Математический анализ история развития. Методические материалы

Слайд 2

Математи́ческийана́лиз - совокупность разделов математики, посвящённых исследованию функций и их обобщений методами дифференциального и интегрального исчислений.

Слайд 3

Метод исчерпывания

Античный метод для исследования площади или объёма криволинейных фигур.

Слайд 4

Метод заключался в следующем: для нахождения площади (или объёма) некоторой фигуры в эту фигуру вписывалась монотонная последовательность других фигур и доказывалось, что их площади (объёмы) неограниченно приближаются к площади (объёму) искомой фигуры.

Слайд 5

В 1696 Лопиталь написал первый учебник, излагавший новый метод в применении к теории плоских кривых. Он назвал его Анализ бесконечно малых, дав тем самым и одно из названий новому разделу математики. Во введении Лопиталь излагает историю возникновения нового анализа, останавливаясь на работах Декарта, Гюйгенса, Лейбница, а также выражает свою благодарность последнему и братьям Бернулли.

Слайд 6

Термин «функция» впервые появляется лишь в 1692 у Лейбница, однако на первые роли его выдвинул именно Эйлер. Изначальная трактовка понятия функции состояла в том, что функция - это выражение для счёта или аналитическое выражение.

Слайд 7

«Теория аналитических функций» («Th.orie des fonctions analytiques», 1797). В «Теории аналитических функций» Лагранж излагает свою знаменитую интерполяционную формулу, которая вдохновила Коши на разработку строгого обоснования анализа.

Слайд 8

В учебниках по математическому анализу можно найти важную лемму Ферма. Так же он сформулировал общий закон дифференцирования дробных степеней.

Пьер де Ферма́ (17 августа 1601 - 12 января 1665) - французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Ферма практически по современным правилам находил касательные к алгебраическим кривым.

Слайд 9

Рене́ Дека́рт(31 марта 1596 - 11 февраля 1650) - французский математик, философ, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики. В 1637 году вышел в свет главный математический труд Декарта, «Рассуждение о методе» В этой книге излагалась аналитическая геометрия, а в приложениях - многочисленные результаты в алгебре, геометрии, оптике и многое другое. Особо следует отметить переработанную им математическую символику Виета: он ввел общепринятые теперь знаки для переменных и искомых величин (x, y, z, ...) и для буквенных коэфф. (а, b, c, ...)

Слайд 10

Франсуа́ Вие́т(1540 -1603) - французский математик, основоположник символической алгебры. По образованию и основной профессии - юрист. В 1591 ввёл буквенные обозначения не только для неизвестных величин, но и для коэффициентов уравнений Ему принадлежит установление единообразного приёма решения уравнений 2-й, 3-й и 4-й степеней. Среди открытий сам Виет особенно высоко ценил установление зависимости между корнями и коэффициентами уравнений.

Слайд 11

Галиле́оГалиле́й(15 февраля1564, Пиза - 8 января1642) - итальянскийфизик, механик, астроном, философ и математик, оказавший значительное влияние на науку своего времени Cформулировал «парадокс Галилея»: натуральных чисел столько же, сколько их квадратов, хотя большая часть чисел не являются квадратами. Это подтолкнуло в дальнейшем к исследованию природы бесконечных множеств и их классификации; завершился процесс созданием теории множеств.

Слайд 12

«Новая стереометрия винных бочек»

Когда Кеплер покупал вино, он был изумлен тем, как торговец определял вместимость бочки. Продавец брал палкус делениями, и с ее помощью определял расстояние от наливного отверстия до самой дальней точки бочки. Проделав это, он сразу же говорил, сколько литров вина в данной бочке. Так ученый первым обратил внимание на класс задач, исследование которых привело к созданию интегрального исчисления.

Слайд 13

Так, например, для нахождения формулы объема тора Кеплер разбил его меридиональными сечениями на бесконечное количество кружков, толщина которых с внешней стороны была несколько большей, чем с внутренней. Объем такого кружка равен объему цилиндра с основанием, равным сечению тора, и высотой, равной толщине кружка в его средней части. Отсюда сразу получалось, что объем тора равен объему цилиндра, у которого площадь основания равна площади сечения тора, а высота равна длине окружности, которую описывает точка F - центр сечения тора.

Слайд 14

Метод неделимых

Теоретическое обоснование нового метода нахождения площадей и объёмов предложил в 1635 году Кавальери. Он выдвинул следующий тезис: Фигуры относятся друг к другу, как все их линии, взятые по любой регуле [базе параллельных], а тела - как все их плоскости, взятые по любой регуле.

Слайд 15

Например вычислим площадь круга. Формула для длины окружности: считается известной. Разобьём круг (слева на рис. 1) на бесконечно малые кольца. Рассмотрим также треугольник (справа на рис. 1) с длиной основания L и высотой R, который тоже разобъём сечениями параллельно основанию. Каждому кольцу радиуса R и длины можно сопоставить одно из сечений треугольника той же длины. Тогда, по принципу Кавальери, их площади равны. А площадь треугольника найти несложно: .

Слайд 16

Над презентацией работали:

Жарков Александр Киселева Марина Рясов Михаил Чередниченко Алина

Посмотреть все слайды

В истории математики условно можно выделить два основных периода: элементарной и современной математики. Рубежом, от которого принято вести отсчет эпохи новой (иногда говорят - высшей) математики, стал XVII век – век появления математического анализа. К концу XVII в. И. Ньютоном, Г. Лейбницем и их предшественниками был создан аппарат нового дифференциального исчисления и интегрального исчисления, составляющий основу математического анализа и даже, пожалуй, математическую основу всего современного естествознания.

Математический анализ – это обширная область математики с характерным объектом изучения (переменной величиной), своеобразным методом исследования (анализом посредством бесконечно малых или посредством предельных переходов), определенной системой основных понятий (функция, предел, производная, дифференциал, интеграл, ряд) и постоянно совершенствующимся и развивающимся аппаратом, основу которого составляют дифференциальное и интегральное исчисления.

Попробуем дать представление о том, какая математическая революция произошла в XVII в., чем характеризуется связанный с рождением математического анализа переход от элементарной математики к той, что ныне составляет предмет исследований математического анализа и чем объясняется его фундаментальная роль во всей современной системе теоретических и прикладных знаний.

Представьте себе, что перед вами прекрасно выполненная цветная фотография набегающей на берег штормовой океанской волны: могучая сутуловатая спина, крутая, но чуть впалая грудь, уже наклоненная вперед и готовая упасть голова с терзаемой ветром седой гривой. Вы остановили мгновение, вам удалось поймать волну, и вы можете теперь без спешки внимательно изучать ее во всех подробностях. Волну можно измерить, и, пользуясь средствами элементарной математики, вы сделаете много важных выводов об этой волне, а значит, и всех ее океанских сестрах. Но, остановив волну, вы лишили ее движения и жизни. Ее зарождение, развитие, бег, сила, с которой она обрушивается на берег, - все это оказалось вне вашего поля зрения, потому что вы не располагаете пока ни языком, ни математическим аппаратом, пригодными для описания и изучения не статических, а развивающихся, динамических процессов, переменных величин и их взаимосвязей.

«Математический анализ не менее всеобъемлющ, чем сама природа: он определяет все ощутимые взаимосвязи, измеряет времена, пространства, силы, температуры». Ж. Фурье

Движение, переменные величины и их взаимосвязи окружают нас повсюду. Различные виды движения и их закономерности составляют основной объект изучения конкретных наук: физики, геологии, биологии, социологии и др. Поэтому точный язык и соответствующие математические методы описания и изучения переменных величин оказались необходимыми во всех областях знания примерно в той же степени, в какой числа и арифметика необходимы при описании количественных соотношений. Так вот, математический анализ и составляет основу языка и математических методов описания переменных величин и их взаимосвязей. В наши дни без математического анализа невозможно не только рассчитать космические траектории, работу ядерных реакторов, бег океанской волны и закономерности развития циклона, но и экономично управлять производством, распределением ресурсов, организацией технологических процессов, прогнозировать течение химических реакций или изменение численности различных взаимосвязанных в природе видов животных и растений, потому что все это - динамические процессы.

Элементарная математика была в основном математикой постоянных величин, она изучала главным образом соотношения между элементами геометрических фигур, арифметические свойства чисел и алгебраические уравнения. Ее отношение к действительности в какой-то мере можно сравнить с внимательным, даже тщательным и полным изучением каждого фиксированного кадра киноленты, запечатлевшей изменчивый, развивающийся живой мир в его движении, которого, однако, не видно на отдельном кадре и которое можно наблюдать, только посмотрев ленту в целом. Но как кино немыслимо без фотографии, так и современная математика невозможна без той ее части, которую мы условно называем элементарной, без идей и достижений многих выдающихся ученых, разделенных порой десятками столетий.

Математика едина, и «высшая» ее часть связана с «элементарной» примерно так же, как следующий этаж строящегося дома связан с предшествующим, и ширина горизонтов, которые математика открывает нам в окружающий мир, зависит от того, на какой этаж этого здания нам удалось подняться. Родившийся в XVII в. математический анализ открыл нам возможности для научного описания, количественного и качественного изучения переменных величин и движения в широком смысле этого слова.

Каковы же предпосылки появления математического анализа?

К концу XVII в. сложилась следующая ситуация. Во-первых, в рамках самой математики за долгие годы накопились некоторые важные классы однотипных задач (например, задачи измерения площадей и объемов нестандартных фигур, задачи проведения касательных к кривым) и появились методы их решения в различных частных случаях. Во-вторых, оказалось, что эти задачи теснейшим образом связаны с задачами описания произвольного (не обязательно равномерного) механического движения, и в частности с вычислением его мгновенных характеристик (скорости, ускорения в любой момент времени), а также с нахождением величины пройденного пути для движения, происходящего с заданной переменной скоростью. Решение этих проблем было необходимо для развития физики, астрономии, техники.

Наконец, в-третьих, к середине XVII в. трудами Р. Декарта и П. Ферма были заложены основы аналитического метода координат (так называемой аналитической геометрии), позволившие сформулировать разнородные по своему происхождению геометрические и физические задачи на общем (аналитическом) языке чисел и числовых зависимостей, или, как мы теперь говорим, числовых функций.

НИКОЛАЙ НИКОЛАЕВИЧ ЛУЗИН
(1883-1950)

Н. Н. Лузин – советский математик, основоположник советской школы теории функций, академик (1929).

Лузин родился в Томске, учился в томской гимназии. Формализм гимназического курса математики оттолкнул от себя талантливого юношу, и лишь способный репетитор смог раскрыть перед ним красоту и величие математической науки.

В 1901 г. Лузин поступил на математическое отделение физико-математического факультета Московского университета. С первых лет обучения в круг его интересов попали вопросы, связанные с бесконечностью. В конце XIX в. немецкий ученый Г. Кантор создал общую теорию бесконечных множеств, получившую многочисленные применения в исследовании разрывных функций. Лузин начал изучать эту теорию, но его занятия были прерваны в 1905 г. Студенту, принимавшему участие в революционной деятельности, пришлось на время уехать во Францию. Там он слушал лекции виднейших французских математиков того времени. По возвращении в Россию Лузин окончил университет и был оставлен для подготовки к профессорскому званию. Вскоре он вновь уехал в Париж, а затем в Геттинген, где сблизился со многими учеными и написал первые научные работы. Основной проблемой, интересовавшей ученого, был вопрос о том, могут ли существовать множества, содержащие больше элементов, чем множество натуральных чисел, но меньше, чем множество точек отрезка (проблема континуума).

Для любого бесконечного множества, которое можно было получить из отрезков с помощью операций объединения и пересечения счетных совокупностей множеств, эта гипотеза выполнялась, и, чтобы решить проблему, нужно было выяснить, какие еще есть способы конструирования множеств. Одновременно Лузин изучал вопрос, можно ли представить любую периодическую функцию, даже имеющую бесконечно много точек разрыва, в виде суммы тригонометрического ряда, т.е. суммы бесконечного множества гармонических колебаний. По этим вопросам Лузин получил ряд значительных результатов и в 1915 г. защитил диссертацию «Интеграл и тригонометрический ряд», за которую ему сразу присудили ученую степень доктора чистой математики, минуя существовавшую в то время промежуточную степень магистра.

В 1917 г. Лузин стал профессором Московского университета. Талантливый преподаватель, он привлекал к себе наиболее способных студентов и молодых математиков. Своего расцвета школа Лузина достигла в первые послереволюционные годы. Ученики Лузина образовали творческий коллектив, который шутливо называли «лузитанией». Многие из них получили первоклассные научные результаты еще на студенческой скамье. Например, П. С. Александров и М. Я. Суслин (1894-1919) открыли новый метод конструирования множеств, что послужило началом развития нового направления - дескриптивной теории множеств. Исследования в этой области, проводившиеся Лузиным и его учениками, показали, что обычных методов теории множеств недостаточно для решения многих возникавших в ней проблем. Научные предвидения Лузина полностью подтвердились в 60-е гг. XX в. Многие ученики Н. Н. Лузина стали впоследствии академиками и членами-корреспондентами АН СССР. Среди них П. С. Александров. А. Н. Колмогоров. М. А. Лаврентьев, Л. А. Люстерник, Д. Е. Меньшов, П. С. Новиков. Л. Г. Шнирельман и другие.

Современные советские и зарубежные математики в своих работах развивают идеи Н. Н. Лузина.

Стечение этих обстоятельств и привело к тому, что в конце XVII в. двум ученым – И. Ньютону и Г. Лейбницу – независимо друг от друга удалось создать для решения названных задач математический аппарат, подытоживший и обобщивший отдельные результаты предшественников, среди которых и ученый древности Архимед и современники Ньютона и Лейбница – Б. Кавальери, Б. Паскаль, Д. Грегори, И. Барроу. Этот аппарат и составил основу математического анализа – нового раздела математики, изучающего различные развивающиеся процессы, т.е. взаимосвязи переменных величин, которые в математике называют функциональными зависимостями или, иначе, функциями. Кстати, сам термин «функция» потребовался и естественно возник именно в XVII в., а к настоящему времени он приобрел не только общематематическое, но и общенаучное значение.

Начальные сведения об основных понятиях и математическом аппарате анализа даны в статьях «Дифференциальное исчисление» и «Интегральное исчисление».

В заключение хотелось бы остановиться только на одном общем для всей математики и характерном для анализа принципе математического абстрагирования и в этой связи объяснить, в каком виде математический анализ изучает переменные величины и в чем секрет такой универсальности его методов для изучения всевозможных конкретных развивающихся процессов и их взаимосвязей.

Рассмотрим несколько поясняющих примеров и аналогий.

Мы порой уже не отдаем себе отчета в том, что, например, математическое соотношение , написанное не для яблок, стульев или слонов, а в отвлеченном от конкретных объектов абстрактном виде, - выдающееся научное завоевание. Это математический закон, который, как показывает опыт, применим к различным конкретным объектам. Значит, изучая в математике общие свойства отвлеченных, абстрактных чисел, мы тем самым изучаем количественные соотношения реального мира.

Например, из школьного курса математики известно, что , поэтому в конкретной ситуации вы могли бы сказать: «Если мне для перевозки 12 т грунта не выделят два шеститонных самосвала, то можно запросить три четырехтонки и работа будет выполнена, а если дадут только одну четырехтонку, то ей придется сделать три рейса». Так привычные теперь для нас отвлеченные числа и числовые закономерности связаны с их конкретными проявлениями и приложениями.

Примерно так же связаны законы изменения конкретных переменных величин и развивающихся процессов природы с той абстрактной, отвлеченной формой-функцией, в которой они появляются и изучаются в математическом анализе.

Например, абстрактное соотношение может быть отражением зависимости кассового сбора у кинотеатра от количества проданных билетов, если 20 – это 20 копеек – цена одного билета. Но если мы едем по шоссе на велосипеде, проезжая 20 км в час, то это же соотношение можно истолковать как взаимосвязь времени (часов) нашей велосипедной прогулки и покрытого за это время расстояния (километров)., вы всегда можете утверждать, что, например, изменение в несколько раз приводит к пропорциональному (т.е. во столько же раз) изменению величины , а если , то верно и обратное заключение. Значит, в частности, для увеличения кассового сбора кинотеатра в два раза вам придется привлечь вдвое больше зрителей, а для того, чтобы на велосипеде с той же скоростью проехать вдвое большее расстояние, вам придется ехать вдвое дольше.

Математика изучает и простейшую зависимость , и другие, значительно более сложные зависимости в отвлеченном от частной интерпретации, общем, абстрактном виде. Выявленные в таком исследовании свойства функции или методы изучения этих свойств будут носить характер общих математических приемов, заключений, законов и выводов, применимых к каждому конкретному явлению, в котором встречается изученная в абстрактном виде функция, независимо от того, к какой области знания это явление относится.

Итак, математический анализ как раздел математики оформился в конце XVII в. Предметом изучения в математическом анализе (как он представляется с современных позиций) являются функции, или, иначе, зависимости между переменными величинами.

С возникновением математического анализа математике стало доступно изучение и отражение развивающихся процессов реального мира; в математику вошли переменные величины и движение.

5.3 Математический анализ

Основатели современной науки - Коперник, Кеплер, Галилей и Ньютон - подходили к исследованию природы как математики. Исследуя движение, математики выработали такое фундаментальное понятие, как функция, или отношение между переменными, например d = kt2, где d - расстояние, пройденное свободно падающим телом, а t - число секунд, которое тело находится в свободном падении. Понятие функции сразу же стало центральным в определении скорости в данный момент времени и ускорения движущегося тела. Математическая трудность этой проблемы заключалась в том, что в любой момент тело проходит нулевое расстояние за нулевой промежуток времени. Поэтому, определяя значение скорости в момент времени делением пути на время, мы придем к математически бессмысленному выражению 0/0.

Задача определения и вычисления мгновенных скоростей изменения различных величин привлекала внимание почти всех математиков XVII в., включая Барроу, Ферма, Декарта и Валлиса. Предложенные ими разрозненные идеи и методы были объединены в систематический, универсально применимый формальный метод Ньютоном и Г. Лейбницем (1646 - 1716), создателями дифференциального исчисления. По вопросу о приоритете в разработке этого исчисления между ними велись горячие споры, причем Ньютон обвинял Лейбница в плагиате. Однако, как показали исследования историков науки, Лейбниц создал математический анализ независимо от Ньютона. В результате конфликта обмен идеями между математиками континентальной Европы и Англии на долгие годы оказался прерванным с ущербом для английской стороны. Английские математики продолжали развивать идеи анализа в геометрическом направлении, в то время как математики континентальной Европы, в том числе И. Бернулли (1667 - 1748), Эйлер и Лагранж достигли несравненно больших успехов, следуя алгебраическому, или аналитическому, подходу.

Основой всего математического анализа является понятие предела. Скорость в момент времени определяется как предел, к которому стремится средняя скорость, когда значение t все ближе подходит к нулю. Дифференциальное исчисление дает удобный в вычислениях общий метод нахождения скорости изменения функции при любом значении х. Эта скорость получила название производной. Из общности записи видно, что понятие производной применимо не только в задачах, связанных с необходимостью найти скорость или ускорение, но и по отношению к любой функциональной зависимости, например, к какому-нибудь соотношению из экономической теории. Одним из основных приложений дифференциального исчисления являются т. н. задачи на максимум и минимум; другой важный круг задач - нахождение касательной к данной кривой.

Оказалось, что с помощью производной, специально изобретенной для работ с задачами движения, можно также находить площади и объемы, ограниченные соответственно кривыми и поверхностями. Методы евклидовой геометрии не обладали должной общностью и не позволяли получать требуемые количественные результаты. Усилиями математиков XVII в. были созданы многочисленные частные методы, позволявшие находить площади фигур, ограниченных кривыми того или иного вида, и в некоторых случаях была отмечена связь этих задач с задачами на нахождение скорости изменения функций. Но, как и в случае дифференциального исчисления, именно Ньютон и Лейбниц осознали общность метода и тем самым заложили основы интегрального исчисления.

Метод Ньютона-Лейбница начинается с замены кривой, ограничивающей площадь, которую требуется определить, приближающейся к ней последовательностью ломаных, аналогично тому, как это делалось в изобретенном греками методе исчерпывания. Точная площадь равна пределу суммы площадей n прямоугольников, когда n обращается в бесконечность. Ньютон показал, что этот предел можно найти, обращая процесс нахождения скорости изменения функции. Операция, обратная дифференцированию, называется интегрированием. Утверждение о том, что суммирование можно осуществить, обращая дифференцирование, называется основной теоремой математического анализа. Подобно тому, как дифференцирование применимо к гораздо более широкому классу задач, чем поиск скоростей и ускорений, интегрирование применимо к любой задаче, связанной с суммированием, например, к физическим задачам на сложение сил.

Алгоритм Дейкстры

ТЕОРИЯ ГРАФОВ - это область дискретной математики, особенностью которой является геометрический подход к изучению объектов. Основной объект теории графов-граф и его обобщения...

Выдающиеся люди статистики. П.Л. Чебышев

Наибольшее число работ Чебышева посвящено математическому анализу. В диссертации 1847 на право чтения лекций Чебышев исследует интегрируемость некоторых иррациональных выражений в алгебраических функциях и логарифмах...

Проанализируем учебники по Алгебре и начала математического анализа таких авторов, как Колмогоров А.Н. и Мордкович А.Г. В учебнике для 10-11 классов 2008 года общеобразовательных учреждений под редакцией А.Н. Колмогорова, авторы которого: А.Н...

Изучение свойств случайных величин, планирование эксперимента и анализ данных

Получим зависимость точности метода измерения прочности от факторов: А, С, E. Вычислим z0j = (zmaxj + zminj)/2 (41) ?zj = (zmaxj - zminj)/2 (42) xj = (zj - z0j)/ ?zj (43) Составим матрицу планирования...

Исследование метода продолжения решения по параметру для нелинейных САУ

Проанализировав приведенный выше графический и тестовый материал, описывающий решение систем нелинейных алгебраических уравнений методом продолжения решения по параметру можно сделать соответствующие выводы: 1...

Регрессия - зависимость среднего значения какой-либо величины Y от другой величины X. Понятие регрессии в некотором смысле обобщает понятие функциональной зависимости y = f(x)...

Исследование статистической зависимости давления в идеальном газе Ферми-Дирака от его температуры

Линейная регрессия Для нахождения коэффициентов a и b методом наименьших квадратов были посчитаны следующие необходимые параметры: = 3276,8479; = 495,4880; = 2580,2386; = 544,33; В нашем случае коэффициенты а и b соответственно равны: . Следовательно...

Итерационные алгебраические методы реконструкции изображения

Исследуя данные вычислений для этих задач можно сказать, что для данного метода количества уравнений и количества неизвестных играет существенную роль...

Математика и современный мир

Всякое точное объяснение того или иного явления - математично и, наоборот, все, что точно - математика. Любое же точное описание - это описание на соответствующем математическом языке...

Математическое моделирование в задачах расчета и проектирования систем автоматического управления

Выполним анализ нескорректированной системы с использованием критериев Михайлова и Гурвица. Найдем передаточную функцию всей системы Составим матрицу Гурвица a0=1; a1=7.4; a2=19; a3=10; По критерию Гурвица для того...

Метод наименьших квадратов

Начнем с понятия о дисперсионном анализе регрессии. Разберем это понятие на примере линейной зависимости. Согласно МНК можем представить: , где. Здесь второе соотношение - найденное уравнение регрессии, есть случайная величина со средним...

Минимакс и многокритериальная оптимизация

Прежде чем мы начнем рассматривать саму задачу оптимизации, договоримся, каким математическим аппаратом будем пользоваться. Для решения задач с одним критерием достаточно уметь работать с функцией одной переменной...

Непрерывная случайная величина

Регрессионный анализ - метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и независимой переменной (объясняющей переменной)...

Особенности языка математики

Для описания времени, понимаемого как время жизненного мира, время человеческого бытия, наиболее удобен язык феноменологии. Но феноменологическое описание времени и вечности вполне может использовать и математический язык...

Численные методы решения обыкновенных дифференциальных уравнений и систем

Из графического представления решения системы дифференциальных уравнений первого порядка, описывающей динамику популяций двух видов, взаимодействующих между собой по типу «хищник-жертва» и с учетом внутривидового взаимодействия, видно...

Общая цель курса – раскрыть перед студентами, завершающими общее математическое образование, некоторые исторические аспекты математики, показать в какой-то мере характер математического творчества. В сжатой форме рассматривается общая панорама развития математических идей и теорий, начиная с Вавилонского и Египетского периода до начала 20 века. В курс включен раздел "Математика и компьютерные науки", где обзорно излагаются вехи истории вычислительной техники, фрагменты истории развития ЭВМ в России, фрагменты истории компьютерных наук. В качестве методических материалов предлагается довольно большой список литературы и некоторый справочный материал для самостоятельной работы и для подготовки рефератов.

  • Период накопления математических знаний.
    Формирование первичных понятий: числа и геометрические фигуры. Математика в странах древних цивилизаций – в Древнем Египте, Вавилоне, Китае, Индии. Основные типы систем счисления. Первые достижения арифметики, геометрии, алгебры.
  • Математика постоянных величин.
    Формирование математической науки (VI в. до н.э. – VI в.н.э.). Создание математики как абстрактной дедуктивной науки в Древней Греции. Условия развития математики в Древней Греции. Школа Пифагора. Открытие несоизмеримости и создание геометрической алгебры. Знаменитые задачи античности. Метод исчерпывания, инфинитезимальные методы Евдокса и Архимеда. Аксиоматическое построение математики в "Началах" Евклида. "Конические сечения" Аполлония. Наука первых веков нашей эры: "Механика" Герона, "Алмагест" Птолемея, его "География", возникновение новой буквенной алгебры в сочинениях Диофанта и начало изучения неопределенных уравнений. Закат античной науки.
    Математика народов Средней Азии и арабского Востока в VII-XVI вв. Выделение алгебры в самостоятельную область математики. Формирование тригонометрии в приложениях математики к астрономии. Состояние математических знаний в странах Западной Европы и в России в средние века. "Книга Абака" Леонардо Пизанского. Открытие первых университетов. Успехи математики эпохи Возрождения.
  • Панорама развития математики в XVII-XIX вв.
    Научная революция XVII в. и создание математики переменных величин. Первые академии наук. Математический анализ и его связь с механикой в XVII-XVIII вв. Труды Эйлера, Лагранжа, Лапласа. Расцвет математики во Франции в эпоху Революции и открытие Политехнической школы.
  • Алгебра XVI-XIX вв.
    Успехи алгебры в XVI в.: решение алгебраических уравнений третьей и четвертой степени и введение комплексных чисел. Создание буквенного исчисления Ф.Виетом и начало общей теории уравнений (Виет, Декарт). Основная теорема алгебры и ее доказательства у Эйлера. Проблема решений уравнений в радикалах. Теорема Абеля о неразрешимости уравнений степени n > 4 в радикалах. Результаты Абеля. Теория Галуа; введение группы и поля. Победное шествие теории групп: ее роль в алгебре, в геометрии, в анализе и в математическом естествознании. Понятие n-мерного векторного пространства. Аксиоматический подход Дедекинда и создание абстрактной алгебры.
  • Развитие математического анализа.
    Формирование математики переменных величин в XVII в., связь с астрономией: законы Кеплера и труды Галилея, развивающие идеи Коперника. Изобретение логарифмов. Дифференциальные формы и интеграционные методы в работах Кеплера, Кавальери, Ферма, Декарта, Паскаля, Валлиса, Н.Меркатора. Создание математического анализа Ньютоном и Лейбницем. Математический анализ в XVIII в. и его связь с естествознанием. Творчество Эйлера. Учение о функциях. Создание и развитие вариационного исчисления, теории дифференциальных уравнений и теории интегральных уравнений. Степенные ряды и тригонометрические ряды. Общая теория функций комплексного переменного у Римана и Вейерштрасса. Формирование функционального анализа. Проблемы обоснования математического анализа. Построение его на основе учения о пределах. Работы Коши, Больцано и Вейерштрасса. Теории действительного числа (от Евдокса до Дедекинда). Создание теории бесконечных множеств Кантором и Дедекиндом. Первые парадоксы и проблемы оснований математики.
  • Математика в России (обзор).
    Математические знания до XVII в. Реформы Петра I. Основание Петербургской Академии наук и Московского университета. Петербургская математическая школа (М.В.Остроградский, П.Л.Чебышев, А.А.Марков, А.М.Ляпунов). Основные направления творчества Чебышева. Жизнь и творчество С.В.Ковалевской. Организация математического общества. Математический сборник. Первые научные школы в СССР. Московская школа теории функций (Н.Н.Лузин, Д.Ф.Егоров и их ученики). Математика в Московском университете. Математика в Уральском университете, Уральские математические школы (П.Г.Конторович. Г.И.Малкин, Е.А.Барбашин, В.К.Иванов, С.Б.Стечкин, А.Ф.Сидоров).
  • Математика и компьютерные науки (обзор)
    Вехи вычислительной техники от эскизной машины Леонардо да Винчи до первых ЭВМ.
    Фрагменты истории ЭВМ. Проблема автоматизации сложных вычислений (проектирование самолётов, атомная физика и др.). Соединение электроники и логики: двоичная система Лейбница, алгебра логики Дж.Буля. "Computer Science" и "информатика". Теоретическая и прикладная информатика. Новые информационные технологии: научное направление – искусственный интеллект и его приложения (использование логических методов доказательства правильности программ, обеспечение интерфейса на профессиональном естественном языке с пакетами прикладных программ и др.).
    Фрагменты история развития ЭВМ в России. Разработки С.А.Лебедева и его учеников, их применение (подсчёт орбит малых планет, составление карт по геодезическим съёмкам, создание словарей и программ для перевода и др.). Создание отечественных машин (А.А.Ляпунов, А.П.Ершов, Б.И.Рамеев, М.Р.Шура-Бура, Г.П.Лопато, М.А.Карцев и многие другие), появление персональных компьютеров. Многоплановое использование машин: управление космическими полётами, наблюдение за космическим пространством, в научных работах, для управления технологическими процессами, обработка экспериментальных данных, электронные словари-переводчики, экономические задачи, учительские и ученические машины, бытовые компьютеры и т.п.).

ТЕМАТИКА РЕФЕРАТОВ

  1. Биографическая серия.
  2. История становления и развития конкретного раздела математики в конкретный период. История становления и развития математики в конкретный исторический период в конкретном государстве.
  3. История возникновения научных центров и их роль в развитии конкретных разделов математики.
  4. История становления и развития компьютерных наук по конкретным временным периодам.
  5. Основоположники некоторых направлений компьютерных наук.
  6. Конкретные выдающиеся ученые и мировая культура в различные периоды.
  7. Из истории российской математики (конкретная историческая эпоха и конкретные личности).
  1. Античная механика ("Боевая техника древности").
  2. Математика времен Арабского халифата.
  3. Основания геометрии: От Евклида до Гильберта.
  4. Замечательный математик Нильс Хэнрик Абель.
  5. Энциклопедист 15 века Джероламо Кардано.
  6. Великая семья Бернулли.
  7. Видные деятели развития теории вероятностей (от Лапласа до Колмогорова).
  8. Период предтечи создания дифференциального и интегрального исчисления.
  9. Ньютон и Лейбниц – создатели дифференциального и интегрального исчисления.
  10. Алексей Андреевич Ляпунов – создатель первой вычислительной машины в России.
  11. "Страсть к науке" (С.В.Ковалевская).
  12. Блез Паскаль.
  13. От абака до компьютера.
  14. "Уметь дать направление – признак гениальности". Сергей Алексеевич Лебедев. Разработчик и конструктор первого компьютера в Советском Союзе.
  15. Гордость российской науки – Пафнутий Львович Чебышев.
  16. Франсуа Виет – отец современной алгебры и гениальный шифровальщик.
  17. Андрей Николаевич Колмогоров и Павел Сергеевич Александров – уникальное явления русской культуры, ее национальное достояние.
  18. Кибернетика: нейроны – автоматы – персептроны.
  19. Леонард Эйлер и Россия.
  20. Математика в России от Петра I до Лобачевского.
  21. Пьер Ферма и Рене Декарт.
  22. Как был изобретен персональный компьютер.
  23. Из истории криптографии.
  24. Обобщение понятия геометрического пространства. История создания и развития топологии.
  25. Золотое сечение в музыке, астрономии, комбинаторике и живописи.
  26. Золотое сечение в солнечной системе.
  27. Языки программирования, их классификация и развитие.
  28. Теория вероятностей. Аспект истории.
  29. История развития неевклидовой геометрии (Лобачевский, Гаусс, Бойяи, Риман).
  30. Король теории чисел – Карл Фридрих Гаусс.
  31. Три знаменитые задачи древности как стимул появления и развития различных разделов математики.
  32. Ариабхата, "Коперник востока".
  33. Давид Гильберт. 23 проблемы Гильберта.
  34. Развитие понятия числа от Евдокса до Дедекинда.
  35. Интегральные методы у Евдокса и Архимеда.
  36. Вопросы методологии математики. Гипотезы, законы и факты.
  37. Вопросы методологии математики. Методы математики.
  38. Вопросы методологии математики. Структура, движущие силы, принципы и закономерности.
  39. Пифагор – философ и математик.
  40. Галилео Галилей. Формирование классической механики.
  41. Жизненный путь и научная деятельность М.В.Остроградского.
  42. Вклад российских ученых в теорию вероятностей.
  43. Развитие математики в России в 18 и 19 столетиях.
  44. История открытия логарифмов и их связь с площадями.
  45. Из истории развития компьютерной техники.
  46. Вычислительные машины до электронной эры. Первые ЭВМ.
  47. Вехи истории российской вычислительной техники и компьютерной математики.
  48. История развития операционных систем. Хронология появления WINDOWS 98.
  49. Б.Паскаль, Г.Лейбниц, П.Чебышев.
  50. Норберт Винер, Клод Шеннон и теория информатики.
  51. Из истории математики России.
  52. Жизнь и творчество Гаусса.
  53. Становление и развитие топологии.
  54. Эварист Галуа – математик и революционер.
  55. Золотое сечение от Леонардо Фибоначчи и Леонардо да Винчи до ХХI века.
  56. Математика в России XVIII-XIX столетий.
  57. Computer Science, вопросы истории.
  58. Из истории российской математики: Н.И.Лобачевский, М.В.Остроградский, C.В.Ковалевская.
  59. Античная математика VI-IV вв. до н.э.
  60. Языки программирования: вопросы истории.
  61. Пьер Ферма и Рене Декарт.
  62. Леонард Эйлер.
  63. История создания интегрального и дифференциального исчисления у И.Ньютона и Г.Лейбница.
  64. Математика XVII века как предтеча создания математического анализа.
  65. Математический анализ после Ньютона и Лейбница: критика и обоснование.
  66. Математика XVII, XVIII веков: становление аналитической, проективной и дифференциальной геометрий.

XIX век является началом нового, четвертого периода в истории математики – периода современной математики.

Мы уже знаем , что одним из главных направлений развития математики в четвертом периоде является усиление строгости доказательств во всей математике, особенно перестройка математического анализа на логической основе. Во второй половинеXVIII в. делались многократные попытки перестройки математического анализа: введение определения предела (Даламбер и др.), определение производной как предела отношения (Эйлер и др.), результаты Лагранжа и Карно и т. д., но этим работам не хватало системы, а иногда они были неудачны. Однако они готовили почву, на которой перестройка в XIX в. смогла быть осуществлена. В XIX в. это направление развития математического анализа стало ведущим. Им занялись О.Коши, Б. Больцано, К. Вейерштрасс и др.

1.Огюстен Луи Коши (1789−1857) окончил в Париже Политехническую школу и Институт путей сообщения. С 1816 г. член Парижской академии и профессор Политехнической школы. В 1830−1838 гг. в годы республики он был в эмиграции из-за своих монархистских убеждений. С 1848 г. Коши стал профессором Сорбонны – Парижского университета. Он опубликовал более 800 работ по математическому анализу, дифференциальным уравнениям, теории функций комплексной переменной, алгебре, теории чисел, геометрии, механике, оптике и др. Главными областями его научных интересов были математический анализ и теория функций комплексной переменной.

Свои лекции по анализу, прочитанные в Политехнической школе, Коши издал в трех сочинениях: «Курс анализа» (1821), «Резюме лекций по исчислению бесконечно малых» (1823), «Лекция по приложениям анализа к геометрии», 2 тома (1826, 1828). в этих книгах впервые математический анализ строится на основе теории пределов. они означали начало коренной перестройки математического анализа.

Коши дает следующее определение предела переменной: « Если значения, последовательно приписываемые одной и той же переменной, неограниченно приближаются к фиксированному значению, так что в конце концов отличаются от него сколь угодно мало, то последнее называют пределом всех остальных». Суть дела здесь выражена хорошо, но слова « сколь угодно мало» сами нуждаются в определении, а кроме того, здесь формулируется определение предела переменной, а не предела функции. Далее автор доказывает различные свойства пределов.

Затем Коши приводит такое определение непрерывности функции: функция называется непрерывной (в точке), если бесконечно малое приращение аргумента порождает бесконечно малое приращение функции, т.е., на современном языке

Потом у него следуют различные свойства непрерывных функций.

В первой книге рассматривает также теорию рядов: дает определение суммы числового ряда как предела его частичной суммы, вводит ряд достаточных признаков сходимости числовых рядов, а также степенные ряды и область их сходимости – все это как в действительной, так и в комплексной области.

Дифференциальное и интегральное исчисление он излагает во второй книге.

Коши дает определение производной функции как предела отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю, и дифференциал, как предела отношения приОтсюда следует, что. Далее рассматриваются обычные формулы производных; при этом автор часто использует теорему Лагранжа о средних значениях.

В интегральном исчислении Коши впервые выдвигает в качестве основного понятия определенный интеграл. Он вводит его также впервые, как предел интегральных сумм. Здесь же доказывается важная теорема об интегрируемости непрерывной функции. Неопределенный интеграл у него определяется как такая функцияаргументачтоКроме того, здесь рассматриваются разложения функций в ряды Тейлора и Маклорена.

Во второй половине XIX в. ряд ученых: Б. Риман, Г. Дарбу и др. нашли новые условия интегрируемости функции и даже изменили само определение определенного интеграла таким образом, чтобы его можно было применить к интегрированию некоторых разрывных функций.

В теории дифференциальных уравнений Коши занимался, главным образом, доказательствами принципиально важных теорем существования: существования решения обыкновенного дифференциального уравнения сначала первого, а потом -го порядка; существования решения для линейной системы уравнений с частными производными.

В теории функций комплексной переменной Коши является основоположником; ей посвящены многие его статьи. В XVIII в. Эйлер и Даламбер положили лишь начало этой теории. В вузовском курсе теории функций комплексной переменной мы постоянно встречаем имя Коши: условия Коши − Римана существования производной, интеграл Коши, интегральная формула Коши и т.д.; многие теоремы о вычетах функции также принадлежат Коши. В этой области получили весьма важные результаты также Б.Риман, К. Вейерштрасс, П. Лоран и др.

Вернемся к основным понятиям математического анализа. Во второй половине века выяснилось, что в области обоснования анализа многое сделал до Коши и Вейерщтрасса чешский ученый Бернард Больцано (1781 – 1848). Он до Коши дал определения предела, непрерывности функции и сходимости числового ряда, доказал критерий сходимости числовой последовательности, а также, задолго до того, как она появилась у Вейерштрасса, теорему: если числовое множество ограниченно сверху (снизу), то оно имеет точную верхнюю (точную нижнюю) грань. Он рассмотрел ряд свойств непрерывных функций; вспомним, что в вузовском курсе математического анализа имеются теоремы Больцано – Коши и Больцано – Вейерштрасса о функциях, непрерывных на отрезке. Больцано исследовал и некоторые вопросы математического анализа, например, построил первый пример функции, непрерывной на отрезке, но не имеющей производной ни в одной точке отрезка. При жизни Больцано смог опубликовать только пять небольших работ, поэтому его результаты стали известны слишком поздно.

2.В математическом анализе все явственнее чувствовалось отсутствие четкого определения функции. Значительный вклад в решение спора о том, что понимать под функцией, внес французский ученый Жан Фурье. Он занимался математической теорией теплопроводности в твердом теле и в связи с этим использовал тригонометрические ряды (ряды Фурье)

эти ряды позднее стали широко применяться в математической физике – науке, которая занимается математическими методами исследования встречающихся в физике дифференциальных уравнений в частных производных. Фурье доказал, что любую непрерывную кривую, независимо от того, из каких разнородных частей она составлена, можно задать единым аналитическим выражением – тригонометрическим рядом, и что это можно сделать и для некоторых кривых с разрывами. Исследование таких рядов, проведенное Фурье, вновь поставило вопрос, что же понимать под функцией. Можно ли считать, что подобная кривая задает функцию? (Это возобновление старого спора XVIII в о соотношении между функцией и формулой на новом уровне.)

В 1837 г. немецкий математик П. Дирехле впервые дал современное определение функции: « есть функция переменной(на отрезкеесли каждому значению(на этом отрезке) соответствует совершенно определенное значение, причем безразлично, каким образом установлено это соответствие – аналитической формулой, графиком, таблицей либо даже просто словами». Обращает на себя внимание добавление: «безразлично, каким образом установлено это соответствие». Определение Дирехле получило общее признание довольно быстро. Правда, сейчас принято функцией называть само соответствие.

3.Современный стандарт строгости в математическом анализе впервые появился в работах Вейерштрасса (1815−1897) долгое время работал учителем математики в гимназиях, а в 1856 г. стал профессором Берлинского университета. Слушатели его лекций постепенно издавали их в виде отдельных книг, благодаря чему содержание лекций Вейерштрасса стало хорошо известным в Европе. Именно Вейерштрасс стал систематически употреблять в математическом анализе язык Он дал определение предела последовательности, определение предела функции на языке(которое часто неправильно называют определением Коши), строго доказал теоремы о пределах и так называемую теорему Вейерштрасса о пределе монотонной последовательности: возрастающая (убывающая) последовательность, ограниченная сверху (снизу), имеет конечный предел. Он стал использовать понятия точной верхней и точной нижней грани числового множества, понятие предельной точки множества, доказал теорему (у которой есть и другой автор – Больцано): ограниченное числовое множество имеет предельную точку, рассмотрел некоторые свойства непрерывных функций. Много работ Вейерштрасс посвятил теории функций комплексной переменной, обосновав ее с помощью степенных рядов. Он занимался также вариационным исчислением, дифференциальной геометрией и линейной алгеброй.

4.Остановимся еще на теории бесконечных множеств. Ее создателем был немецкий математик Кантор. Георг Кантор (18451918) много лет работал профессором университета в Галле. Работы по теории множеств опубликовал, начиная с 1870г. Он доказал несчетность множества действительных чисел, установив, таким образом, существование неэквивалентных бесконечных множеств, ввел общее понятие мощности множества, выяснил принципы сравнения мощностей. Кантор построил теорию трансфинитных, «несобственных» чисел, приписав низшее, наименьшее трансфинитное число мощности счетного множества (в частности, множества натуральных чисел), мощности множества действительных чисел – более высокое, большее трансфинитное число, и т.д.; это дало ему возможность построить арифметику трансфинитных чисел, похожую на обычную арифметику натуральных чисел. Кантор систематически применял актуальную бесконечность, например, возможность полностью «исчерпать» натуральный ряд чисел, в то время как до него в математикеXIX в. использовалась лишь потенциальная бесконечность.

Теория множеств Кантора при своем появлении вызвала возражения многих математиков, но постепенно пришло признание тогда, когда стало ясным ее огромное значение для обоснования топологии и теории функций действительной переменной. Но оставались логические пробелы в самой теории, в частности, были обнаружены парадоксы теории множеств. Вот один из наиболее известных парадоксов. Обозначим через множество всех таких множеств, которые не являются элементами самих себя. Выполняется ли включениетакже и не является элементомтак как по условию ввходят в качестве элементов только такие множества, которые не являются элементами самих себя; если жето по условию выполняется включениепротиворечие в обоих случаях.

Эти парадоксы были связаны с внутренней противоречивостью некоторых множеств. Становилось ясным, что в математике можно пользоваться не любыми множествами. Существование парадоксов было преодолено созданием уже в начале XX в. аксиоматической теории множеств (Э. Цермело, а. Френкелем, Д. Нейманом и др.), которая, в частности, отвечала на вопрос: какими множествами можно пользоваться в математике? Оказывается, можно пользоваться пустым множеством, объединением данных множеств, множеством всех подмножеств данного множества и др.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.