися слоями осадочных или метаморфических пород, массивная - для районов развития интрузивных образований. Особенно хорошо получается на РЛ-снимках гидросеть. Она дешифрируется лучше, чем на фотоснимках. Высокое разрешение РЛ-съемки в районах, покрытых густой растительностью, открывает широкие перспективы ее использования.

    Радарные системы бокового обзора с конца 70-х годов стали устанавливать на ИСЗ. Так, например, первый радиолокатор был установлен на американском спутнике "Сисат", предназначенном для изучения динамики океанических процессов. Позднее был сконструирован радар, испытанный во время полетов космического корабля "Шаттл". Информация, полученная с помощью этого радара, представляется в виде черно-белых и ложноцветных синтезированных фото-, телеизображений или записей на магнитную ленту. Разрешающая способность 40 м. Информация поддается числовой и аналоговой обработке, такой же, что и сканерные снимки системы Landsat. Это в значительной мере способствует получению высоких результатов дешифрирования. Во многих случаях РЛ-снимки оказываются геологически более информативными, чем снимки спутников Landsat или других оптических сенсоров. Наилучший результат достигается и при комплексном дешифрировании материалов того и другого видов. РЛ-снимки успешно используются для изучения трудно- или недоступных территорий Земли - пустынь и областей, расположенных в высоких широтах, а также поверхность других планет.

    Классичесими уже стали результаты картирования поверхности Венеры - планеты, покрытой мощным облачным слоем. Совершенствование РЛ-аппаратуры должно повлечь за собой дальнейшее повышение роли радиолокации в дистанционных исследованиях Земли, особенно при изучении ее геологического строения.

    Тепловые съемки

    Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. Она широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков. Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм):

    ближний (0,74-1,35)

    средний (1,35-3,50)

    дальний (3,50-1000)

    Солнечное (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному в зависимости от литологических свойств пород, тепловой инерции, влажности, альбедо и многих других причин.

    ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых "окон прозрачности" - местах пропускания ИК-лучей. Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74-2,40; 3,40-4,20; 8,0-13,0; 30,0-80,0. Некоторые исследователи выделяют большее число окон прозрачности. в первом окне (до 0,84 мкм) используется отраженное солнечное излучение. Здесь можно применять специальные фотопленки и работать с красным фильтром. Съемка в этом диапазоне называется ИК-фотосъемкой.

    В других окнах прозрачности работают измерительные приборы - тепловизоры, преобразующие невидимое ИК-излучение в видимое с помощью электроннолучевых трубок, фиксируя тепловые аномалии. На ИК-изображениях светлыми тонами фиксируются участки с низкими температурами, темными - с относительно более высокими. Яркость тона прямо пропорциональна интенсивности тепловой аномалии. ИК-съемку можно проводить в ночное время. На ИК-снимках, полученных с ИСЗ, четко вырисовывается береговая линия, гидрографическая сеть, ледовая обстановка, тепловые неоднородности водной среды, вулканическая деятельность и т.п. ИК-снимки используются для составления тепловых карт Земли. Линейно-полосовые тепловые аномалии, выявляемые при ИК-съемке, интерпретируются как зоны разломов, а площадные и концентрические - как тектонические или орографические структуры. Например, наложенные впадины Средней Азии, выполненные рыхлыми кайнозойскими отложениями, на ИК-снимках дешифрируются как площадные аномалии повышенной интенсивности. Особенно ценна информация, полученная в районах активной вулканической деятельности.

    В настоящее время накоплен опыт использования ИК-съемки для изучения дна шельфа. Этим методом по разнице температурных аномалий поверхности воды получены данные о строении рельефа дна. При этом использован принцип, согласно которому при одинаковом облучении поверхности воды на более глубоких участках водных масс энергии на нагревание расходуется больше, чем на более мелких. В результате температура поверхности воды над более глубокими участками будет ниже, чем над мелкими. Этот принцип позволяет на ИК-изображениях выделять положительные и отрицательные формы рельефа, подводные долины, банки, гряды и т.п. ИК-съемка в настоящее время применяется для решения специальных задач, особенно при экологических исследованиях, поисках подземных вод и в инженерной геологии.

    К ним относятся например такие важные как проблемы экологии и мониторинга окружающей среды природопользование и эффективное управление земельными ресурсами военное дело борьба с терроризмом картографирование и другие. Фактически ДЗ начало свой путь в 1840х годах когда пилоты воздушных шаров получили картинки земной поверхности используя новейшее изобретение – фотокамеру. В этом случае мы наблюдаем множество объектов и особенностей на поверхности такими какими бы они выглядели на тематической карте в их действительных...


    Поделитесь работой в социальных сетях

    Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


    PAGE \* MERGEFORMAT 2

    Лекция. Введение в ДЗ

    Обработка и дешифрирование аэрокосмических изображений является актуальным и перспективным направлением научно-практической деятельности человечества. Происходит это потому, что оперативное получение материалов дистанционного зондирования Земли (ДЗЗ) из космоса позволяет решать целый круг весьма сложных и важных задач, находить ответы на многие интересующие вопросы. Эти вопросы охватывают практически все сферы повседневной жизни людей. К ним относятся, например, такие важные, как проблемы экологии и мониторинга окружающей среды, природопользование и эффективное управление земельными ресурсами, военное дело, борьба с терроризмом, картографирование и другие.

    Обработка и дешифрирование аэрокосмических изображений являются неотъемлемой составляющей дистанционного зондирования (ДЗ). Дадим несколько наиболее известных определений ДЗ.

    Дистанционное зондирование — получение и измерение данных о некоторых характеристиках явления, объекта или материала записывающим устройством, не находящимся в физическом, непосредственном контакте с объектом исследования; технические приемы, включающие в себя накопление знаний о свойствах окружения путем измерения силовых полей, электромагнитного излучения или акустической энергии с применением камер, лазеров, радиоприемников, радарных систем, сонаров, теплорегистрирующих устройств, сейсмографов, магнетометров, гравиметров, сцинтиллометров и других инструментальных средств.

    Дистанционное зондирование – это технология, базирующаяся на распознавании электромагнитных и силовых полей с целью получения и интерпретации геопространственных данных для выявления информации о характерных особенностях, объектах и классах на Земной поверхности, в океанах и атмосфере, а также (если это возможно) на других космических объектах.

    Дистанционное зондирование связано с регистрацией и измерением фотонов различной энергии, исходящих из удаленных материалов, с целью обеспечения возможности идентификации и категоризации по классу/типу, веществу и пространственному распределению.

    Дистанционное зондирование – получение информации об объекте по данным измерений, сделанных на расстоянии от объекта, т. е. без прямого контакта с объектом.

    Понятие ДЗ появилось в XIX веке вслед за изобретением фотографии.
    В одной из первых областей, в которых стали применять этот метод, стала астрономия. Впоследствии, ДЗ начали использовать в военной области для сбора информации о противнике и принятия стратегических решений. Фактически ДЗ начало свой путь в 1840-х годах, когда пилоты воздушных шаров получили картинки земной поверхности, используя новейшее изобретение – фотокамеру.

    4 октября 1957 года СССР осуществил вывод на орбиту первого искусственного спутника Земли – Спутник-1.

    12 апреля 1961 года в 9 часов 7 минут по московскому времени с космодрома Байконур стартовал космический корабль “Восток” с пилотом-космонавтом Юрием Алексеевичем Гагариным на борту. Первый полет человека длился 108 минут – космонавт приземлился неподалеку от деревни Смеловки в Саратовской области.

    Возможности ДЗ США в военной области были очень значительны и еще более возросли после 1960 года в результате запуска разведывательных спутников в рамках программ CORONA, ARGON и LANYARD

    Первый метеорологический спутник был запущен в США 1 апреля 1960 года. Он использовался для прогноза погоды, наблюдения за перемещением циклонов и других подобных задач. Первым среди спутников, которые применялись для регулярной съемки больших участков земной поверхности, стал TIROS-1 (Television and Infrared Observation Satellite).

    Первый специализированный спутник для целей ДЗ был запущен в 1972 году. Он назывался ERTS-1 (Earth Resources Technology Satellite) и использовался, в основном, для целей сельского хозяйства. В настоящее время спутники этой серии носят название Landsat. Они предназначены для регулярной многозональной съемки территорий со средним разрешением.

    Дистанционное зондирование включает использование инструментов, или сенсоров, для «захвата» спектральных и пространственных отношений между объектами и материалами, наблюдаемыми с расстояния – обычно, находясь над ними. Как правило, мы обозреваем наш мир с более или менее горизонтальной точки зрения, поскольку живем на его поверхности. Но, при этих условиях, то, что мы видим, ограничено областью в несколько квадратных километров по причине наличия различных препятствий – зданий, деревьев, складок местности. Видимая нами область значительно увеличивается, если мы смотрим вниз, например, с высокого здания или вершины горы. Она увеличивается еще больше – до сотен квадратных километров, если мы бросаем взгляд вниз с авиалайнера, летящего на высоте 10 километров. С вертикальной или значительно возвышенной перспективы, наши впечатления о поверхности под нами заметно отличается от того, когда мы осматриваем окружающий мир, находясь в некоторой точке этой поверхности. В этом случае мы наблюдаем множество объектов и особенностей на поверхности такими, какими бы они выглядели на тематической карте в их действительных пространственных и контекстных взаимосвязях. Именно поэтому дистанционное зондирование очень часто осуществляется с платформ, таких как самолеты или космические аппараты, имеющих бортовые датчики, регистрирующие и анализирующие с высоты объекты и особенности территории на больших площадях. Это практичный, упорядоченный и эффективный в отношении цены путь получения и обновления информации об окружающем нас мире.

    Далее приведён краткий список космических аппаратов, которые использовались, а некоторые и используются, для ДЗ земной поверхности, океанов и наблюдения за погодой. В скобках указан год запуска первого из спутников серии.

    Группа 1 – в основном наблюдения земной поверхности:

    Landsat (1973); Seasat (1978); HCMM (1978); SPOT (France) (1986);

    RESURS (Russia) (1985); IRS (India) (1986); ERS (1991); JERS (Japan) (1992); Radarsat (Canada) (1995); ADEOS (Japan) (1996). Современные : WorldView, EO-1, QuickBird, OrbView, Сич -2, EgypetSat, Ikonos, Terra, TerraSAR-X, TanDEM-X и др .

    Группа 2 – в основном метеорологические наблюдения:

    TIROS (1960); Nimbus (1964); ESSA (1966); ATS (g) (1966);

    Российские Kosmos (1968) и Meteor (1969); ITOS (1970); SMS (g) (1975);

    NOAA (1-5) (1976); Meteosat (1978); NOAA (6-14) (1982);

    Группа 3 – в основном океанографические наблюдения:

    Seasat (1978); Nimbus 7 (1978) включал CZCS (Coastal Zone Color Scanner), который измерял концентрацию хлорофилла в морской воде; Topex-Poseidon (1992); SeaWiFS (1997). Современные : Океан-О , Terra, Aqua.

    Этот очень небольшой (перечислены одни из самых известных) и постоянно пополняющийся список убеждает в том, что дистанционное зондирование стало широко используемым технологическим и научным инструментом, используемым для мониторинга планетных поверхностей и атмосферы. Расходы на наблюдение Земли и других планет, начиная с первых дней космических программ по настоящее время, превысили 150 миллиардов долларов. Большая часть этих денег была направлена на практические приложения, в основном фокусирующиеся на управлении природными ресурсами и окружающей средой.

    Области применения данных ДЗЗ

    На данный момент сложно найти передовую отрасль, направление деятельности людей, где не применялись технологии ДЗ. Рассмотрим кратко основные области применения данных ДЗ.

    Сельское, лесное и охотничье хозяйство . В данной области данные ДЗ применяют для различения типов вегетации и их состояния, оценки площадей посевов, лесных и охотничьих угодий по типам культур, определяют состояние почв и площади выгоревших участков.

    Картография и землепользование . При решении различных задач землепользования с использованием данных ДЗ важнейшими являются классификация, картографирование и обновление карт, категоризация земель, разделение урбанизированных и сельских районов, региональное планирование, картирование транспортных сетей, картирование границ водасуша.

    Геология . Это одна из первых областей, при изучении которой активно использовалась съемка с воздушных шаров, самолетов и, впоследствии, с космических платформ. Наиболее часто данные ДЗ используют в этой области для различения типов пород, картирования больших геологических образований, обновления геологических карт и поиска указаний на определенные минералы.

    Водные ресурсы . При исследовании водных ресурсов с использованием данных ДЗ чаще всего специалисты определяют границы водных объектов, их площади и объемы, исследуют мутность и турбулентность, проводят картирование областей затопления и границ снежного покрова, динамику их изменения.

    Океанография и морские ресурсы . При решении задач в этой области актуальными являются обнаружение живых морских организмов, исследование течений, картирование береговой линии, картирование отмелей и мелей, картирование льдов для целей судовождения, а также исследование морских волн.

    Окружающая среда . Пожалуй, наиболее актуальными для использования данных ДЗ является именно эта область. Вопросы безопасности и мониторинга окружающей среды стоят перед современным человечеством наиболее остро. Данные ДЗ активно используются для мониторинга разработок полезных ископаемых, картирования и мониторинга загрязнения поверхностных вод, обнаружения атмосферного загрязнения, определения последствий стихийных бедствий и чрезвычайных ситуаций, а также мониторинга воздействия человеческой активности на окружающую среду в целом.

    Таким образом, одними из наиболее распространенных задач в представленных областях, использующих данные ДЗ, являются задачи мониторинга и наблюдения за определенными территориями земной поверхности и атмосферы, обновление и составление карт, а также составление тематических карт и атласов .

    Как известно топографические карты дают человеку представление об окружающем мире и позволяют легко ориентироваться даже на незнакомой местности. Однако топографические карты крупных масштабов, таких как 1:10 000 – 1:50 000, достаточно редко доступны простому потребителю, в то время, как с развитием сети Internet и картографического сервиса Google Earth , доступны космические изображения поверхности Земли с высоким пространственным разрешением. Это дает возможность не только использовать их для ориентировки на местности, но и помогает вносить коррективы в имеющиеся старые топографические карты. Городские службы, активно занимающиеся обновлением топографических карт населенных пунктов, наиболее заинтересованы в получении периодической съемки с высоким разрешением определенных участков земной поверхности.

    В качестве первичного материала для топографических карт традиционно использовались аэрофотоснимки. Космические цифровые снимки открывают новые возможности: удешевление повторных съемок, увеличение площади охвата местности и снижение искажений, вызванных рельефом. Кроме того, упрощается генерализация изображения на мелкомасштабных картах: вместо трудоемкого упрощения крупномасштабных карт можно сразу использовать космические снимки среднего разрешения. Поэтому съемки из космоса используют все шире и в перспективе могут стать основным методом обновления топографических карт .

    При выборе снимков для составления карт определенного масштаба учитывают графическую точность рисовки и печати карт (0,1 мм). Например, снимки должны иметь пространственное разрешение не хуже 100 м для карт масштаба 1:1 000 000 и не хуже 10 м для карт масштаба 1:100 000.

    При обновлении карт наносятся лишь изменения контуров элементов, а при составлении карт необходимо определить точное положение этих элементов. Поэтому для составления топографических карт требуются снимки более высокого разрешения, чем для их обновления. Следует также учитывать, что при составлении и обновлении топографических карт определенного масштаба одни и те же типы космических снимков могут быть пригодны или непригодны для различных элементов содержания топографических карт .

    На основе материалов издания в табл. 1.3 представлены рекомендуемые масштабы для составления и обновления топографических, обзорно-топографических и обзорных карт по космическим снимкам.

    и пространственного разрешения для составления (С) и обновления (О) карт

    Пр.*

    Масштаб

    10 000 –

    25 000

    25 000 –

    50 000

    50 000 –

    100 000

    100 000 –

    200 000

    200 000 –

    500 000

    500 000 –

    1 000 000

    Мельче

    1 000 000

    250 – 1000 м

    140 м

    35 – 45 м

    30 м

    15 м

    10 м

    5 м

    Выше 1 м

    Пр.* – пространственное разрешение космической съемки

    Космические снимки широко используются для обновления геологических, геоморфологических, гидрологических, океанологических, метеорологических, геоботанических, почвенных, ландшафтных карт. Для каждого типа тематических карт имеется своя методика их составления обновления по космическим снимкам, использующая в определенном сочетании рисунок снимка и значения яркости в каждой его точке (соответствующие спектральной отражательной способности поверхности, ее температуре или другим характеристикам, в зависимости от типа снимка). Использование космических снимков при составлении тематических карт способствует увеличению детальности карты и рисовке контуров, в большей мере соответствующих природному рисунку.

    При тематическом картографировании требования к точности нанесения положения объекта обычно несколько ниже, чем для топографических карт. Поэтому по одним и тем же снимкам можно составлять тематические карты более крупного масштаба.

    Следует отметить, что использование космических снимков, в сочетании с полевыми исследованиями, позволяет оперативно обновлять различные серии государственных карт, в том числе карты лесной таксации, карты почв, геоботанические карты.

    Другие похожие работы, которые могут вас заинтересовать.вшм>

    1999. Дистанционное обучение и его принципы 16.13 KB
    Термин дистанционное обучение означает конкретную форму обучения которая основана на конкретных технологических и методологических решениях и может дополнять другие традиционные формы обучения например очную классноурочную или в отдельных случаях заменять их например если учащемуся недоступны иные варианты связи с удаленностью места проживания или с проблемами со здоровьем. Название дистанционное образование не следует считать правильным поскольку под термином образование понимается весь процесс обучения и воспитания...
    15548. Дистанционное обучение и его роль в образовании личности XXI века 109.13 KB
    Создание системы образования, соответствующей современному образу мира и способной подготовить население нашей планеты к жизни в его условиях – одна из наиболее принципиальных и актуальных проблем общества, в котором развитость и совершенство методов и средств современных информационных и коммуникационных технологий создают реальные возможности для их использования в системе образования.
    18986. Система видеонаблюдения. Дистанционное управление. Основные неисправности электрических машин и причины их возникновения 240.16 KB
    Квадраторы получили свое название из-за того что первые модели делили экран на 4 окна и в каждом отображалась одна из камер. Для оперативной работы оператор имеет возможность вывести на экран любое изображение или исключить любую камеру. Запись видеоизображения может осуществляться на специализированные видеомагнитофоны в традиционных системах или в цифровой форме при помощи компьютера. Управление системами телевизионного наблюдения в зависимости от их сложности и обстановки на объекте может быть автоматическим или ручным.

    Дистанционное зондирование Земли (ДЗЗ) -получение информации о поверхности Земли и объектах на ней, атмосфере, океане, верхнем слое земной коры бесконтактными методами, при которых регистрирующий прибор удален от объекта исследований на значительное расстояние . Общей физической основой дистанционного зондирования является функциональная зависимость между зарегистрированными параметрами собственного или отраженного излучения объекта, его биогеофизическими характеристиками и пространственным положением. Суть метода заключается в интерпретации результатов измерения электромагнитного излучения, которое отражается либо излучается объектом и регистрируется в некоторой удаленной от него точке пространства.

    Дистанционные методы применяются в исследованиях Земли очень давно. Вначале использовались рисованные снимки, которые фиксировали пространственное расположение изучаемых объектов. С изобретением фотографии возникла наземная фототеодолитная съемка, при которой по перспективным фотоснимкам составляли карты горных районов. Развитие авиации обеспечило получение аэрофотоснимков с изображением местности сверху, в плане. Это вооружило науки о Земле мощным средством исследований - аэрометодами.

    Понятие дистанционного зондирования появилось в XIX веке вслед за изобретением фотографии, а одной из первых областей, в которых стали применять этот метод, стала астрономия. Впоследствии, дистанционное зондирование начали использовать в военной области для сбора информации о противнике и принятия стратегических решений. Во время Гражданской войны в США фотоснимки, полученные с помощью неуправляемых летательных аппаратов, служили для наблюдения за перемещением войск, подвозом припасов, ходом фортификационных работ и для оценки эффекта артиллерийских обстрелов. В результате исследований, которые финансировались различными государствами, были разработаны технологии, позволившие создать сенсоры сначала для военных целей, а затем и для гражданского применения этого метода. После Второй мировой войны метод дистанционного зондирования стали использовать для наблюдения за окружающей средой и оценки развития территорий, а также в гражданской картографии. В 60-х годах XX века, с появлением космических ракет и спутников, дистанционное зондирование вышло в космос.

    Новая эра дистанционного зондирования связана с пилотируемыми космическими полетами, разведывательными, метеорологическими и ресурсными спутниками.

    Возможности ДЗ в военной области значительно возросли после 1960 года в результате запуска разведывательных спутников в рамках программ CORONA, ARGON, LANYARD, целью которых было получение фотоснимков с низких орбит. Вскоре были получены стереопары снимков с разрешением 2 метра. Первые спутники работали на орбите от семи до восьми дней, но уже следующие поколения этих аппаратов были способны поставлять данные в течение нескольких месяцев.

    В результате осуществления программ пилотируемых полетов, которые были начаты в США в 1961 году, человек впервые высадился на поверхность Луны (1969 г.). Следует отметить программу Mercury, в рамках которой были получены снимки Земли, систематический сбор данных дистанционного зондирования во время проекта Gemini (1965-1966 гг.), программу Apollo (1968-1975 гг.), в ходе которой велось дистанционное зондирование земной поверхности (ДЗЗ) и состоялась высадка человека на Луну, запуск космической станции Skylab (1973-1974 гг.), на которой проводились исследования земных ресурсов, полеты космических кораблей многоразового использования, которые начались в 1981 году, а также получение многозональных снимков с разрешением 100 метров в видимом и близком инфракрасном диапазоне с использованием девяти спектральных каналов.

    В Советском Союзе, а затем в России космические программы развивались параллельно космическим программам США. Полет Юрия Гагарина 12 апреля 1961 года, ставший первым полетом человека в космос, запуски космических кораблей «Восток» (1961-1963 гг.), «Восход» (1964-1965 гг.) и «Союз», работа на орбите космических станций «Салют» (впервые 19 апреля 1971 года).

    Первый метеорологический спутник был запущен в США 1 апреля 1960 года. Он использовался для прогноза погоды, наблюдения за перемещением циклонов и других подобных задач. Первым среди спутников, которые применялись для регулярной съемки больших участков земной поверхности, стал TIROS-1 (Television and Infrared Observation Satellite).

    Первый специализированный спутник был запущен в 1972 году. Он назывался ERTS-1 (Earth Resources Technology Satellite) и использовался, в основном, для целей сельского хозяйства. В настоящее время спутники этой серии носят название Landsat.

    Они предназначены для регулярной многозональной съемки территорий со средним разрешением. Позже, в 1978 году, был запущен первый спутник со сканирующей системой SEASAT, но он передавал данные всего три месяца. Первый французский спутник серии SPOT, с помощью которого можно было получать стереопары снимков, был выведен на орбиту в 1985 году. Запуск первого индийского спутника дистанционного зондирования, названного IRS (Indian Remote Sensing), состоялся в 1988 году. Япония также вывела на орбиту свои спутники JERS MOS.

    Начиная с 1975 года, Китай периодически запускал собственные спутники, но полученные ими данные до сих пор находятся в закрытом доступе. Европейский космический консорциум вывел на орбиту свои радарные спутники ERS в 1991 и 1995 годах, а Канада-спутник RADARSAT в 1995 году.

    История развития аэрокосмических методов свидетельствует о том, что новые достижения науки и техники сразу же используются для совершенствования технологий получения снимков. Так произошло в середине XX в., когда такие новшества, как компьютеры, космические аппараты, радиоэлектронные съемочные системы, совершили революционные преобразования в традиционных аэрофотометодах - зародилось аэрокосмическое зондирование. Космические снимки предоставили геоинформацию для решения проблем регионального и глобального уровней.

    В настоящее время отчетливо проявляются следующие тенденции поступательного развития аэрокосмического зондирования.

    • Космические снимки, оперативно размещаемые в Интернете, становятся наиболее востребованной видеоинформацией о местности как для специалистов-профессионалов, так и для широких слоев населения.
    • Разрешение и метрические свойства космических снимков открытого доступа быстро повышаются. Получают распространение орбитальные снимки сверхвысокого разрешения - метрового и даже дециметрового, которые успешно конкурируют с аэроснимками.
    • Аналоговые фотографические снимки и традиционные технологии их обработки утрачивают свое прежнее монопольное значение. Основным обрабатывающим прибором стал компьютер, оснащенный специализированным программным обеспечением и периферией.
    • Развитие всепогодной радиолокации превращает ее в прогрессивный метод получения метрически точной пространственной геоинформации, который начинает эффективно комплексироваться с оптическими технологиями аэрокосмического зондирования.
    • Быстро формируется рынок разнообразной продукции аэрокосмического зондирования Земли. Неуклонно увеличивается число коммерческих космических аппаратов, функционирующих на орбитах, особенно зарубежных. Наибольшее применение находят снимки, получаемые ресурсными спутниковыми системами Landsat (США), SPOT (Франция), IRS (Индия), картографическими спутниками ALOS (Япония), Cartosat (Индия), спутниками сверхвысокого разрешения Ikonos, QiuckBird, GeoEye (США), в том числе радиолокационными TerraSAR-X и TanDEM-X (Германия), выполняющими тандемную интерферометрическую съемку. Успешно эксплуатируется система спутников космического мониторинга RapidEye (Германия).

    Аэрокосмический снимок - это двумерное изображение реальных объектов, которое получено по определенным геометрическим и радиометрическим (фотометрическим) законам путем дистанционной регистрации яркости объектов и предназначено для исследования видимых и скрытых объектов, явлений и процессов окружающего мира, а также для определения их пространственного положения.

    Диапазон масштабов современных аэрокосмических снимков огромен: он может меняться от 1:1000 до 1:100 000 000, т.е. в сто тысяч раз. При этом наиболее распространенные масштабы аэрофотоснимков лежат в пределах 1:10 000 - 1:50 000, а космических - 1:200 000 - 1:10 000 000. Все аэрокосмические снимки принято делить на аналоговые (обычно фотографические) и цифровые (электронные). Изображение цифровых снимков образовано из отдельных одинаковых элементов - пикселей (от англ. Picture element-рixel); яркость каждого пиксела характеризуется одним числом.

    Аэрокосмические снимки как информационные модели местности характеризуются рядом свойств, среди которых выделяют изобразительные, радиометрические (фотометрические) и геометрические. Изобразительные свойства характеризуют способность снимков воспроизводить мелкие детали, цвета и тоновые градации объектов, радиометрические свидетельствуют о точности количественной регистрации снимком яркостей объектов, геометрические характеризуют возможность определения по снимкам размеров, длин и площадей объектов и их взаимного положения.

    Оптимальный способ использования данных наблюдения поверхности Земли со спутников заключается в том, чтобы анализировать их совместно с информацией из других источников.

    Получение снимков с перекрытием из нескольких последовательных точек орбиты (стереосъёмка) позволяет получить более точное представление о трехмерных объектах и повысить отношение сигнал/шум.

    Использование многозональных снимков основано на уникальности тоновых характеристик различных объектов. Объединение яркостных данных из снимков в различных спектральных диапазонах позволяет безошибочно выделять определенные пространственные структуры. Съемку с использованием большого числа (более 10) узких съемочных зон называют гиперспектральной. При гиперспектральной съемке увеличивается возможность выделения объектов, характеризующихся наличием полос поглощения, что характерно, например, для загрязнений. Многозональная и гиперпектральная съемки позволяют более эффективно использовать различия в спектральной яркости объектов съемки для их дешифрирования.

    К этому виду снимков можно отнести также радиолокационные снимки, получаемые как при регистрации отраженных радиоволн разной длины, так и при разной их поляризации.

    Многовременная съемка - это плановая съемка в заранее определенные даты, которая позволяет выполнять сравнительный анализ снимков тех объектов, характеристики которых изменяются во времени.

    Многоуровневая съемка - съемка с различными уровнями дискретизации используется для получения более подробной информации об изучаемой территории.

    Как правило, весь процесс сбора данных подразделяют на три уровня: космическая съемка, аэросъемка и наземные исследования.

    Снимки, полученные методом многополяризационной съёмки, используют для проведения границ между объектами на основе различий в поляризационных свойствах отраженного излучения. Так, например, отраженное излучение от водной поверхности обычно более сильно поляризовано, чем отраженное излучение от растительного покрова.

    Комбинированный метод заключается в использовании многовременной, многозональной и многополяризационной съемок.

    сбор информации об объекте или явлении с помощью регистрирующего прибора, не находящегося в непосредственном контакте с данным объектом или явлением. Термин «дистанционное зондирование» обычно включает в себя регистрацию (запись) электромагнитных излучений посредством различных камер, сканеров, микроволновых приемников, радиолокаторов и других приборов такого рода. Дистанционное зондирование используется для сбора и записи информации о морском дне, об атмосфере Земли, о Солнечной системе. Оно осуществляется с применением морских судов, самолетов, космических летательных аппаратов и наземных телескопов. Науки, ориентированные на полевые работы, к числу которых относятся такие, как геология, лесоводство и география, также обычно используют дистанционное зондирование для сбора данных в целях проведения своих исследований. См. также СПУТНИК СВЯЗИ; ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ.

    Бурша М. Основы космической геодезии . М., 1971–1975
    Дистанционное зондирование в метеорологии, океанологии и гидрологии . М., 1984
    Зейболд Е., Бергер В. Дно океана . М., 1984
    Мишев Д. Дистанционные исследования Земли из космоса . М., 1985

    Найти "ДИСТАНЦИОННОЕ ЗОНДИРОВАНИЕ " на

    Похожие статьи

    © 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.