Числовой ряд сходится если. Признаки сходимости числовых рядов

На практике часто не столь важно найти сумму ряда, как ответить на вопрос о сходимости ряда. Для этой цели используются признаки сходимости, основанные на свойствах общего члена ряда.

Необходимый признак сходимости ряда

ТЕОРЕМА 1

Если ряд сходится, то его общий член стремится к нулю при
, т.е.
.

Кратко : если ряд сходится, то его общий член стремится к нулю.

Доказательство. Пусть ряд сходится и его сумма равна . Для любого частичная сумма



.

Тогда . 

Из доказанного необходимого признака сходимости вытекает достаточный признак расходимости ряда: если при
общий член ряда не стремится к нулю, то ряд расходится.

Пример 4.

Для этого ряда общий член
и
.

Следовательно, данный ряд расходится.

Пример 5. Исследовать на сходимость ряд

Очевидно, что общий член этого ряда, вид которого не указан ввиду громоздкости выражения, стремится к нулю при
, т.е. необходимый признак сходимости ряда выполняется, однако этот ряд расходится, так как его сумма стремится к бесконечности.

Знакоположительные числовые ряды

Числовой ряд, все члены которого положительны, называется знакоположительным.

ТЕОРЕМА 2 (Критерий сходимости знакоположительного ряда)

Для сходимости знакоположительного ряда необходимо и достаточно, чтобы все его частичные суммы были ограничены сверху одним и тем же числом.

Доказательство. Так как для любого
, то, т.е. последовательность
– монотонно возрастающая, поэтому для существования предела необходимо и достаточно ограничение последовательности сверху каким-либо числом.

Эта теорема в большей степени имеет теоретическое, чем практическое значение. Далее приведены другие признаки сходимости, имеющие большее применение.

Достаточные признаки сходимости знакоположительных рядов

ТЕОРЕМА 3 (Первый признак сравнения)

Пусть даны два знакоположительных ряда:

(1)

(2)

причем, начиная с некоторого номера
, для любого
выполняется неравенство
Тогда:

Схематическая запись первого признака сравнения:

сход.сход.

расх.расх.

Доказательство. 1) Так как отбрасывание конечного числа членов ряда не влияет на его сходимость, докажем теорему для случая
. Пусть для любого
имеем


, (3)

где
и
- соответственно частичные суммы рядов (1) и (2).

Если ряд (2) сходится, то существует число
. Поскольку при этом последовательность
- возрастающая, ее предел больше любого из ее членов, т.е.
для любого . Отсюда из неравенства (3) следует
. Таким образом, все частичные суммы ряда (1) ограничены сверху числом . Согласно теореме 2 этот ряд сходится.

2) Действительно, если бы ряд (2) сходился, то по признаку сравнения сходился бы и ряд (1). 

Для применения этого признака часто используют такие ряды-эталоны, сходимость или расходимость которых известна заранее, например:


3) - ряд Дирихле (он сходится при
и расходится при
).

Кроме этого часто используют ряды, которые можно получить с помощью следующих очевидных неравенств:


,

,
,
.

Рассмотрим на конкретных примерах схему исследования знакоположительного ряда на сходимость с помощью первого признака сравнения.

Пример 6. Исследовать ряд
на сходимость.

Шаг 1. Проверим знакоположительность ряда:
для

Шаг 2. Проверим выполнение необходимого признака сходимости ряда:
. Так как
, то

(если вычисление предела вызывает трудности, то этот шаг можно пропустить).

Шаг 3. Используем первый признак сравнения. Для этого подберем для данного ряда ряд-эталон. Так как
, то в качестве эталона можно взять ряд
, т.е. ряд Дирихле. Этот ряд сходится, так как показатель степени
. Следовательно, согласно первому признаку сравнения сходится и исследуемый ряд.

Пример 7. Исследовать ряд
на сходимость.

1) Данный ряд знакоположительный, так как
для

2) Необходимый признак сходимости ряда выполняется, ибо

3) Подберем ряд-эталон. Так как
, то в качестве эталона можно взять геометрический ряд

. Этот ряд сходится, следовательно, сходится и исследуемый ряд.

ТЕОРЕМА 4 (Второй признак сравнения)

Если для знакоположительных рядов и существует отличный от нуля конечный предел
, то
ряды сходятся или расходятся одновременно.

Доказательство. Пусть ряд (2) сходится; докажем, что тогда сходится и ряд (1). Выберем какое-нибудь число , большее, чем . Из условия
вытекает существование такого номера , что для всех
справедливо неравенство
, или, что то же,

(4)

Отбросив в рядах (1) и (2) первые членов (что не влияет на сходимость), можно считать, что неравенство (4) справедливо для всех
Но ряд с общим членом
сходится в силу сходимости ряда (2). Согласно первому признаку сравнения, из неравенства (4) следует сходимость ряда (1).

Пусть теперь сходится ряд (1); докажем сходимость ряда (2). Для этого следует просто поменять ролями заданные ряды. Так как

то, по доказанному выше, из сходимости ряда (1) должна следовать сходимость ряда (2). 

Если
при
(необходимый признак сходимости), то из условия
, следует, чтои– бесконечно малые одного порядка малости (эквивалентные при
). Следовательно, если дан ряд , где
при
, то для этого ряда можно брать ряд-эталон , где общий член имеет тот же порядок малости, что и общий член данного ряда.

При выборе ряда-эталона можно пользоваться следующей таблицей эквивалентных бесконечно малых при
:

1)
; 4)
;

2)
; 5)
;

3)
; 6)
.

Пример 8. Исследовать на сходимость ряд

.


для любого
.

Так как
, то возьмем в качестве ряда-эталона гармонический расходящийся ряд
. Поскольку предел отношения общих членовиконечен и отличен от нуля (он равен 1), то на основании второго признака сравнения данный ряд расходится.

Пример 9.
по двум признакам сравнения.

Данный ряд знакоположительный, так как
, и
. Поскольку
, то в качестве ряда-эталона можно брать гармонический ряд. Этот ряд расходится и следовательно, по первому признаку сравнения, исследуемый ряд также расходится.

Так как для данного ряда и ряда-эталона выполняется условие
(здесь использован 1-й замечательный предел), то на основании второго признака сравнения ряд
– расходится.

ТЕОРЕМА 5 (Признак Даламбера)

существует конечный предел
, то ряд сходится при
и расходится при
.

Доказательство. Пусть
. Возьмем какое-либо число, заключенное между и 1:
. Из условия
следует, что начиная с некоторого номера выполняется неравенство

;
;
(5)

Рассмотрим ряд

Согласно (5) все члены ряда (6) не превосходят соответствующих членов бесконечной геометрической прогрессии
Поскольку
, эта прогрессия является сходящейся. Отсюда в силу первого признака сравнения вытекает сходимость ряда

Случай
рассмотрите самостоятельно.

Замечания :


следует, что остаток ряда

.

    Признак Даламбера удобен на практике тогда, когда общий член ряда содержит показательную функцию или факториал.

Пример 10. Исследовать на сходимость ряд по признаку Даламбера.

Данный ряд знакоположительный и

.

(Здесь при вычислении дважды применено правило Лопиталя).

то по признаку Даламбера данный ряд сходится.

Пример 11. .

Данный ряд знакоположительный и
. Поскольку

то данный ряд сходится.

ТЕОРЕМА 6 (Признак Коши)

Если для знакоположительного ряда существует конечный предел
, то при
ряд сходится, а при
ряд расходится.

Доказательство аналогично теореме 5.

Замечания :


Пример 12. Исследовать на сходимость ряд
.

Данный ряд знакоположительный, так как
для любого
. Поскольку вычисление предела
вызывает определенные трудности, то проверку выполнимости необходимого признака сходимости ряда опускаем.

то по признаку Коши данный ряд расходится.

ТЕОРЕМА 7 (Интегральный признак сходимости Маклорена - Коши)

Пусть дан ряд

члены которого положительны и не возрастают:

Пусть, далее
- функция, которая определена для всех вещественных
, непрерывна, не возрастает и

Пусть задан положительный числовой ряд $ \sum_{n=1} ^\infty a_n $. Сформулируем необходимый признак сходимости ряда:

  1. Если ряд сходится, то предел его общего члена равен нулю: $$ \lim _{n \to \infty} a_n = 0 $$
  2. Если предел общего члена ряда не равен нулю, то ряд расходится: $$ \lim _{n \to \infty} a_n \neq 0 $$

Обобщенный гармонический ряд

Данный ряд записывается следующим образом $ \sum_{n=1} ^\infty \frac{1}{n^p} $. Причем в зависимости от $ p $ ряд сходится или расходится:

  1. Если $ p = 1 $, то ряд $ \sum_{n=1} ^\infty \frac{1}{n} $ расходится и называется гармоническим, несмотря на то, что общий член $ a_n = \frac{1}{n} \to 0 $. Почему так? В замечании говорилось, что необходимый признак не даёт ответа о сходимости, а только о расходимости ряда. Поэтому, если применить достаточный признак, такой как интегральный признак Коши, то станет ясно, что ряд расходится!
  2. Если $ p \leqslant 1 $, то ряд расходится. Пример,$ \sum_{n=1} ^\infty \frac{1}{\sqrt{n}} $, в котором $ p = \frac{1}{2} $
  3. Если $ p > 1 $, то ряд сходится. Пример, $ \sum_{n=1} ^\infty \frac{1}{\sqrt{n^3}} $, в котором $ p = \frac{3}{2} > 1 $

Примеры решений

Пример 1
Доказать расходимость ряда $ \sum_{n=1} ^\infty \frac{n}{6n+1} $
Решение

Ряд положительный, записываем общий член:

$$ a_n = \frac{n}{6n+1} $$

Вычисляем предел при $ n \to \infty $:

$$ \lim _{n \to \infty} \frac{n}{6n+1} = \frac{\infty}{\infty} = $$

Выносим за скобку $ n $ в знаменателе, а затем выполняем на него сокращение:

$$ = \lim_{n \to \infty} \frac{n}{n(6+\frac{1}{n})} = \lim_{n \to \infty} \frac{1}{6 + \frac{1}{n}} = \frac{1}{6} $$

Так как получили, что $ \lim_{n\to \infty} a_n = \frac{1}{6} \neq 0 $, то необходимый признак Коши не выполнен и ряд следовательно расходится.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Ряд расходится

Перед началом работы с этой темой советую посмотреть раздел с терминологией для числовых рядов. Особенно стоит обратить внимание на понятие общего члена ряда и свойства числовых рядов (в частности, нам понадобятся свойства №3 и №4). Если у вас есть сомнения в правильности выбора признака сходимости, советую глянуть тему "Выбор признака сходимости числовых рядов" .

Признаки сравнения применяются для исследования числовых рядов, члены которых неотрицательны, т.е. больше или равны нулю. Такие ряды называются положительными (в части литературы - неотрицательными или знакоположительными). Именно такие ряды мы и станем рассматривать в данной теме.

Первый признак сравнения (или первая теорема сравнения) формулируется следующим образом:

Первый признак сравнения

Пусть заданы два положительных ряда $\sum\limits_{n=1}^{\infty}u_n$ и $\sum\limits_{n=1}^{\infty}v_n$. Если начиная с некоторого номера $n_0$ выполнено неравенство $u_n≤ v_n$, то:

  1. если ряд $\sum\limits_{n=1}^{\infty}u_n$ расходится, то ряд $\sum\limits_{n=1}^{\infty}v_n$ будет расходящимся.
  2. если ряд $\sum\limits_{n=1}^{\infty}v_n$ сходится, то ряд $\sum\limits_{n=1}^{\infty}u_n$ будет сходящимся.

Упрощённо говоря, если ряд с меньшими членами не имеет суммы (расходится), то и ряд с бо́льшими членами тоже будет расходиться. И это логично, ибо если исходная сумма была бесконечно большой, то после увеличения слагаемых она такой и останется.

Ну, и если ряд с бо́льшими членами имеет сумму (сходится), то и ряд с меньшими членами тоже будет сходиться.

Признак сравнения можно сформулировать также и в иной форме. Обычно говорят, что это второй признак сравнения (или вторая теорема сравнения). Иногда его называют предельным признаком сравнения или признаком сравнения в предельной форме. Формулировка его такова:

Второй признак сравнения

Пусть заданы два положительных ряда $\sum\limits_{n=1}^{\infty}u_n$ и $\sum\limits_{n=1}^{\infty}v_n$. Если при условии $v_n\neq 0$ существует предел $$\lim_{n\to\infty}\frac{u_n}{v_n}=K,$$ где $0 < K < \infty$, то ряды $\sum\limits_{n=1}^{\infty}u_n$ и $\sum\limits_{n=1}^{\infty}v_n$ сходятся либо расходятся одновременно.

Заметьте, что для применения признаков сравнения нам нужно иметь некий ряд, сходимость которого известна заранее. Чаще всего в роли ряда для сравнения выступает обобщённый гармонический ряд

\begin{equation}\sum\limits_{n=1}^{\infty}\frac{1}{n^\alpha}\end{equation}

Если $\alpha > 1$, то ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^\alpha}$ сходится, а если $\alpha ≤ 1$, то ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^\alpha}$ расходится. Например, ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^5}$ сходится, так как $5 > 1$, а ряд $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n^4}}=\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{7}}}$ расходится, так как $\frac{4}{7}≤ 1$.

Особо стоит обратить внимание на случай $\alpha=1$, т.е. ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^1}=\sum\limits_{n=1}^{\infty}\frac{1}{n}$. Ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ называют гармоническим рядом. Гармонический ряд расходится.

Кроме того, частенько для сравнения используется ряд такого вида:

\begin{equation}\sum\limits_{n=1}^{\infty}aq^n\end{equation}

Этот ряд представляет собой сумму членов геометрической прогрессии с первым членом $b_1=a$ и знаменателем $q$. Этот ряд сходится если $|q| < 1$ и расходится если $|q|≥ 1$. Например, ряд $\sum\limits_{n=1}^{\infty}\frac{4\cdot 3^n}{5^n}=\sum\limits_{n=1}^{\infty}\left(4\cdot\left(\frac{3}{5}\right)^n\right)$ подпадает под вид ряда (2). Этот ряд сходится, так как $\left| \frac{3}{5}\right|=\frac{3}{5} < 1$.

Чаще всего в стандартных примерах признаки сравнения применяются, если общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Например, $u_n=\frac{9n+7}{2n^3+5n^2-4}$ (см. пример №1). Или же вместо многочленов (или вместе с ними) могут присутствовать корни от многочленов (см. пример №3). Для рядов такого вида приходится выбирать между необходимым признаком сходимости и признаками сравнения. Иногда общий член ряда может содержать не только многочлен, а и некий "отвлекающий элемент", который не влияет на сходимость (см. вторую часть этой темы). Иногда, чтобы увидеть ряд для сравнения, приходится использовать эвивалентные бесконечно малые функции (см. примеры в третьей части).

Пример №1

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{9n+7}{2n^3+5n^2-4}$. Так как при $n≥ 1$ имеем $9n+7 > 0$ и $2n^3+5n^2-4 > 0$, то $u_n > 0$. Следовательно, наш ряд является положительным. Кстати сказать, для положительного ряда достаточно выполнения условия $u_n≥ 0$. Однако для нашего ряда мы можем записать более точно: $u_n > 0$.

Для начала неплохо бы проверить выполнение , т.е. найти $\lim_{n\to\infty}u_n$. Вдруг нам повезёт и окажется, что $\lim_{n\to\infty}u_n\neq 0$? Тогда ряд будет расходиться, и решение на этом закончится. При нахождении предела будем использовать метод, описанный в теме . В процессе решения разделим числитель и знаменатель на $n^3$:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{9n+7}{2n^3+5n^2-4}=\left|\frac{\infty}{\infty} \right|=\lim_{n\to\infty}\frac{\frac{9}{n^2}+\frac{7}{n^3}}{2+\frac{5}{n}-\frac{4}{n^3}}=\frac{0+0}{2+0-0}=0. $$

Для того, чтобы эти признаки использовать, нам понадобится ряд, с которым станем сравнивать. Чтобы выбрать ряд для сравнения, поисследуем поведение общего члена заданного нам ряда при $n\to\infty$. Это можно сделать с помощью несколько неформальных рассуждений. Так как эти рассуждения, возможно, будут интересны не всем читателям, то я скрою их под примечание.

Как выбрать ряд для сравнения? показать\скрыть

Я не буду касаться такой темы как порядок роста, просто приведу некие общие соображения. Давайте посмотрим на общий член ряда повнимательнее. Сначала обратимся, например, к знаменателю. В знаменателе общего члена ряда расположены степени $n^3$, $n^2$ и число -4. Номер $n$ всё увеличивается, стремясь в бесконечность. Вопрос: какой элемент ($n^3$ или $n^2$) с возрастанием номера $n$ будет расти быстрее прочих?

Ответ здесь прост: наиболее быстро будет увеличивать свои значения именно $n^3$. Например, когда $n=100$, то $n^2=10\,000$, а $n^3=1\,000\,000$. И этот разрыв между значениями $n^2$ и $n^3$ будет всё больше и больше. Поэтому все слагаемые знаменателя, кроме тех, что содержат $n^3$, мы мысленно отбросим. В числителе также проведем подобную процедуру "отбрасывания", оставив лишь $9n$ (число 7 в числителе явно не сыграет никакой роли по сравнению с $9n$). Таким образом дробь $\frac{9n+7}{2n^3+5n^2-4}$ после всех отбрасываний станет такой: $\frac{9n}{2n^3}=\frac{9}{2}\cdot\frac{1}{n^2}$. Иными словами, если $n\to\infty$, то общий член ряда будет крайне мало отличаться от выражения $\frac{9}{2}\cdot\frac{1}{n^2}$.

Множитель $\frac{9}{2}$ можно также отбросить, ибо он не влияет на сходимость. И останется после такой "очистки" лишь $\frac{1}{n^2}$. А что мы можем сказать про ряд с общим членом $v_n=\frac{1}{n^2}$? Это . В знаменателе общего члена этого ряда степень $n$ равна 2, поэтому так как $2 > 1$, то ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится.

Вот с этим сходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ мы и станем сравнивать заданный нам ряд $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$. По сути, мы уже неформально решили задачу: наш ряд будет сходиться. Осталось лишь показать это строгими рассуждениями.

Рассмотрим, как решить нашу задачу с помощью как первого, так и второго признаков сравнения.

Итак, общий член ряда таков: $u_n=\frac{9n+7}{2n^3+5n^2-4}$. Неформальными рассуждениями (скрытыми выше под примечание) мы пришли к выводу, что наш ряд сходится. Для этого случая применяется второй пункт . Нам нужно показать, что общий член нашего ряда удовлетворяет неравенству $\frac{9n+7}{2n^3+5n^2-4}≤ v_n$, при этом ряд $\sum\limits_{n=1}^{\infty}v_n$ сходится. Тогда и заданный нам ряд будет сходиться.

Станем увеличивать дробь $\frac{9n+7}{2n^3+5n^2-4}$. Наша цель: привести данную дробь к виду $\frac{1}{n^2}$. Почему именно к этому виду? Для ответа на данный вопрос прошу раскрыть примечание выше.

Чтобы увеличить некую дробь, есть два пути: увеличить числитель или уменьшить знаменатель. Согласитесь, что так как $n≥ 1$, то $9n+7 ≥ 9n+7n=16n$. Следовательно, если мы в числителе вместо $9n+7$ разместим выражение $16n$, то увеличим рассматриваемую дробь:

$$ \frac{9n+7}{2n^3+5n^2-4}≤\frac{16n}{2n^3+5n^2-4}. $$

Пойдём далее и поработаем со знаменателем. Чтобы увеличить дробь, знаменатель нужно уменьшить. Например, можно рассудить так: мы знаем, что $n≥ 1$. Тогда $5n^2-4 > 0$. Значит, если мы отбросим в знаменателе выражение $5n^2-4$, то знаменатель уменьшится. Следовательно, наша дробь увеличится. Продолжим предыдущее неравенство:

$$ \frac{9n+7}{2n^3+5n^2-4}≤\frac{16n}{2n^3+5n^2-4} < \frac{16n}{2n^3}=8\cdot\frac{1}{n^2}. $$

Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится, то будет сходиться и ряд $\sum\limits_{n=1}^{\infty}\left(8\cdot\frac{1}{n^2}\right)$ (см. пункт №4 в разделе про свойства числовых рядов). Так как ряд $\sum\limits_{n=1}^{\infty}\left(8\cdot\frac{1}{n^2}\right)$ сходится и $\frac{9n+7}{2n^3+5n^2-4} < 8\cdot\frac{1}{n^2}$, то согласно (пункт №2) ряд $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$ сходится.

Если в предыдущем пункте мы занимались самодеятельностью, выбирая и отбрасывая некие "куски" в формуле общего члена ряда, то решение с помощью предельного признака сравнения полностью алгоритмично. В примечании выше мы уже выяснили, что сравнивать наш ряд нужно с сходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$. Итак, общий член нашего ряда $u_n=\frac{9n+7}{2n^3+5n^2-4}$. Общий член ряда, с которым мы сравниваем: $v_n=\frac{1}{n^2}$. работает с пределом $\lim_{n\to\infty}\frac{u_n}{v_n}$. Кстати сказать, нам совершенно всё равно, какой общий член располагать в числителе, а какой - в знаменателе. Главное, чтобы выражение в знаменателе не равнялось нулю. Например, так как $v_n\neq 0$, то этот общий член вполне можно расположить в знаменателе:

$$ \lim_{n\to\infty}\frac{\frac{9n+7}{2n^3+5n^2-4}}{\frac{1}{n^2}}=\lim_{n\to\infty}\frac{n^2\cdot(9n+7)}{2n^3+5n^2-4}=\lim_{n\to\infty}\frac{9n^3+7n^2}{2n^3+5n^2-4}=\left|\frac{\infty}{\infty} \right|=\\ =\lim_{n\to\infty}\frac{\frac{9n^3}{n^3}+\frac{7n^2}{n^3}}{\frac{2n^3}{n^3}+\frac{5n^2}{n^3}-\frac{4}{n^3}}=\lim_{n\to\infty}\frac{9+\frac{7}{n}}{2+\frac{5}{n}-\frac{4}{n^3}}=\frac{9+0}{2+0-0}=\frac{9}{2}. $$

Так как $0<\frac{9}{2}<\infty$, то ряды $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходятся либо расходятся одновременно. Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится, то одновременно с ним будет сходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{9n+7}{2n^3+5n^2-4}$.

В общем случае, конечно, выбирают один признак сравнения, а не оба сразу:) При решении примеров на этой странице я буду использовать оба способа - для наглядности.

Ответ : ряд сходится.

Пример №2

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{4n^3+2n+9}{n^2(3n+5)^2}$. Общий член $u_n > 0$, т.е. наш ряд является положительным.

Как и в предыдущем примере, попробуем проверить выполнение необходимого условия сходимости , т.е. найдём $\lim_{n\to\infty}u_n$. При нахождении предела будем использовать метод, описанный в теме "Предел отношения двух многочленов" . В ходе решения разделим и числитель и знаменатель на $n^4$:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}=\left|\frac{\infty}{\infty}\right|=\lim_{n\to\infty}\frac{\frac{4}{n}+\frac{2}{n^3}+\frac{9}{n^4}}{\left(3+\frac{5}{n}\right)^2}=\frac{0+0+0}{(3+0)^2}=0. $$

Так как $\lim_{n\to\infty}u_n=0$, то никакого вывода про сходимость нашего ряда мы сделать не в состоянии. Ряд может как сходиться, так и расходиться. Попробуем применить признаки сравнения.

Выясним, с каким же рядом нужно сравнивать заданный в условии ряд. Попробуем отбросить "лишние" элементы числителя и знаменателя точно так же, как это было сделано в примере №1. Останется у нас такая дробь: $\frac{4n^3}{n^2\cdot (3n)^2}=\frac{4}{9}\cdot\frac{1}{n}$. Вот с гармоническим рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ мы и станем сравнивать заданный ряд. Гармонический ряд расходится, поэтому и наш ряд будет расходиться. Нам осталось лишь показать это формально с помощью признаков сравнения.

Решение с помощью первого признака сравнения

Неформальными рассуждениями, проведенными выше, мы пришли к выводу, что наш ряд расходится. Для этого случая применяется первый пункт . Нам нужно показать, что общий член нашего ряда удовлетворяет неравенству $v_n≤ \frac{4n^3+2n+9}{n^2(3n+5)^2}$, при этом ряд $\sum\limits_{n=1}^{\infty}v_n$ расходится. Тогда и заданный нам ряд будет расходиться.

Станем уменьшать дробь $\frac{4n^3+2n+9}{n^2(3n+5)^2}$. Наша цель: привести данную дробь к виду $\frac{1}{n}$.

Чтобы уменьшить некую дробь, есть два пути: уменьшить числитель или увеличить знаменатель. Так как $n≥ 1$, то $2n+9 > 0$. Поэтому если мы отбросим в числителе $2n+9$, то уменьшим числитель, тем самым уменьшив рассматриваемую дробь:

$$ \frac{4n^3+2n+9}{n^2(3n+5)^2} > \frac{4n^3}{n^2(3n+5)^2} $$

Поработаем с знаменателем. Если мы его увеличим, то дробь уменьшится. Так как $n≥ 1$, то $3n+5≤ 3n+5n=8n$. Итак, если мы вместо $3n+5$ запишем $8n$, то знаменатель увеличится:

$$ \frac{4n^3+2n+9}{n^2(3n+5)^2} > \frac{4n^3}{n^2(3n+5)^2}≥ \frac{4n^3}{n^2(8n)^2}=\frac{4n^3}{64n^4}=\frac{1}{16}\cdot\frac{1}{n}. $$

Дальнейшие рассуждения стандартны: так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, то будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{1}{16}\cdot\frac{1}{n}\right)$. Так как ряд $\sum\limits_{n=1}^{\infty}\left(\frac{1}{16}\cdot\frac{1}{n}\right)$ расходится и $\frac{4n^3+2n+9}{n^2(3n+5)^2} > \frac{1}{16}\cdot\frac{1}{n}$, то согласно (пункт №1) ряд $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$ будет расходиться.

Решение с помощью второго признака сравнения

Ранее мы уже выяснили, что сравнивать заданный ряд нужно с расходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n}$. Сравним заданный ряд $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$ с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n}$, используя . Данный признак работает с пределом $\lim_{n\to\infty}\frac{u_n}{v_n}$. Оба общих члена сравниваемых рядов не равны нулю, поэтому в знаменателе можем размещать общий член любого ряда:

$$ \lim_{n\to\infty}\frac{\frac{4n^3+2n+9}{n^2(3n+5)^2}}{\frac{1}{n}}=\lim_{n\to\infty}\frac{n\left(4n^3+2n+9\right)}{n^2(3n+5)^2}=\lim_{n\to\infty}\frac{4n^3+2n+9}{n(3n+5)^2}=\left|\frac{\infty}{\infty}\right|=\\ =\lim_{n\to\infty}\frac{\frac{4n^3}{n^3}+\frac{2n}{n^3}+\frac{9}{n^3}}{\frac{n(3n+5)^2}{n^3}}=\lim_{n\to\infty}\frac{4+\frac{2}{n^2}+\frac{9}{n^3}}{\left(3+\frac{5}{n}\right)^2}=\frac{4+0+0}{(3+0)^2}=\frac{4}{9}. $$

Так как $0<\frac{4}{9}<\infty$, то ряды $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ сходятся либо расходятся одновременно. Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, то одновременно с ним будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{4n^3+2n+9}{n^2(3n+5)^2}$.

Ответ : ряд расходится.

Пример №3

Исследовать ряд $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$ на сходимость.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$. Сразу обращаем внимание, что $u_n > 0$, т.е. наш ряд положительный. Точно так же, как и в предыдущих примерах, можно проверить выполнение необходимого условия сходимости , однако эта проверка лишь покажет, что $\lim_{n\to\infty}u_n=0$. Т.е. ничего определённого про сходимость ряда сказать нельзя и нужно использовать иные критерии.

Для проверки сходимости заданного ряда с помощью признаков сравнения для начала составим ряд, с которым станем сравнивать. Попробуем отбросить "лишние" элементы числителя и знаменателя точно так же, как это было сделано в примерах №1 и №2. Останется у нас такая дробь:

$$\frac{5n^2}{\sqrt{7n^{10}}}=\frac{5}{\sqrt{7}}\cdot\frac{n^2}{n^{\frac{10}{3}}}=\frac{5}{\sqrt{7}}\cdot\frac{1}{n^{\frac{10}{3}-2}}= \frac{5}{\sqrt{7}}\cdot\frac{1}{n^{\frac{4}{3}}}.$$

Вот с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ мы и станем сравнивать заданный ряд. Так как $\frac{4}{3} > 1$, то ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ сходится. Следовательно, и наш ряд будет сходиться, нам осталось лишь показать это формально с помощью признаков сравнения.

Решение с помощью первого признака сравнения

Неформальными рассуждениями выше мы пришли к выводу, что наш ряд сходится. Для этого случая применяется второй пункт . Нам нужно показать, что общий член нашего ряда удовлетворяет неравенству $\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}≤ v_n$ и ряд $\sum\limits_{n=1}^{\infty}v_n$ сходится. Тогда и заданный нам ряд будет сходиться.

Станем увеличивать дробь $\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$. Наша цель: привести данную дробь к виду $\frac{1}{n^{\frac{4}{3}}}$.

Чтобы увеличить данную дробь, для начала увеличим числитель. Если мы отбросим число (-3), то числитель станет больше. А значит и сама дробь увеличится:

< \frac{5n^2}{\sqrt{7n^{10}+2n^3-4}} $$

Поработаем с знаменателем. Если мы его уменьшим, то дробь увеличится. Так как $n≥ 1$, то $7n^{10}-4≥ 7n^{10}-4n^{10}=3n^{10}$. Итак, если мы вместо $7n^{10}-4$ запишем $3n^{10}$, то знаменатель уменьшится, а дробь увеличится:

$$ \frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}< \frac{5n^2}{\sqrt{7n^{10}+2n^3-4}}≤ \frac{5n^2}{\sqrt{3n^{10}+2n^3}} $$

Теперь сделаем так: выкинем из знаменателя слагаемое $2n^3$. Тем самым мы уменьшим знаменатель, а саму дробь увеличим:

$$ \frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}< \frac{5n^2}{\sqrt{7n^{10}+2n^3-4}}≤ \frac{5n^2}{\sqrt{3n^{10}+2n^3}} < \frac{5n^2}{\sqrt{3n^{10}}}= \frac{5}{\sqrt{3}}\cdot\frac{1}{n^{\frac{4}{3}}}. $$

Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ сходится, то будет сходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{5}{\sqrt{3}}\cdot\frac{1}{n^{\frac{4}{3}}}\right)$. Так как ряд $\sum\limits_{n=1}^{\infty}\left(\frac{5}{\sqrt{3}}\cdot\frac{1}{n^{\frac{4}{3}}}\right)$ сходится и $\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}<\frac{5}{\sqrt{3}}\cdot\frac{1}{n^{\frac{4}{3}}}$, то согласно (пункт №2) ряд $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$ будет сходиться.

Решение с помощью второго признака сравнения

Мы уже выяснили, что сравнивать заданный ряд нужно с сходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$. Сравним заданный ряд $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$ с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$, используя . Данный признак работает с пределом $\lim_{n\to\infty}\frac{u_n}{v_n}$. Оба общих члена сравниваемых рядов не равны нулю, поэтому в знаменателе можем размещать общий член любого ряда:

$$ \lim_{n\to\infty}\frac{\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}}{\frac{1}{n^{\frac{4}{3}}}}=\lim_{n\to\infty}\frac{5n^{\frac{10}{3}}-3n^{\frac{4}{3}}}{\sqrt{7n^{10}+2n^3-4}}=\left|\frac{\infty}{\infty}\right|=\left|\text{делим числитель и знаменатель на }n^{\frac{10}{3}}\right|=\\ =\lim_{n\to\infty}\frac{\frac{5n^{\frac{10}{3}}}{n^{\frac{10}{3}}}-\frac{3n^{\frac{4}{3}}}{n^{\frac{10}{3}}}}{\sqrt{\frac{7n^{10}}{n^{10}}+\frac{2n^3}{n^{10}}-\frac{4}{n^{10}}}}=\lim_{n\to\infty}\frac{5-\frac{3}{n^2}}{\sqrt{7+\frac{2}{n^7}-\frac{4}{n^{10}}}}= \frac{5-0}{\sqrt{7+0-0}}=\frac{5}{\sqrt{7}}. $$

Для вычисления предела был использован метод, изложенный в теме "Пределы с иррациональностями" . Так как $0<\frac{5}{\sqrt{7}}<\infty$, то ряды $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ сходятся либо расходятся одновременно. Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{4}{3}}}$ сходится, то одновременно с ним будет сходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{5n^2-3}{\sqrt{7n^{10}+2n^3-4}}$.

Ответ : ряд сходится.

Пример №4

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\left(\sqrt{2n+3}-\sqrt{2n-1}\right)$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\sqrt{2n+3}-\sqrt{2n-1}$. Здесь сразу можно заметить, что так как $\sqrt{2n+3}> \sqrt{2n-1}$, то $u_n > 0$, т.е. наш ряд положительный. Можно при желании проверить выполнение необходимого условия сходимости, однако эта проверка ничего не даст (предел $\lim_{n\to\infty}u_n$ вычисляется по аналогии с примером №8 на этой странице), так как $\lim_{n\to\infty}u_n=0$. Перейдём к применению признаков сравнения.

Перед тем, как применять некие признаки сравнения, выражение общего члена ряда лучше немного преобразовать. Тут поможет домножение на сопряжённое выражение, т.е. на $\sqrt{2n+3}+\sqrt{2n-1}$. Естественно, что если мы домножаем на некое выражение, то на него же обязаны и разделить. При упрощении нам поможет формула $(a-b)(a+b)=a^2-b^2$. Итак:

$$ u_n=\sqrt{2n+3}-\sqrt{2n-1}=\frac{\left(\sqrt{2n+3}-\sqrt{2n-1}\right)\cdot \left(\sqrt{2n+3}+\sqrt{2n-1}\right)}{\sqrt{2n+3}+\sqrt{2n-1}}=\\ =\frac{\left(\sqrt{2n+3}\right)^2-\left(\sqrt{2n-1}\right)^2}{\sqrt{2n+3}+\sqrt{2n-1}}=\frac{2n+3-(2n-1)}{\sqrt{2n+3}+\sqrt{2n-1}}= \frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}. $$

Теперь наш ряд имеет вид $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$. Применяя рассуждения, аналогичные проведённым в предыдущих примерах, получим, что сравнивать наш ряд надо с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$. Ряд $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}=\sum\limits_{n=1}^{\infty}\frac{1}{n^{\frac{1}{2}}}$ расходится, так как степень $\frac{1}{2}≤ 1$. Значит, будет расходиться и наш ряд, осталось лишь показать это формально.

Решение с помощью первого признака сравнения

Неформальными рассуждениями выше мы пришли к выводу, что наш ряд расходится. Станем уменьшать дробь $\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$. Так как $\sqrt{2n+3}> \sqrt{2n-1}$, то записав выражение $\sqrt{2n+3}$ вместо $\sqrt{2n-1}$ мы увеличим знаменатель, тем самым уменьшив дробь:

$$ \frac{4}{\sqrt{2n+3}+\sqrt{2n-1}} > \frac{4}{\sqrt{2n+3}+\sqrt{2n+3}}=\frac{4}{2\sqrt{2n+3}}=\frac{2}{\sqrt{2n+3}}. $$

Увеличим знаменатель ещё раз. Так как $2n+3 < 2n+7n=9n$, то заменяя выражение в знаменателе на $\sqrt{9n}$ мы увеличим знаменатель, тем самым уменьшив дробь:

$$ \frac{4}{\sqrt{2n+3}+\sqrt{2n-1}} >\frac{2}{\sqrt{2n+3}} > \frac{2}{\sqrt{9n}}=\frac{2}{3}\cdot\frac{1}{\sqrt{n}}. $$

Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ расходится, то будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\left(\frac{2}{3}\cdot\frac{1}{\sqrt{n}}\right)$. Так как ряд $\sum\limits_{n=1}^{\infty}\left(\frac{2}{3}\cdot\frac{1}{\sqrt{n}}\right)$ расходится и $\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}} >\frac{2}{3}\cdot\frac{1}{\sqrt{n}}$, то согласно (пункт №1) ряд $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$ будет расходиться.

Решение с помощью второго признака сравнения

Мы уже выяснили, что сравнивать заданный ряд нужно с расходящимся рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$. Сравним заданный ряд $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$ с рядом $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$, используя . Оба общих члена сравниваемых рядов не равны нулю, поэтому в знаменателе можем размещать общий член любого ряда:

$$ \lim_{n\to\infty}\frac{\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}}{\frac{1}{\sqrt{n}}}=\lim_{n\to\infty}\frac{4\sqrt{n}}{\sqrt{2n+3}+\sqrt{2n-1}}=\left|\frac{\infty}{\infty} \right|=\left|\text{делим числитель и знаменатель на }\sqrt{n}\right|=\\ =\lim_{n\to\infty}\frac{4}{\sqrt{2+\frac{3}{n}}+\sqrt{2-\frac{1}{n}}}=\frac{4}{\sqrt{2+0}+\sqrt{2-0}}=\frac{2}{\sqrt{2}}=\sqrt{2}. $$

Так как $0<\sqrt{2}<\infty$, то ряды $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ сходятся либо расходятся одновременно. Так как ряд $\sum\limits_{n=1}^{\infty}\frac{1}{\sqrt{n}}$ расходится, то одновременно с ним будет расходиться и ряд $\sum\limits_{n=1}^{\infty}\frac{4}{\sqrt{2n+3}+\sqrt{2n-1}}$.

Ответ : ряд расходится.

Продолжение темы исследования сходимости рядов с помощью признаков сравнения рассмотрим во второй и третьей частях.

Ряды для чайников. Примеры решений

Всех выживших приветствую на втором курсе! На этом уроке, а точнее, на серии уроков, мы научимся управляться с рядами. Тема не очень сложная, но для ее освоения потребуются знания с первого курса, в частности, необходимо понимать, что такое предел , и уметь находить простейшие пределы. Впрочем, ничего страшного, по ходу объяснений я буду давать соответствующие ссылки на нужные уроки. Некоторым читателям тема математических рядов, приемы решения, признаки, теоремы могут показаться своеобразными, и даже вычурными, нелепыми. В этом случае не нужно сильно «загружаться», принимаем факты такими, какими они есть, и просто учимся решать типовые, распространенные задания.

1) Ряды для чайников , и для самоваров сразу содержание:)

Для сверхбыстрой подготовки по теме есть экспресс-курс в pdf формате , с помощью которого реально «поднять» практику буквально за день.

Понятие числового ряда

В общем виде числовой ряд можно записать так: .
Здесь:
– математический значок суммы;
общий член ряда (запомните этот простой термин);
– переменная-«счётчик». Запись обозначает, что проводится суммирование от 1 до «плюс бесконечности», то есть, сначала у нас , затем , потом , и так далее – до бесконечности. Вместо переменной иногда используется переменная или . Суммирование не обязательно начинается с единицы, в ряде случаев оно может начинаться с нуля , с двойки либо с любого натурального числа .

В соответствии с переменной-«счётчиком» любой ряд можно расписать развёрнуто:
– и так далее, до бесконечности.

Cлагаемые – это ЧИСЛА , которые называются членами ряда. Если все они неотрицательны (больше либо равны нулю) , то такой ряд называют положительным числовым рядом .

Пример 1



Это уже, кстати, «боевое» задание – на практике довольно часто требуется записать несколько членов ряда.

Сначала , тогда:
Затем , тогда:
Потом , тогда:

Процесс можно продолжить до бесконечности, но по условию требовалось написать первые три члена ряда, поэтому записываем ответ:

Обратите внимание на принципиальное отличие от числовой последовательности ,
в которой члены не суммируются, а рассматриваются как таковые.

Пример 2

Записать первые три члена ряда

Это пример для самостоятельного решения, ответ в конце урока

Даже для сложного на первый взгляд ряда не составляет трудности расписать его в развернутом виде:

Пример 3

Записать первые три члена ряда

На самом деле задание выполняется устно: мысленно подставляем в общий член ряда сначала , потом и . В итоге:

Ответ оставляем в таком виде, полученные члены ряда лучше не упрощать , то есть не выполнять действия: , , . Почему? Ответ в виде гораздо проще и удобнее проверять преподавателю.

Иногда встречается обратное задание

Пример 4



Здесь нет какого-то четкого алгоритма решения, закономерность нужно просто увидеть .
В данном случае:

Для проверки полученный ряд можно «расписать обратно» в развернутом виде.

А вот пример чуть сложнее для самостоятельного решения:

Пример 5

Записать сумму в свёрнутом виде с общим членом ряда

Выполнить проверку, снова записав ряд в развернутом виде

Сходимость числовых рядов

Одной из ключевых задач темы является исследование ряда на сходимость . При этом возможны два случая:

1) Ряд расходится . Это значит, что бесконечная сумма равна бесконечности: либо суммы вообще не существует , как, например, у ряда
(вот, кстати, и пример ряда с отрицательными членами). Хороший образец расходящегося числового ряда встретился в начале урока: . Здесь совершенно очевидно, что каждый следующий член ряда больше, чем предыдущий, поэтому и, значит, ряд расходится. Ещё более тривиальный пример: .

2) Ряд сходится . Это значит, что бесконечная сумма равна некоторому конечному числу : . Пожалуйста: – этот ряд сходится и его сумма равна нулю. В качестве более содержательного примера можно привести бесконечно убывающую геометрическую прогрессию, известную нам ещё со школы: . Сумма членов бесконечно убывающей геометрической прогрессии рассчитывается по формуле: , где – первый член прогрессии, а – её основание, которое, как правило, записывают в виде правильной дроби. В данном случае: , . Таким образом: Получено конечное число, значит, ряд сходится, что и требовалось доказать.

Однако в подавляющем большинстве случаев найти сумму ряда не так-то просто, и поэтому на практике для исследования сходимости ряда используют специальные признаки, которые доказаны теоретически.

Существует несколько признаков сходимости ряда: необходимый признак сходимости ряда, признаки сравнения, признак Даламбера, признаки Коши , признак Лейбница и некоторые другие признаки. Когда какой признак применять? Это зависит от общего члена ряда , образно говоря – от «начинки» ряда. И очень скоро мы всё разложим по полочкам.

! Для дальнейшего усвоения урока необходимо хорошо понимать , что такое предел и хорошо уметь раскрывать неопределенность вида . Для повторения или изучения материала обратитесь к статье Пределы. Примеры решений .

Необходимый признак сходимости ряда

Если ряд сходится, то его общий член стремится к нулю: .

Обратное в общем случае неверно, т.е., если , то ряд может как сходиться, так и расходиться. И поэтому этот признак используют для обоснования расходимости ряда:

Если общий член ряда не стремится к нулю , то ряд расходится

Или короче: если , то ряд расходится. В частности, возможна ситуация, когда предела не существует вообще, как, например, предела . Вот сразу и обосновали расходимость одного ряда:)

Но гораздо чаще предел расходящегося ряда равен бесконечности, при этом в качестве «динамической» переменной вместо «икса» выступает . Освежим наши знания: пределы с «иксом» называют пределами функций , а пределы с переменной «эн» – пределами числовых последовательностей . Очевидное отличие состоит в том, что переменная «эн» принимает дискретные (прерывные) натуральные значения: 1, 2, 3 и т.д. Но данный факт мало сказывается на методах решения пределов и способах раскрытия неопределенностей.

Докажем, что ряд из первого примера расходится.
Общий член ряда:

Вывод : ряд расходится

Необходимый признак часто применяется в реальных практических заданиях:

Пример 6

В числителе и знаменателе у нас находятся многочлены. Тот, кто внимательно прочитал и осмыслил метод раскрытия неопределенности в статье Пределы. Примеры решений , наверняка уловил, что когда старшие степени числителя и знаменателя равны , тогда предел равен конечному числу .


Делим числитель и знаменатель на

Исследуемый ряд расходится , так как не выполнен необходимый признак сходимости ряда.

Пример 7

Исследовать ряд на сходимость

Это пример для самостоятельного решения. Полное решение и ответ в конце урока

Итак, когда нам дан ЛЮБОЙ числовой ряд, в первую очередь проверяем (мысленно или на черновике): а стремится ли его общий член к нулю? Если не стремится – оформляем решение по образцу примеров № 6, 7 и даём ответ о том, что ряд расходится.

Какие типы очевидно расходящихся рядов мы рассмотрели? Сразу понятно, что расходятся ряды вроде или . Также расходятся ряды из примеров № 6, 7: когда в числителе и знаменателе находятся многочлены, и старшая степень числителя больше либо равна старшей степени знаменателя . Во всех этих случаях при решении и оформлении примеров мы используем необходимый признак сходимости ряда.

Почему признак называется необходимым ? Понимайте самым естественным образом: для того, чтобы ряд сходился, необходимо , чтобы его общий член стремился к нулю. И всё бы было отлично, но этого ещё не достаточно . Иными словами, если общий член ряда стремится к нулю, ТО ЭТО ЕЩЕ НЕ ЗНАЧИТ, что ряд сходится – он может, как сходиться, так и расходиться!

Знакомьтесь:

Данный ряд называется гармоническим рядом . Пожалуйста, запомните! Среди числовых рядов он является прима-балериной. Точнее, балеруном =)

Легко заметить, что , НО. В теории математического анализа доказано, что гармонический ряд расходится .

Также следует запомнить понятие обобщенного гармонического ряда:

1) Данный ряд расходится при . Например, расходятся ряды , , .
2) Данный ряд сходится при . Например, сходятся ряды , , . Еще раз подчеркиваю, что почти во всех практических заданиях нам совершенно не важно, чему равна сумма , например, ряда , важен сам факт его сходимости .

Это элементарные факты из теории рядов, которые уже доказаны, и при решении какого-нибудь практического примера можно смело ссылаться, например, на расходимость ряда или сходимость ряда .

Вообще, рассматриваемый материал очень похож на исследование несобственных интегралов , и тому, кто изучал эту тему, будет легче. Ну а тому, кто не изучал – легче вдвойне:)

Итак, что делать, если общий член ряда СТРЕМИТСЯ к нулю? В таких случаях для решения примеров нужно использовать другие, достаточные признаки сходимости / расходимости:

Признаки сравнения для положительных числовых рядов

Заостряю ваше внимание , что здесь речь уже идёт только о положительных числовых рядах (с неотрицательными членами) .

Существуют два признака сравнения, один из них я буду называть просто признаком сравнения , другой – предельным признаком сравнения .

Сначала рассмотрим признак сравнения , а точнее, первую его часть:

Рассмотрим два положительных числовых ряда и . Если известно , что ряд – сходится , и, начиная с некоторого номера , выполнено неравенство , то ряд тоже сходится .

Иными словами: Из сходимости ряда с бОльшими членами следует сходимость ряда с меньшими членами . На практике неравенство часто выполнено вообще для всех значений :

Пример 8

Исследовать ряд на сходимость

Во-первых, проверяем (мысленно либо на черновике) выполнение :
, а значит, «отделаться малой кровью» не удалось.

Заглядываем в «пачку» обобщенного гармонического ряда и, ориентируясь на старшую степень, находим похожий ряд: Из теории известно, что он сходится.

Для всех натуральных номеров справедливо очевидное неравенство:

а бОльшим знаменателям соответствуют мЕньшие дроби:
, значит, по признаку сравнения исследуемый ряд сходится вместе с рядом .

Если у вас есть какие-то сомнения, то неравенство всегда можно расписать подробно! Распишем построенное неравенство для нескольких номеров «эн»:
Если , то
Если , то
Если , то
Если , то
….
и теперь-то уж совершенно понятно, что неравенство выполнено для всех натуральных номеров «эн».

Проанализируем признак сравнения и решенный пример с неформальной точки зрения. Все-таки, почему ряд сходится? А вот почему. Если ряд сходится, то он имеет некоторую конечную сумму : . И поскольку все члены ряда меньше соответствующих членов ряда , то ясен пень, что сумма ряда не может быть больше числа , и тем более, не может равняться бесконечности!

Аналогично можно доказать сходимость «похожих» рядов: , , и т.д.

! Обратите внимание , что во всех случаях в знаменателях у нас находятся «плюсы». Наличие хотя бы одного минуса может серьёзно осложнить использование рассматриваемого признака сравнения . Например, если ряд таким же образом сравнить со сходящимся рядом (выпишите несколько неравенств для первых членов), то условие не будет выполняться вообще! Здесь можно извернуться и подобрать для сравнения другой сходящийся ряд, например, , но это повлечёт за собой лишние оговорки и другие ненужные трудности. Поэтому для доказательства сходимости ряда гораздо проще использовать предельный признак сравнения (см. следующий параграф).

Пример 9

Исследовать ряд на сходимость

И в этом примере я предлагаю вам самостоятельно рассмотреть вторую часть признака сравнения :

Если известно , что ряд – расходится , и, начиная с некоторого номера (часто с самого первого), выполнено неравенство , то ряд тоже расходится .

Иными словами: Из расходимости ряда с меньшими членами следует расходимость ряда с бОльшими членами .

Что нужно сделать?
Нужно сравнить исследуемый ряд с расходящимся гармоническим рядом . Для лучшего понимания постройте несколько конкретных неравенств и убедитесь в справедливаости неравенства .

Решение и образец оформления в конце урока.

Как уже отмечалось, на практике только что рассмотренный признак сравнения применяют редко. Настоящей «рабочей лошадкой» числовых рядов является предельный признак сравнения , и по частоте использования с ним может конкурировать разве что признак Даламбера .

Предельный признак сравнения числовых положительных рядов

Рассмотрим два положительных числовых ряда и . Если предел отношения общих членов этих рядов равен конечному, отличному от нуля числу : , то оба ряда сходятся или расходятся одновременно .

Когда применяется предельный признак сравнения? Предельный признак сравнения применяется тогда, когда «начинкой» ряда у нас являются многочлены. Либо один многочлен в знаменателе, либо многочлены и в числителе и в знаменателе. Опционально многочлены могут находиться под корнями.

Разделаемся с рядом, для которого забуксовал предыдущий признак сравнения.

Пример 10

Исследовать ряд на сходимость

Сравним данный ряд со сходящимся рядом . Используем предельный признак сравнения. Известно, что ряд – сходится. Если нам удастся показать, что равен конечному, отличному от нуля числу, то будет доказано, что ряд – тоже сходится.


Получено конечное, отличное от нуля число, значит, исследуемый ряд сходится вместе с рядом .

Почему для сравнения был выбран именно ряд ? Если бы мы выбрали любой другой ряд из «обоймы» обобщенного гармонического ряда, то у нас не получилось бы в пределе конечного, отличного от нуля числа (можете поэкспериментировать).

Примечание : когда мы используем предельный признак сравнения, не имеет значения , в каком порядке составлять отношение общих членов, в рассмотренном примере отношение можно было составить наоборот: – это не изменило бы сути дела.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.