Числовой ряд называется сходящимся если. Числовые ряды

Основные определения.

Определение. Сумма членов бесконечной числовой последовательности называетсячисловым рядом .

При этом числа
будем называть членами ряда, аu n – общим членом ряда.

Определение. Суммы
,n = 1, 2, … называются частными (частичными) суммами ряда.

Таким образом, возможно рассматривать последовательности частичных сумм ряда S 1 , S 2 , …, S n , …

Определение. Ряд
называетсясходящимся , если сходится последовательность его частных сумм. Сумма сходящегося ряда – предел последовательности его частных сумм.

Определение. Если последовательность частных сумм ряда расходится, т.е. не имеет предела, или имеет бесконечный предел, то ряд называется расходящимся и ему не ставят в соответствие никакой суммы.

Свойства рядов.

1) Сходимость или расходимость ряда не нарушится если изменить, отбросить или добавить конечное число членов ряда.

2) Рассмотрим два ряда
и
, где С – постоянное число.

Теорема. Если ряд
сходится и его сумма равна
S , то ряд
тоже сходится, и его сумма равна С
S . (C 0)

3) Рассмотрим два ряда
и
.Суммой или разностью этих рядов будет называться ряд
, где элементы получены в результате сложения (вычитания) исходных элементов с одинаковыми номерами.

Теорема. Если ряды
и
сходятся и их суммы равны соответственно
S и , то ряд
тоже сходится и его сумма равна
S + .

Разность двух сходящихся рядов также будет сходящимся рядом.

Сумма сходящегося и расходящегося рядов будет расходящимся рядом.

О сумме двух расходящихся рядов общего утверждения сделать нельзя.

При изучении рядов решают в основном две задачи: исследование на сходимость и нахождение суммы ряда.

Критерий Коши.

(необходимые и достаточные условия сходимости ряда)

Для того, чтобы последовательность
была сходящейся, необходимо и достаточно, чтобы для любого
существовал такой номер
N , что при n > N и любом p > 0, где р – целое число, выполнялось бы неравенство:

.

Доказательство. (необходимость)

Пусть
, тогда для любого числа
найдется номер N такой, что неравенство

выполняется при n>N. При n>N и любом целом p>0 выполняется также неравенство
. Учитывая оба неравенства, получаем:

Необходимость доказана. Доказательство достаточности рассматривать не будем.

Сформулируем критерий Коши для ряда.

Для того, чтобы ряд
был сходящимся необходимо и достаточно, чтобы для любого
существовал номер
N такой, что при n > N и любом p >0 выполнялось бы неравенство

.

Однако, на практике использовать непосредственно критерий Коши не очень удобно. Поэтому как правило используются более простые признаки сходимости:

1) Если ряд
сходится, то необходимо, чтобы общий член u n стремился к нулю. Однако, это условие не является достаточным. Можно говорить только о том, что если общий член не стремится к нулю, то ряд точно расходится. Например, так называемый гармонический ряд является расходящимся, хотя его общий член и стремится к нулю.

Пример. Исследовать сходимость ряда

Найдем
- необходимый признак сходимости не выполняется, значит ряд расходится.

2) Если ряд сходится, то последовательность его частных сумм ограничена.

Однако, этот признак также не является достаточным.

Например, ряд 1-1+1-1+1-1+ … +(-1) n +1 +… расходится, т.к. расходится последовательность его частных сумм в силу того, что

Однако, при этом последовательность частных сумм ограничена, т.к.
при любомn .

Ряды с неотрицательными членами.

При изучении знакопостоянных рядов ограничимся рассмотрением рядов с неотрицательными членами, т.к. при простом умножении на –1 из этих рядов можно получить ряды с отрицательными членами.

Теорема. Для сходимости ряда
с неотрицательными членами необходимо и достаточно, чтобы частные суммы ряда были ограничены
.

Признак сравнения рядов с неотрицательными членами.

Пусть даны два ряда
и
приu n , v n 0 .

Теорема. Если u n v n при любом n , то из сходимости ряда
следует сходимость ряда
, а из расходимости ряда
следует расходимость ряда
.

Доказательство. Обозначим через S n и n частные суммы рядов
и
. Т.к. по условию теоремы ряд
сходится, то его частные суммы ограничены, т.е. при всехn  n  M, где М – некоторое число. Но т.к. u n v n , то S n n то частные суммы ряда
тоже ограничены, а этого достаточно для сходимости.

Пример. Исследовать на сходимость ряд

Т.к.
, а гармонический рядрасходится, то расходится и ряд
.

Пример.

Т.к.
, а ряд
сходится (как убывающая геометрическая прогрессия), то ряд
тоже сходится.

Также используется следующий признак сходимости:

Теорема. Если
и существует предел
, где
h – число, отличное от нуля, то ряды
и
ведут одинаково в смысле сходимости.

Признак Даламбера.

(Жан Лерон Даламбер (1717 – 1783) – французский математик)

Если для ряда
с положительными членами существует такое число
q <1, что для всех достаточно больших n выполняется неравенство

то ряд
сходится, если же для всех достаточно больших
n выполняется условие

то ряд
расходится.

Предельный признак Даламбера.

Предельный признак Даламбера является следствием из приведенного выше признака Даламбера.

Если существует предел
, то при
< 1 ряд сходится, а при > 1 – расходится. Если = 1, то на вопрос о сходимости ответить нельзя.

Пример. Определить сходимость ряда .

Вывод: ряд сходится.

Пример. Определить сходимость ряда

Вывод: ряд сходится.

Признак Коши. (радикальный признак)

Если для ряда
с неотрицательными членами существует такое число
q <1, что для всех достаточно больших n выполняется неравенство

,

то ряд
сходится, если же для всех достаточно больших
n выполняется неравенство

то ряд
расходится.

Следствие. Если существует предел
, то при<1 ряд сходится, а при >1 ряд расходится.

Пример. Определить сходимость ряда
.

Вывод: ряд сходится.

Пример. Определить сходимость ряда
.

Т.е. признак Коши не дает ответа на вопрос о сходимости ряда. Проверим выполнение необходимых условий сходимости. Как было сказано выше, если ряд сходится, то общий член ряда стремится к нулю.

,

таким образом, необходимое условие сходимости не выполняется, значит, ряд расходится.

Интегральный признак Коши.

Если (х) – непрерывная положительная функция, убывающая на промежутке и
то интегралы
и
ведут себя одинаково в смысле сходимости.

Знакопеременные ряды.

Знакочередующиеся ряды.

Знакочередующийся ряд можно записать в виде:

где

Признак Лейбница.

Если у знакочередующегося ряда абсолютные величины u i убывают
и общий член стремится к нулю
, то ряд сходится.

Абсолютная и условная сходимость рядов.

Рассмотрим некоторый знакопеременный ряд (с членами произвольных знаков).

(1)

и ряд, составленный из абсолютных величин членов ряда (1):

(2)

Теорема. Из сходимости ряда (2) следует сходимость ряда (1).

Доказательство. Ряд (2) является рядом с неотрицательными членами. Если ряд (2) сходится, то по критерию Коши для любого >0 существует число N, такое, что при n>N и любом целом p>0 верно неравенство:

По свойству абсолютных величин:

То есть по критерию Коши из сходимости ряда (2) следует сходимость ряда (1).

Определение. Ряд
называетсяабсолютно сходящимся , если сходится ряд
.

Очевидно, что для знакопостоянных рядов понятия сходимости и абсолютной сходимости совпадают.

Определение. Ряд
называетсяусловно сходящимся , если он сходится, а ряд
расходится.

Признаки Даламбера и Коши для знакопеременных рядов.

Пусть
- знакопеременный ряд.

Признак Даламбера. Если существует предел
, то при<1 ряд
будет абсолютно сходящимся, а при>

Признак Коши. Если существует предел
, то при<1 ряд
будет абсолютно сходящимся, а при>1 ряд будет расходящимся. При =1 признак не дает ответа о сходимости ряда.

Свойства абсолютно сходящихся рядов.

1) Теорема. Для абсолютной сходимости ряда
необходимо и достаточно, чтобы его можно было представить в виде разности двух сходящихся рядов с неотрицательными членами
.

Следствие. Условно сходящийся ряд является разностью двух расходящихся рядов с неотрицательными стремящимися к нулю членами.

2) В сходящемся ряде любая группировка членов ряда, не изменяющая их порядка, сохраняет сходимость и величину ряда.

3) Если ряд сходится абсолютно, то ряд, полученный из него любой перестановкой членов, также абсолютно сходится и имеет ту же сумму.

Перестановкой членов условно сходящегося ряда можно получить условно сходящийся ряд, имеющий любую наперед заданную сумму, и даже расходящийся ряд.

4) Теорема. При любой группировке членов абсолютно сходящегося ряда (при этом число групп может быть как конечным, так и бесконечным и число членов в группе может быть как конечным, так и бесконечным) получается сходящийся ряд, сумма которого равна сумме исходного ряда .

5) Если ряды исходятся абсолютно и их суммы равны соответственноS и , то ряд, составленный из всех произведений вида
взятых в каком угодно порядке, также сходится абсолютно и его сумма равнаS  - произведению сумм перемножаемых рядов.

Если же производить перемножение условно сходящихся рядов, то в результате можно получить расходящийся ряд.

Функциональные последовательности.

Определение. Если членами ряда будут не числа, а функции от х , то ряд называется функциональным .

Исследование на сходимость функциональных рядов сложнее исследования числовых рядов. Один и тот же функциональный ряд может при одних значениях переменной х сходиться, а при других – расходиться. Поэтому вопрос сходимости функциональных рядов сводится к определению тех значений переменной х , при которых ряд сходится.

Совокупность таких значений называется областью сходимости .

Так как пределом каждой функции, входящей в область сходимости ряда, является некоторое число, то пределом функциональной последовательности будет являться некоторая функция:

Определение. Последовательность {f n (x ) } сходится к функции f (x ) на отрезке , если для любого числа >0 и любой точки х из рассматриваемого отрезка существует номер N = N(, x), такой, что неравенство

выполняется при n>N.

При выбранном значении >0 каждой точке отрезка соответствует свой номер и, следовательно, номеров, соответствующих всем точкам отрезка , будет бесчисленное множество. Если выбрать из всех этих номеров наибольший, то этот номер будет годиться для всех точек отрезка , т.е. будет общим для всех точек.

Определение. Последовательность {f n (x ) } равномерно сходится к функции f (x ) на отрезке , если для любого числа >0 существует номер N = N(), такой, что неравенство

выполняется при n>N для всех точек отрезка .

Пример. Рассмотрим последовательность

Данная последовательность сходится на всей числовой оси к функции f (x )=0 , т.к.

Построим графики этой последовательности:

sinx


Как видно, при увеличении числа n график последовательности приближается к оси х .

Функциональные ряды.

Определение. Частными (частичными) суммами функционального ряда
называются функции

Определение. Функциональный ряд
называетсясходящимся в точке (х=х 0 ), если в этой точке сходится последовательность его частных сумм. Предел последовательности
называетсясуммой ряда
в точкех 0 .

Определение. Совокупность всех значений х , для которых сходится ряд
называетсяобластью сходимости ряда.

Определение. Ряд
называетсяравномерно сходящимся на отрезке , если равномерно сходится на этом отрезке последовательность частных сумм этого ряда.

Теорема. (Критерий Коши равномерной сходимости ряда)

Для равномерной сходимости ряда
необходимо и достаточно, чтобы для любого числа
>0 существовал такой номер N (), что при n > N и любом целом p >0 неравенство

выполнялось бы для всех х на отрезке [ a , b ].

Теорема. (Признак равномерной сходимости Вейерштрасса)

(Карл Теодор Вильгельм Вейерштрасс (1815 – 1897) – немецкий математик)

Ряд
сходится равномерно и притом абсолютно на отрезке [
a , b ], если модули его членов на том же отрезке не превосходят соответствующих членов сходящегося числового ряда с положительными членами:

т.е. имеет место неравенство:

.

Еще говорят, что в этом случае функциональный ряд
мажорируется числовым рядом
.

Пример. Исследовать на сходимость ряд
.

Так как
всегда, то очевидно, что
.

При этом известно, что общегармонический ряд при=3>1 сходится, то в соответствии с признаком Вейерштрасса исследуемый ряд равномерно сходится и притом в любом интервале.

Пример. Исследовать на сходимость ряд .

На отрезке [-1,1] выполняется неравенство
т.е. по признаку Вейерштрасса на этом отрезке исследуемый ряд сходится, а на интервалах (-, -1)  (1, ) расходится.

Свойства равномерно сходящихся рядов.

1) Теорема о непрерывности суммы ряда.

Если члены ряда
- непрерывные на отрезке [
a , b ] функции и ряд сходится равномерно, то и его сумма S (x ) есть непрерывная функция на отрезке [ a , b ].

2) Теорема о почленном интегрировании ряда.

Равномерно сходящийся на отрезке [ a , b ] ряд с непрерывными членами можно почленно интегрировать на этом отрезке, т.е. ряд, составленный из интегралов от его членов по отрезку [ a , b ] , сходится к интегралу от суммы ряда по этому отрезку .

3) Теорема о почленном дифференцировании ряда.

Если члены ряда
сходящегося на отрезке [
a , b ] представляют собой непрерывные функции, имеющие непрерывные производные, и ряд, составленный из этих производных
сходится на этом отрезке равномерно, то и данный ряд сходится равномерно и его можно дифференцировать почленно.

На основе того, что сумма ряда является некоторой функцией от переменной х , можно производить операцию представления какой – либо функции в виде ряда (разложения функции в ряд), что имеет широкое применение при интегрировании, дифференцировании и других действиях с функциями.

На практике часто применяется разложение функций в степенной ряд.

Степенные ряды.

Определение. Степенным рядом называется ряд вида

.

Для исследования на сходимость степенных рядов удобно использовать признак Даламбера.

Пример. Исследовать на сходимость ряд

Применяем признак Даламбера:

.

Получаем, что этот ряд сходится при
и расходится при
.

Теперь определим сходимость в граничных точках 1 и –1.

При х = 1:
ряд сходится по признаку Лейбница (см. Признак Лейбница. ).

При х = -1:
ряд расходится (гармонический ряд).

Теоремы Абеля.

(Нильс Хенрик Абель (1802 – 1829) – норвежский математик)

Теорема. Если степенной ряд
сходится при
x = x 1 , то он сходится и притом абсолютно для всех
.

Доказательство. По условию теоремы, так как члены ряда ограничены, то

где k - некоторое постоянное число. Справедливо следующее неравенство:

Из этого неравенства видно, что при x < x 1 численные величины членов нашего ряда будут меньше (во всяком случае не больше) соответствующих членов ряда правой части записанного выше неравенства, которые образуют геометрическую прогрессию. Знаменатель этой прогрессии по условию теоремы меньше единицы, следовательно, эта прогрессия представляет собой сходящийся ряд.

Поэтому на основании признака сравнения делаем вывод, что ряд
сходится, а значит ряд
сходится абсолютно.

Таким образом, если степенной ряд
сходится в точкех 1 , то он абсолютно сходится в любой точке интервала длины 2с центром в точкех = 0.

Следствие. Если при х = х 1 ряд расходится, то он расходится для всех
.

Таким образом, для каждого степенного ряда существует такое положительное число R, что при всех х таких, что
ряд абсолютно сходится, а при всех
ряд расходится. При этом числоR называется радиусом сходимости . Интервал (-R, R) называется интервалом сходимости .

Отметим, что этот интервал может быть как замкнутым с одной или двух сторон, так и не замкнутым.

Радиус сходимости может быть найден по формуле:

Пример. Найти область сходимости ряда

Находим радиус сходимости
.

Следовательно, данный ряд сходится прилюбом значении х . Общий член этого ряда стремится к нулю.

Теорема. Если степенной ряд
сходится для положительного значениях=х 1 , то он сходится равномерно в любом промежутке внутри
.

Действия со степенными рядами.

Рассмотрим бесконечную последовательность чисел , т.е. множество чисел, в котором каждому натуральному числу n по определённому правилу соответствует некоторое число a n . Выражение вида называется числовым рядом , сами числа - членами ряда , - общим членом ряда . Коротко ряд записывают так: .

Суммы , в которых присутствуют только n первых членов ряда, называются частичными суммами ряда .

Числовой ряд называется сходящимся , если последовательность его частичных сумм имеет конечный предел . Число S называется суммой ряда .

Если предел не существует, то ряд называется расходящимся .

Пример 1. Дана бесконечная геометрическая прогрессия . Составим ряд

и исследуем его на сходимость, исходя из определения сходимости ряда. Для этого составим частичную сумму =. Из школьного курса математики известно, что . Напомним, как это получается. Для доказательства произведём деление

Вычислим теперь предел , учитывая, что здесь возможны три случая:

2) если q = 1, то =и ,

3) если q = -1, то =, и , а = , и . Значит, последовательность частичных сумм единого предела не имеет.

Поэтому делаем вывод: геометрическая прогрессия сходится, если и расходится при .

Пример 2. Доказать расходимостьряда

Решение. Оценим частичную сумму ряда:

> , т.е. > ,

а предел частичной суммы равен бесконечности (по известной теореме о пределах: если x n > y n , то ): = ¥. Значит, данный ряд расходится.

Свойства сходящихся рядов

Рассмотрим два ряда и . Второй ряд получен из первого путём отбрасывания первых m его членов. Этот ряд называется остатком ряда и обозначается r n .

Теорема 1 . Если члены сходящегося ряда умножить на некоторое число С , то сходимость ряда не нарушится, а сумма умножится на С .

Теорема 2 . Два сходящихся ряда можно почленно складывать (вычитать) и сумма полученного ряда будет равна , где - сумма первого ряда, а - сумма второго.

Теорема 3 . Если сходится ряд, то сходится любой из его остатков. Из сходимости остатка ряда следует сходимость самого ряда.

Можно сказать и по-другому: на сходимость ряда не влияет отбрасывание (или приписывание) конечного число членов ряда. И это свойство самое замечательное. Действительно, пусть сумма ряда равна бесконечности (ряд расходится). Мы складываем очень большое, но конечное число членов ряда. Эта сумма может быть очень большим, но, опять же, конечным числом. Так, значит, сумма остатка ряда, а там члены ряда уже ничтожно малые числа, всё равно равна бесконечности за счёт бесконечности числа слагаемых.

Теорема 4 . Необходимый признак сходимости.

Если ряд сходится, то его общий член a n стремится к нулю, т.е. .


Доказательство . Действительно,

И если ряд сходится, то и , а значит, при .

Отметим, что этот признак не является достаточным, т.е. ряд может расходиться, а его общий член стремится к нулю. В примере 2 ряд расходится, хотя его общий член .

Но если а n не стремится к нулю при , то ряд является расходящимся (достаточный признак расходимости ряда ).

Сходимость рядов с положительными членами

Ряд называется положительным , если все .

Частичные суммы такого ряда S n образуют возрастающую последовательность, так как каждая предыдущая меньше следующей, т.е. . Из теории пределов известно (теорема Больцано-Вейерштрасса), что если возрастающая последовательность ограничена сверху (т.е. для всех S n существует такое число М , что S n < М для всех n ), то она имеет предел. Отсюда следует следующая теорема.

Теорема . Ряд с положительными членами сходится, если частичные суммы его ограничены сверху, и расходится в противном случае.

На этом свойстве основаны все достаточные признаки сходимости рядов с положительными членами . Рассмотрим основные из них.

Признак сравнения

Рассмотрим два ряда с неотрицательными членами: - (3) и - (4), причём , начиная с некоторого n . Тогда из сходимости ряда (4) следует сходимость ряда (3). А из расходимости ряда (3) следует расходимость ряда (4).

Иначе: если сходится ряд с б?льшими членами, то сходится и ряд с меньшими членами; если расходится ряд с меньшими членами, то расходится и ряд с б?льшими членами.

Пример. Исследовать на сходимость ряд .

Решение. Общий член ряда , а ряд есть бесконечная сумма членов геометрической прогрессии со знаменателем < 1, т.е. это сходящийся ряд. По признаку сравнения (т.к. сходится ряд с б?льшими членами, то сходится и ряд с меньшими) данный ряд сходится.

Признак сравнения в предельной форме

Рассмотрим два ряда и , и пусть , - конечное число. Тогда оба ряда сходятся или расходятся одновременно.

Пример.

Решение . Выберем ряд для сравнения, выяснив для этого, как ведёт себя общий член ряда при больших n :

Т.е. ~ , и в качестве ряда сравнения берём ряд , который расходится, что было показано ранее.

Вычислим предел

и значит, оба ряда ведут себя одинаково, т.е. данный ряд тоже расходится.

Признак Даламбера

Пусть дан ряд и существует предел . Тогда, если l < 1, то ряд сходится, если l > 1, то ряд расходится, если l = 1, то этот признак ответа не даёт (т.е. необходимо дополнительное исследование).

Пример. Исследовать на сходимость ряд (напомним, что , т.е. n -факториал есть произведение всех целых чисел от 1 до n ).

Решение. Для этого ряда , (для нахождения нужно в вместо n подставить n + 1). Вычислим предел

и так как предел меньше 1, данный ряд сходится.

Радикальный признак Коши

Пусть дан ряд и существует предел . Если l < 1, то ряд сходится, если l > 1, то ряд расходится, если l = 1, то этот признак ответа не даёт (необходимо дополнительное исследование).

Пример. Исследовать на сходимость ряд

Решение. Общий член ряда . Вычислим предел . Значит, ряд сходится.

Интегральный признак Коши

Рассмотрим ряд , и предположим, что на промежутке х Î существует непрерывная, положительная и монотонно убывающая функция такая, что , n = 1, 2, 3… . Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.

Отметим, что если дан ряд то и функция рассматривается на промежутке .

Напомним, что указанный несобственный интеграл называется сходящимся , если существует конечный предел , и тогда =. Если при не имеет конечного предела, то говорят, что несобственный интеграл расходится .

Пример. Рассмотрим ряд - обобщённый гармонический ряд или ряд Дирихле с показателем степени s . Если s = 1, то ряд называют гармоническим рядом .

Исследуем данный ряд, используя интегральный признак Коши: =, и функция =обладает всеми свойствами, указанными в признаке. Вычислим несобственный интеграл .

Возможны три случая:

1) s < 1, и тогда

интеграл расходится.

2) при s = 1

интеграл расходится.

3) если s > 1, то

интеграл сходится.

Вывод . Обобщенный гармонический ряд сходится, если s > 1, и расходится, если s ≤ 1.

Этот ряд часто используют для сравнения с другими рядами, содержащими степени n .

Пример. Исследовать ряд на сходимость.

Решение. Для этого ряда ~ =, значит, данный ряд сравниваем с рядом , который сходится, как ряд Дирихле с показателем степени s = 2 > 1.

По признаку сравнения в предельной форме находим предел отношения общих членов данного ряда и ряда Дирихле:

Следовательно, данный ряд тоже сходится.

Рекомендации по использованию признаков сходимости

Прежде всего, следует воспользоваться необходимым признаком сходимости ряда и вычислить предел общего члена ряда при . Если , то ряд заведомо расходится, а если , то следует воспользоваться одним из достаточных признаков.

Признаки сравнения полезно использовать в тех случаях, когда путём преобразований выражения для общего члена ряда удаётся перейти от исходного ряда к ряду, сходимость (или расходимость) которого известна. В частности, если содержит только степени n и не содержит никакие другие функции, это всегда можно сделать.

Признаки сравнения применяют тогда, когда исходный ряд можно сопоставить с обобщённым гармоническим рядом или рядом, составленным из членов бесконечной геометрической прогрессии.< применяют, если при замене n . Самой медленно растущей функцией является логарифм, а быстрее всего растёт степенно-показательная функция . Между ними другие известные функции располагаются в следующем порядке:

Поэтому, если в числителе стоит какая-то из этих функций, а в знаменателе - функция левее её, то, скорее всего, ряд расходится, и наоборот.

1. Если сходится а 1 +а 2 +а 3 +…+а n +…=, то сходится и ряд а m+1 +а m+2 +а m+3 +…, полученный из данного ряда отбрасыванием первых m членов. Этот полученный ряд называется m-ым остатком ряда. И, наоборот: из сходимости m-го остатка ряда вытекает сходимость данного ряда. Т.е. сходимость и расходимость ряда не нарушается, если прибавить или отбросить конечное число его членов.

2 . Если ряд а 1 +а 2 +а 3 +… сходится и его сумма равна S, то ряд Са 1 +Са 2 +…, где С= так же сходится и его сумма равна СS.

3. Если ряды а 1 +а 2 +… и b 1 +b 2 +… сходятся и их суммы равны соответственно S1 и S2, то ряды (а 1 +b 1)+(а 2 +b 2)+(а 3 +b 3)+… и (а 1 -b 1)+(а 2 -b 2)+(а 3 -b 3)+… также сходятся. Их суммы соответственно равны S1+S2 и S1-S2.

4. а). Если ряд сходится, то его n-ый член стремится к 0 при неограниченном возрастании n (обратное утверждение неверно).

- необходимый признак (условие) сходимости ряда .

б). Если
то ряд расходящийся –достаточное условие расходимости ряда .

-ряды такого вида исследуются только по 4 свойству. Это расходящиеся ряды.

Знакоположительные ряды.

Признаки сходимости и расходимости знакоположительных рядов.

Знакоположительные ряды это ряды, все члены которых положительные. Эти признаки сходимости и расходимости мы будем рассматривать для знакоположительных рядов.

1. Первый признак сравнения.

Пусть даны два знакоположительных ряда а 1 +а 2 +а 3 +…+а n +…=(1) иb 1 +b 2 +b 3 +…+b n +…=(2).

Если члены ряда (1) не больше b n и ряд (2) сходится , то и ряд (1) также сходится.

Если члены ряда (1) не меньше соответствующих членов ряда (2), т.е. а n b n и ряд (2) расходится , то и ряд (1) также расходится.

Этот признак сравнения справедлив, если неравенство выполняется не для всех n, а лишь начиная с некоторого.

2. Второй признак сравнения.

Если существует конечный и отличный от нуля предел
, то оба ряда сходятся или расходятся одновременно.

-ряды такого вида расходятся по второму признаку сравнения. Их надо сравнивать с гармоническим рядом.

3. Признак Даламбера.

Если для знакоположительного ряда (а 1 +а 2 +а 3 +…+а n +…=) существует
(1), то ряд сходится, если q<1, расходится, если q>

4. Признак Коши радикальный.

Если для знакоположительного ряда существует предел
(2), то ряд сходится, еслиq<1, расходится, если q>1. Если q=1 то вопрос остается открытым.

5. Признак Коши интегральный.

Вспомним несобственные интегралы.

Если существует предел
. Это есть несобственный интеграл и обозначается
.

Если этот предел конечен, то говорят, что несобственный интеграл сходится. Ряд, соответственно, сходится или расходится.

Пусть ряд а 1 +а 2 +а 3 +…+а n +…=- знакоположительный ряд.

Обозначим a n =f(x) и рассмотрим функцию f(x). Если f(x)- функция положительная, монотонно убывающая и непрерывная, то, если несобственный интеграл сходится, то и данный ряд сходится. И наоборот: если несобственный интеграл расходится, то и ряд расходится.

Если ряд конечен, то он сходится.

Очень часто встречаются ряды
-ряд Дерихле . Он сходится, если p>1, расходится p<1. Гармонический ряд является рядом Дерихле при р=1. Сходимость и расходимость данного ряда легко доказать с помощью интегрального признака Коши.

Введение

числовой коши даламбер

Понятие бесконечных сумм фактически было известно ученым Древней Греции (Евдокс, Евклид, Архимед). Нахождение бесконечных сумм являлось составной частью так называемого метода исчерпывания, широко используемого древнегреческими учеными для нахождения площадей фигур, объемов тел, длин кривых и т.д. Так, например, Архимед для вычисления площади параболического сегмента (т.е. фигуры, ограниченной прямой и параболой) нашел сумму бесконечной геометрической прогрессии со знаменателем 1/4.

Ряд, как самостоятельное понятие, математики стали использовать в XVII в. И. Ньютон и Г. Лейбниц применяли ряды для решения алгебраических и дифференциальных уравнений. Теория рядов в XVIII-XIX вв. развивалась в работах Я. и И. Бернулли, Б. Тейлора, К. Маклорена, Л. Эйлера, Ж. Даламбера, Ж. Лагранжа и др. Строгая теория рядов была создана в XIX в. на основе понятия предела в трудах К. Гаусса, Б. Больцано, О. Коши, П. Дирихле, Н. Абеля, К. Вейерштрасса, Б. Римана и др.

Актуальность изучения данной проблемы обусловлена тем, что раздел математики, позволяющий решить любую корректно поставленную задачу с достаточной для практического использования точностью, называется теорией рядов. Даже если некоторые тонкие понятия математического анализа появились вне связи с теорией рядов, они немедленно применялись к рядам, которые служили как бы инструментом для испытания значимости этих понятий. Такое положение сохраняется и сейчас. Таким образом, представляется актуальным изучить числовые ряды, их основные понятия и особенности сходимости ряда.


1. История возникновения


.1 Первое упоминание и использование числового ряда


Правила арифметики дают нам возможность определить сумму двух, трех, четырех и вообще любого конечного набора чисел. А если количество слагаемых бесконечно? Пусть это даже «самая маленькая» бесконечность, т.е. пусть число слагаемых счетно.

Нахождение бесконечных сумм являлось составной частью так называемого метода исчерпывания, широко используемого древнегреческими учеными для нахождения площадей фигур, объемов тел, длин кривых и т.д. Так, например, Архимед для вычисления площади параболического сегмента (т.е. фигуры, ограниченной прямой и параболой) нашел сумму бесконечной геометрической прогрессии со знаменателем 1/4.

Почти две с половиной тысячи лет назад греческий математик и астроном Евдокс Книдский применял метод «исчерпывания» к нахождению площадей и объемов. Идея этого метода состоит в том, чтобы исследуемое тело разбить на счетное число частей, площади или объемы которых известны, а затем эти объемы сложить. Этот метод применяли и Эвклид, и Архимед. Естественно, полного и аккуратного обоснования метода в работах античных математиков не было. До этого нужно было пройти еще долгий двухтысячелетний путь, на котором были и блестящие откровения, и ошибки, и курьезы.

Вот, например, как рассуждал один средневековый богослов при доказательстве - не более и не менее - существования Всемогущего Бога.

Запишем в равновеликих величинах S как бесконечную сумму


S = 1010101010… (1)

«Заменим в правой части этого равенства каждый нуль на сумму 1+(-1)


S =1+(-1)+ 1+(-1)+ 1+(-1)+… (2)


Оставив в одиночестве первое слагаемое в правой части (2), объединим с помощью скобок второе слагаемое с третьим, четвертое с пятым и т.д. Тогда

S=1 + ((-1) +1) + ((-1) +1) +… = 1+0+0+… = 1.»

«Если из нуля можно по желанию получить единицу, то допустимо и предположение о сотворении мира из ничего!»

Согласимся ли мы с таким рассуждением? Конечно, нет. С точки зрения современной математики ошибка автора состоит в том, что он пытается оперировать с понятиями, которым не дано определения (что это такое - «сумма бесконечного числа слагаемых»), и совершает преобразования (раскрытие скобок, перегруп-пировка), законность которых не была им обоснована.

Широко пользовались счетными суммами, не уделяя достаточного внимания вопросу о том, что же точно означает это понятие, крупнейшие математики XVII и XVIII веков - Исаак Ньютон (1642-1727), Готфрид Вильгельм Лейбниц (1646-1716), Брук Тейлор (1685-1731), Колин Маклорен (1698-1746), Жозеф Луи Лагранж (1736-1813). Виртуозным мастерством обращения с рядами отмечался Леонард, Эйлер (1707-1783), вместе с тем он нередко признавал недостаточное обоснование используемых им приемов. В ста работах неоднократно встречаются предложения вроде такого «Мы обнаружили, что эти два бесконечных выражения равны, хотя и оказалось невозможным это доказать». Он предостерегает математиков от использования «расходящихся рядов», хотя сам не всегда заботился от этом, и лишь гениальная интуиция защищает его от неверных заключений; правда, и у него случаются «проколы».

К началу XIX века необходимость аккуратного обоснования свойств «счетных сумм» становится ясной. В 1812 году Карл Фридрих Гаусс (1777-1865) дает первый образец исследования сходимости ряда, в 1821 году наш хороший знакомый Огюстен Луи Коши (1789-1857) устанавливает основные современные принципы теории рядов.


.2 Дальнейшее изучение числовых рядов. Четкая формулировка понятия числового ряда


Суммирование бесконечных геометрических прогрессий со знаменателем, меньшим 1, производилось уже в древности (Архимед). Расходимость гармонического ряда была установлена итальянским ученым Менголи в 1650 г. Степенные ряды появились у Ньютона (1665), который полагал, что степенным рядом можно представить любую функцию. У ученых XVIII века ряды постоянно встречались в вычислениях, но далеко не всегда уделялось внимание вопросу о сходимости. Точная теория рядов начинается с работ Гаусса (1812), Больцано (1817) и, наконец, Коши, где впервые дано современное определение суммы сходящегося ряда и установлены основные теоремы. 1821 году Коши публикует «Курс анализа в Политехнической королевской школе», имевший наибольшее значение для распространения новых идей обоснования математического анализа в первой половине XIX века.

«Рядом называют неограниченную последовательность количеств

получающихся один из других по определенному закону… Пусть

есть сумма n-первых членов, где n - какое-либо целое число. Если при постоянном возрастании значений n сумма неограниченно приближается к известному пределу S, ряд называется сходящимся, а этот предел-суммой ряда. Наоборот, если при неограниченном возрастании n сумма не приближается ни к какому определенному пределу, ряд будет расходящимся и не будет иметь суммы…» [Из первой части «Курса анализа в политехнической королевской школе» О. Коши (1821) {№54 т. III, c. 114-116, перевод А.П. Юшкевича }]


.3 Задачи, приводящие к понятию числового ряда и те, в которых он использовался


Быстроногий Ахиллес никогда не догонит черепахи, если в начале движения черепаха находилась на некотором расстоянии впереди него. Действительно, пусть начальное расстояние есть а и пусть Ахиллес бежит в k раз быстрее черепахи. Когда Ахиллес пройдет расстояние а, черепаха отползет па а/k, когда Ахиллес пройдет это расстояние, черепаха отползет на a/, и т.д., т.е. всякий раз между состязающимися будет оставаться отличное от нуля расстояние.

В этой апории, помимо того же затруднения отсчитанной бесконечности, имеется и еще одно. Предположим, что в некоторый момент времени Ахиллес догонит черепаху. Запишем путь Ахиллеса


и путь черепахи

Каждому отрезку пути а/, пройденному Ахиллесом, соответствует отрезок пути a/ черепахи. Поэтому к моменту встречи Ахиллес должен пройти «столько же» отрезков пути, сколько и черепаха. С другой стороны, каждому отрезку а/, пройденному черепахой, можно сопоставить равный ему по величине отрезок пути Ахиллеса. Но, кроме того, Ахиллес должен пробежать еще один отрезок длины а, т.е. он должен пройти на единицу больше отрезков, чем черепаха. Если количество отрезков, пройденное последней, есть б, то получаем



«Стрела». «Стрела». Если время и пространство состоят из неделимых частиц, то летящая стрела неподвижна, так как в каждый неделимый момент времени она занимает равное себе положение, т.е. покоится, а отрезок времени и есть сумма таких неделимых моментов.

Эта апория направлена против представления о непрерывной величине - как о сумме бесконечного числа неделимых частиц.

«Стадион». Пусть по стадиону движутся по параллельным прямым равные массы с равной скоростью, но в противоположных направлениях. Пусть ряд, означает неподвижные массы, ряд - массы, движущиеся вправо, а ряд - массы, движущиеся влево (рис. 1). Будем теперь рассматривать массы. как неделимые. В неделимый момент времени проходят неделимую часть пространства. Действительно, если бы в неделимый момент времени некоторое тело проходило более одной неделимой части пространства, то неделимый момент времени был бы делим, если же меньше, то можно было бы разделить неделимую часть пространства. Рассмотрим теперь движение неделимых друг относительно друга: за два неделимых момента времени, пройдет две неделимые части, и одновременно отсчитает четыре неделимые части, т.е. неделимый момент времени окажется делимым.

Этой апории можно придать и несколько другую форму. За одно и то же время t точка проходит половину отрезка и целый отрезок. Но каждому неделимому моменту времени отвечает неделимая часть пространства, проходимая за это время. Тогда в некотором отрезке а и отрезке 2а содержится «одинаковое» число точек, «одинаковое» в том смысле, что между точками обоих отрезков можно установить взаимно однозначное соответствие. Этим впервые было установлено такое соответствие между точками отрезков различной длины. Если считать, что мера отрезка получается как сумма мер неделимых, то вывод является парадоксальным.


2. Применение числового ряда


.1 Определение


Пусть задана бесконечная числовая последовательность



Определение 1.1 . Числовым рядом или просто рядом называется выражение (сумма) вида



Числа называются членами ряда , - общим или n-м членом ряда.

Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента вычисления -го члена ряда по его номеру

Из членов ряда (1.1) образуем числовую последовательность частичных сумм где - сумма первых членов ряда, которая называется n -й частичной суммой , т.е.


…………………………….

…………………………….

Числовая последовательность при неограниченном возрастании номера может:

) иметь конечный предел;

) не иметь конечного предела (предел не существует или равен бесконечности).

Определение 1.2 . Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т.е.

В этом случае число называется суммой ряда (1.1) и обозначается



Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела.

Расходящемуся ряду не приписывают никакой суммы.

Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.


.2 Основные свойства числовых рядов


Свойства суммы конечного числа слагаемых отличаются от свойств ряда, т.е. суммы бесконечного числа слагаемых. Так, в случае конечного числа слагаемых их можно группировать в каком угодно порядке, от этого сумма не изменится. Существуют сходящиеся ряды (условно сходящиеся), для которых, как показал Риман Георг Фридрих Бернхард, меняя надлежащим образом порядок следования их членов, можно сделать сумму ряда равной какому угодно числу, и даже расходящийся ряд.

Пример 2.1. Рассмотрим расходящийся ряд вида


Сгруппировав его члены попарно, получим сходящийся числовой ряд с суммой, равной нулю:

С другой стороны, сгруппировав его члены попарно, начиная со второго члена, получим также сходящийся ряд, но уже с суммой, равной единице:

Сходящиеся ряды обладают некоторыми свойствами, которые позволяют действовать с ними, как с конечными суммами. Так их можно умножать на числа, почленно складывать и вычитать. У них можно объединять в группы любые рядом стоящие слагаемые.

Теорема 2.1. (Необходимый признак сходимости ряда).

Если ряд (1.1) сходится, то его общий член стремится к нулю при неограниченном возрастании n, т.е.



Доказательство теоремы следует из того, что, и если

S - сумма ряда (1.1), то


Условие (2.1) является необходимым, но недостаточным условием для сходимости ряда. Т. е., если общий член ряда стремится к нулю при, то это не значит, что ряд сходится. Например, для гармонического ряда (1.2) однако он расходится.

Следствие (Достаточный признак расходимости ряда).

Если общий член ряда не стремится к нулю при, то этот ряд расходится.

Свойство 2.1. Сходимость или расходимость ряда не изменится, если произвольным образом удалить из него, добавить к нему, переставить в нем конечное число членов (при этом для сходящегося ряда его сумма может измениться).

Доказательство свойства следует из того, что ряд (1.1) и любой его остаток сходятся или расходятся одновременно.

Свойство 2.2. Сходящийся ряд можно умножать на число, т.е., если ряд (1.1) сходится, имеет сумму S и c - некоторое число, тогда

Доказательство следует из того, что для конечных сумм справедливы равенства

Свойство 2.3. Сходящиеся ряды можно почленно складывать и вычитать, т.е. если ряды,


сходятся,

сходится и его сумма равна т.е.



Доказательство следует из свойств предела конечных сумм, т.е.

Признак сравнения

Пусть даны два положительных ряда



и выполняются условия для всех n=1,2,…

Тогда: 1) из сходимости ряда (3.2) следует сходимость ряда (3.1);

) из расходимости ряда (3.1) следует расходимость ряда (3.2).

Доказательство . 1. Пусть ряд (3.2) сходится и его сумма равна В. Последовательность частичных сумм ряда (3.1) является неубывающей ограниченной сверху числом В, т.е.

Тогда в силу свойств таких последовательностей следует, что она имеет конечный предел, т.е. ряд (3.1) сходится.

Пусть ряд (3.1) расходится. Тогда, если ряд (3.2) сходится, то в силу доказанного выше пункта 1 сходился бы и исходный ряд, что противоречит нашему условию. Следовательно ряд (3.2) также расходится.

Этот признак удобно применять к определению сходимости рядов, сравнивая их с рядами, сходимость которых уже известна.

Признак Даламбера

Тогда: 1) при q < 1 ряд (1.1) сходится;

) при q > 1 ряд (1.1) расходится;

) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Замечание: Ряд (1.1) будет расходиться и в том случае, когда

Признак Коши

Пусть члены положительного ряда (1.1) таковы, что существует предел

Тогда: 1) при q < 1 ряд (1.1) сходится;

) при q > 1 ряд (1.1) расходится;

3) при q = 1 о сходимости ряда (1.1) ничего сказать нельзя, необходимы дополнительные исследования.

Интегральный признак Коши - Маклорена

Пусть функция f(x) непрерывная неотрицательная невозрастающая функция на промежутке

Тогда ряд и несобственный интеграл сходятся или расходятся одновременно.


.3 Задачи


Числовые ряды применяются не только в математике, но и в ряде других наук. Хотелось бы привести несколько примеров такого использования.

Например, для исследования свойств структур обломочных пород. На практике использование понятия «структура» в основном свелось к характеристике размерных параметров зёрен. В связи с этим понятие «структура» в петрографии не соответствует понятию «структура» в кристаллографии, структурной геологии и других науках о строении вещества. В последних «структура» больше соответствует понятию «текстура» в петрографии и отражает способ заполнения пространства. Если принять, что «структура» является пространственным понятиям, то следующие структуры нужно считать бессодержательными: вторичные или первичные структуры и текстуры; кристаллические, химические, замещения (разъедания, перекристаллизации и т.д.), деформационные структуры, ориентированные, остаточные структуры и пр. Поэтому эти «структуры» названы «ложными структурами».

Структура - это множество структурных элементов, характеризуемое размерами зерен и их количественными соотношениями.

При проведении конкретных классификаций обычно используются линейные параметры зерна с последовательностью


хотя количественные оценки распространённости осуществляются через площадные (процентные) параметры. Эта последовательность может иметь значительную длину и никогда не строится. Обычно же говорят только о пределах изменения параметров, называя максимальные (max) и минимальные (min) значения размеров зерен.

Одно из направлений представления P4 - использование числовых рядов, которые строятся также как и указанная выше последовательность, но вместо (?) ставиться знак суммы (+). Свертка всех последовательностей осуществляется объединением равных элементов и сложением их площадей. Тогда имеем последовательность:

Выражение означает, что измерена площадь, занимаемая всеми сечениями тех зерен i, размер которых равен.

Эта особенность зёрен позволяет проводить числовой анализ полученных соотношений. Во-первых, параметр можно рассматривать как значения координатной оси и таким образом строить некоторый график S=f(l). Во-вторых, последовательность (RSl) 1 можно ранжировать, например, по убыванию коэффициентов, в результате получается ряд

Именно этот ряд и называется структурой данного сечения породы, он же является и определением понятия «структура». Параметр есть элемент структуры, а параметр k= - длина структуры. По построению n=k. Такое представление структуры позволяет проводить сравнение различных структур между собой.

Также, Бутусов Кирилл Павлович Открыл явление «резонанса волн биений», на основе чего сформулировал «закон планетных периодов», из-за которого периоды обращений планет образуют числовые ряды Фибоначчи и Люка и доказал, что «закон планетных расстояний» Иоганна Тициуса есть следствие «резонанса волн биений» (1977). Одновременно обнаружил проявление «золотого сечения» и в распределении ряда других параметров тел Солнечной системы (1977). В связи с этим ведет работу по созданию «золотой математики» - новой системы счисления, основанной на числе Фидия (1,6180339), более адекватной задачам астрономии, биологии, архитектуры, эстетики, теории музыки и т.д.

Из истории астрономии известно, что И. Тициус, немецкий астроном XVIII в., с помощью этого ряда Фибоначчи нашел закономерность и порядок в расстояниях между планетами солнечной системы.

Однако один случай, который, казалось бы, противоречил закону: между Марсом и Юпитером не было планеты. Сосредоточенное наблюдение за этим участком неба привело к открытию пояса астероидов. Произошло это после смерти Тициуса в начале XIX в. Ряд Фибоначчи используют широко: с его помощью представляют архитектонику и живых существ, и рукотворных сооружений, и строение Галактик. Эти факты - свидетельства независимости числового ряда от условий его проявления, что является одним из признаков его универсальности.

Криптография - наука о математических методах обеспечения конфиденциальности (невозможности прочтения информации посторонним) и аутентичности (целостности и подлинности авторства, а также невозможности отказа от авторства) информации. Подавляющее большинство современных криптографических систем используют либо поточные, либо блочные алгоритмы, базирующиеся на различных типах шифрах замены и перестановки. К сожалению, практически все алгоритмы, используемые в поточных криптосистемах, ориентированных на использование в военных и правительственных системах связи, а также, в некоторых случаях, для зашиты информации коммерческого характера, что вполне естественно делает их секретными и недоступными для ознакомления. Единственными стандартными алгоритмами поточного шифрования являются уже американский стандарт DES (режимы CFB и OFB) и российский стандарт ГОСТ 28147-89 (режим гаммирования). При этом алгоритмы поточного шифрования, используемые в этих стандартах, являются засекреченными.

Основу функционирования поточных криптосистем составляют генераторы случайных или псевдослучайных последовательностей. Рассмотрим этот вопрос более подробно.

Псевдослучайные последовательности

Секретные ключи представляют собой основу криптографических преобразований, для которых, следуя правилу Керкхофа, стойкость хорошей шифровальной системы определяется лишь секретностью ключа. Однако в практике создание, распределение и хранение ключей редко были сложными технически, хотя и дорогими задачами. Основная проблема классической криптографии долгое время заключалась в трудности генерирования непредсказуемых двоичных последовательностей большой длины с применением короткого случайного ключа. Для ее решения широко используются генераторы двоичных псевдослучайных последовательностей. Существенный прогресс в разработке и анализе этих генераторов был достигнут лишь к началу шестидесятых годов. Поэтому в данной главе рассмотрены правила получения ключей и генерации на их основе длинных псевдослучайных последовательностей, используемых криптографическими системами для преобразования сообщения в шифровку.

Получаемые программно из ключа, случайные или псевдослучайные ряды чисел называются на жаргоне отечественных криптографов гаммой, по названию у - буквы греческого алфавита, которой в математических записях обозначаются случайные величины. Интересно отметить, что в книге «Незнакомцы на мосту», написанной адвокатом разведчика Абеля, приводится термин гамма, который специалисты ЦРУ пометили комментарием - «музыкальное упражнение?», то есть в пятидесятые годы они не знали его смысла. Получение и размножение реализаций настоящих случайных рядов опасно, сложно и накладно. Физическое моделирование случайности с помощью таких физических явлений, как радиоактивное излучение, дробовой шум в электронной лампе или туннельный пробой полупроводникового стабилитрона не дают настоящих случайных процессов. Хотя известны случаи удачных применений их в генерации ключей, например, в российском криптографическом устройстве КРИПТОН. Поэтому вместо физических процессов для генерации гаммы применяют программы для ЭВМ, которые хотя и называются генераторами случайных чисел, но на самом деле выдающие детерминированные числовые ряды, которые только кажутся случайными по своим свойствам. От них требуется, чтобы, даже зная закон формирования, но не зная ключа в виде начальных условий, никто не смог бы отличить числовой ряд от случайного, как будто он получен бросанием идеальных игральных костей. Можно сформулировать три основных требования к криптографически стойкому генератору псевдослучайной последовательности или гаммы:

Период гаммы должен быть достаточно большим для шифрования сообщений различной длины.

Гамма должна быть трудно предсказуемой. Это значит, что если известны тип генератора и кусок гаммы, то невозможно предсказать следующий за этим куском бит гаммы с вероятностью выше х. Если криптоаналитику станет известна какая-то часть гаммы, он все же не сможет определить биты, предшествующие ей или следующие за ней.

Генерирование гаммы не должно быть связано с большими техническими и организационными трудностями.

Последовательности Фибоначчи

Интересный класс генераторов случайных чисел неоднократно предлагался многими специалистами целочисленной арифметике, в частности Джорджем Марсалиа и Арифом Зейманом. Генераторы этого типа основаны на использовании последовательностей Фибоначчи. Классический пример такой последовательности {0, 1, 1, 2, 3, 5, 8, 13, 21, 34…}. За исключением первых двух ее членов, каждый последующий член равен сумме двух предшествующих. Если брать только последнюю цифру каждого числа в последовательности, то получится последовательность чисел {0, 1, 1, 2, 5, 8, 3, 1, 4, 5, 9, 4…} Если эта последовательность применяется для начального заполнения массива большой длины, то, используя этот массив, можно создать генератор случайных чисел Фибоначчи с запаздыванием, где складываются не соседние, а удаленные числа. Марсалиа и Зейман предложили ввести в схему Фибоначчи «бит переноса», который может иметь начальное значение 0 или 1. Построенный на этой основе генератор «сложения с переносом» приобретает интересные свойства, на их основании можно создавать последовательности, период которых значительно больше, чем у применяемых в настоящее время конгруэнтных генераторов. По образному выражению Марсалиа, генераторы этого класса можно рассматривать как усилители случайности. «Вы берете случайное заполнение длиной в несколько тысяч бит и генерируете длинные последовательности случайных чисел». Однако большой период сам по себе еще не является достаточным условием. Слабые места гамм бывает трудно обнаружить и аналитику требуется применять утонченные методы анализа последовательностей, чтобы выделить определенные закономерности, которые скрыты в большом массиве цифр.


Выводы


Ряды широко используются в математике и ее приложениях, в теоретических исследованиях, так и при приближенных численных решениях задач. Многие числа могут быть записаны в виде специальных рядов, с помощью которых удобно вычислять их приближенные значения с нужной точностью. Метод разложения в ряды является эффективным методом изучения функций. Он применяется для вычисления приближенных значений функций, для вычисления и оценок интегралов, для решения всевозможных уравнений (алгебраических, дифференциальных, интегральных).


Список литературы


1.Шилов Г.Е. Математический анализ. Функции одного переменного. Ч. 1-2 - М.:Наука, 1969

Майков Е.В. Математический анализ. Числовые ряды/Е.В. Майков. - 1999

.«Курс анализа в политехнической королевской школе»

О. Коши (1821) {№54 т. III, c. 114-116, перевод А.П. Юшкевича}

История математики с древнейших времен до начала XIX столетия (под ред. Юшкевича А.П., том I)

Хрестоматия по истории математики (часть II) (под ред. Юшкевича А.П.)

Высшая математика: Общий курс: Учеб. - 2-е изд., / А.И. Яблонский, А.В. Кузнецов, Е.И. Шилкина и др.; Под общ. ред. С.А. Самаля. - Мн.: Выш. шк., 2000. - 351 с.

Марков Л.Н., Размыслович Г.П. Высшая математика. Часть 2. Основы математического анализа и элементы дифференциальных уравнений. - Мн.: Амалфея, 2003. - 352 с.

8.Макаров В.П. Вопросы теоретической геологии. 7. Элементы теории структур. /Современные проблемы и пути их решения в науке, транспорте, производстве и образовании 2007. Одесса, Черноморье, 2007. Т.19. С. 27 - 40.

9.Половинкина Ю. Ир. Структуры горных пород. Часть 1: Магматические породы; Часть 2: Осадочные породы; Часть 3: Метаморфические породы. - М.: Госгеолиздат, 1948.

10.http://shaping.ru/mku/butusov.asp

Http://www.abc-people.com/idea/zolotsech/gr-txt.htm

Учебно-методический комплекс дисциплины «Математика». Раздел 10 «Ряды». Теоретические основы. Методические указания для студентов. Материалы для самостоятельной работы студентов. - Уфа: Издательство УГНТУ, 2007. - 113 с.

13.http://cryptolog.ru/? Psevdosluchainye_posledovatelmznosti

14.Галуев Г.А. Математические основы криптологии: Учебно-методическое пособие. Таганрог: Изд-во ТРТУ 2003.-120 с.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

1. Основные понятия. Пусть дана бесконечная последовательность чисел

Определение. Выражение

где - общий член ряда.

Пример 7.1

Рассмотрим ряд . Здесь - общий член ряда.

Рассмотрим суммы, составленные из конечного числа членов ряда (7.1): , , , ..., , . . . Такие суммы называются частичны­ми суммами ряда. называется -ой частичной суммой ряда. Таким образом, частичная сумма это сумма (конечного числа) слагаемых:

. (7.3)

Последовательность , , , ..., , ... или .называется последовательностью частичных сумм ряда (7.1).

Определение. Если существует конечный предел , то ряд (1.1) называется сходящимся, а число - суммой этого ряда. В этом случае пишут ­

Если последовательность не имеет предела, то ряд (7.1) называется расходящимся. Расходящийся ряд суммы не имеет.

Пример 7.2

Решение

Общий член ряда можно представить в виде

, (n = 1, 2, 3, . . .).

Следовательно, данный ряд сходится, и его сумма равна 1.

Пример 7.3 (геометрическая прогрессия)

Рассмотрим последовательность, каждый член которой, начиная со второго, получается в результате умножения предыдущего члена на одно и то же число:

Иногда сам ряд (7.5) называют геометрической прогрессией.

Частичная сумма ряда (7.5) представляет собой сумму членов геометрической прогрессии и

вычисляется по формуле

. (7.6)

Если , тогда . Следовательно, при ряд (7.5) сходится. Если , тогда . Следовательно, при ряд (7.5) расходится. Если , тогда (7.5) превращается в ряд 1 + 1 + 1 + ... + 1 + ... . Для такого ряда и

Следовательно, при ряд (7.5) расходится.

При рассмотрении рядов, важным является вопрос о сходимости (расходимости). Для решения этого вопроса в примерах 7.1 и 7.2 использовалось определение сходимости. Чаще для этого используются определенные свойства ряда, которые называются признаками сходимости ряда.

Теорема 7.1 (необходимый признак сходимости). Если ряд (7.1) сходится, то его общий член стремится к нулю при неограниченном возрастании , т. е.

Ряд (7.8) называется гармоническим рядом.

Для этого ряда . Однако, никакого вывода о сходимости ряда (7.8) пока сделать нельзя, так как утверждение, обратное теореме 7.1, не является верным.

Покажем, что ряд (7.8) расходится. Это можно установить рассуждениями от противного. Предположим, что ряд (7.8) сходится, и его сумма равна S .Тогда = –

– , что противоречит неравенству

Следовательно, гармонический ряд расходится.

Необходимым признаком можно воспользоваться для установления факта расходимости ряда. Действительно, из теоремы 7.1 следует, что если общий член ряда не стремится к нулю, то ряд расходится.

Пример 7.5

Рассмотрим ряд .

Здесь , . Предел не равен нулю, следовательно, ряд расходится.

Таким образом, если выполняется условие (7.7), вопрос о сходимости ряда (7.1) остается открытым. Ряд может расходиться, а может и сходиться. Для решения этого вопроса могут

быть использованы свойства ряда, из которых следует сходимость этого ряда. Такие свойства называются достаточными признаками сходимости рядов.

Ряды с положительными членами. Рассмотри достаточные признаки сходимости рядов с положительными членами.

Теорема 7.2 .(Признак Даламбера).

положительны :

1) если , ряд (7.1) сходится;

2) если , ряд (7.1) сходится;

Примечание. Ряд (7.1) будет расходиться и в том случае, когда , так как тогда, начиная с некоторого номера N, будет и, значит, не стремится к нулю при .


Пример 7.6

Исследовать на сходимость ряд .

Решение . , , тогда =

Найденный предел меньше единицы. Следовательно, данный ряд сходится.

Пример 7.7

Исследовать на сходимость ряд .

Решение . , , тогда =

= = = = = = = .

Найденный предел больше единицы. Следовательно, данный ряд расходится.

Теорема 7.3 .(Радикальный признак Коши).

Пусть дан ряд (7.1), все члены которого положительны :

и существует предел

, (7.11)

(где обозначение найденного предела). Тогда:

1) если , ряд (7.1) сходится;

2) если , ряд (7.1) сходится;

3) если , рассматриваемый признак не дает ответа на вопрос о сходимости ряда.

Доказательство признака можно найти в .

Пример 7.8

Исследовать на сходимость ряд .

Решение .

Найдем предел (7.11):

Найденный предел больше единицы. Следовательно, данный ряд расходится (теорема 7.3).

Обобщенный гармонический ряд. Обобщенным гармоническим рядом называется ряд вида

Теорема 7.3 . (теорема Лейбница). Если для ряда (7.13) выполняются два условия:

1) члены ряда по абсо­лютной величине монотонно убывают :

2) общий член ряда стремится к нулю :

то ряд (7.13) сходится.

Доказательство признака можно найти, например, в .

Пример 7.9.

Рассмотрим знакочередующийся ряд

(7.14)

Для этого ряда условия теоремы (7.13) выполнены:

Следовательно, ряд (7.12) сходится.

Следствие из теоремы 7.3. Остаток знакочередующегося ряда (7.13), удов­летворяющего условиям теоремы Лейбница, имеет знак своего первого члена и меньше его по абсолютной величине.

Пример 7.10. Вычислить с точностью до 0,1 сумму сходящегося ряда

В качестве приближенного значения суммы ряда мы должны взять ту частичную сумму , для которой . Согласно следствию, . Следовательно, достаточно положить , т. е. , тогда

Отсюда с точностью до 0,1.

Абсолютная и условная сходимость . Рассмотрим ряд, члены которого имеют произвольные знаки

Отметим, что ряд (7.16) является рядом с положительными членами и для него применимы соответствующие теоремы, приведенные выше.

Теорема 7.4 (Признак абсолютной сходимости). Если сходится ряд (7.16) , то сходится и ряд (7.15).

(Доказательство теоремы можно найти, например, в ).

Определение.

Если сходится ряд (7.16), то соответствующий ряд (7.15) называется абсолютно сходящимся абсолютно сходящим ся.

Может оказаться, что ряд (7.16) расходится, а ряд (7.15) сходится. В этом случае ряд (7.15) называется условно сходящимся .

Отметим, что знакочередующийся ряд (7.13) является частным случаем ряда, члены которого имеют произвольные знаки. Поэтому для исследования знакочередующегося ряда также можно применить теорему 7.5.

Пример 7.11

Решение

Рассмотрим ряд, составленный из абсолютных величин членов данного ряда . Этот ряд сходится, т. к. это обобщенный гармонический ряд (7.12) со значением Следовательно, по признаку абсолютной сходимости (теорема 7.5) исходный ряд сходится абсолютно.

Пример 7.12

Ряд исследовать на сходимость.

Решение

по теореме Лейбница сходится, но ряд, составленный из абсолютных величин членов исходного ряда, расходится (это гармонический ряд). Следовательно, исходный ряд сходится условно.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.