Статика. Момент силы

Когда решают задачи на перемещение объектов, то в ряде случаев пренебрегают их пространственными размерами, вводя понятие материальной точки. Для другого типа задач, в которых рассматриваются покоящиеся или вращающиеся тела, важно знать их параметры и точки приложения внешних сил. В этом случае речь идет о моменте сил относительно оси вращения. Рассмотрим этот вопрос в статье.

Понятие о моменте силы

Перед тем как приводить относительно оси вращения неподвижной, необходимо пояснить, о каком явлении пойдет речь. Ниже дан рисунок, на котором изображен гаечный ключ длиной d, к концу его приложена сила F. Нетрудно представить, что результатом ее воздействия будет вращение ключа против часовой стрелки и откручивание гайки.

Согласно определению, момент силы относительно представляет собой произведение плеча (d в данном случае) на силу (F), то есть можно записать следующее выражение: M = d*F. Сразу же следует оговориться, что приведенная формула записана в скалярном виде, то есть она позволяет рассчитать абсолютное значение момента M. Как видно из формулы, единицей измерения рассматриваемой величины являются ньютоны на метр (Н*м).

- векторная величина

Как выше было оговорено, момент M в действительности представляет собой вектор. Для пояснения этого утверждения рассмотрим другой рисунок.

Здесь мы видим рычаг длиной L, который закреплен на оси (показано стрелкой). К его концу приложена сила F под углом Φ. Нетрудно себе представить, что эта сила будет вызывать подъем рычага. Формула для момента в векторной форме в этом случае запишется так: M¯ = L¯*F¯, здесь черта над символом означает, что рассматриваемая величина - это вектор. Следует пояснить, что L¯ направлен от оси вращения к точке приложения силы F¯.

Приведенное выражение является векторным произведением. Его результирующий вектор (M¯) будет направлен перпендикулярно плоскости, образованной L¯ и F¯. Для определения направления момента M¯ существуют несколько правил (правой руки, буравчика). Чтобы не заучивать их и не путаться в порядке умножения векторов L¯ и F¯ (от него зависит направление M¯), следует запомнить одну простую вещь: момент силы будет направлен таким образом, что если смотреть с конца его вектора, то воздействующая сила F¯ будет вращать рычаг против часовой стрелки. Это направление момента условно принято за положительное. Если же система совершает вращение по часовой стрелки, значит, результирующий момент сил имеет отрицательное значение.

Таким образом, в рассматриваемом случае с рычагом L величина M¯ направлена вверх (от рисунка к читателю).

В скалярной форме формула для момента запишется в виде: M = L*F*sin(180-Φ) или M = L*F*sin(Φ) (sin(180-Φ) = sin(Φ)). Согласно определению синуса, можно записать равенство: M = d*F, где d = L*sin(Φ) (см. рисунок и соответствующий прямоугольный треугольник). Последняя формула является аналогичной той, которая была приведена в предыдущем пункте.

Проведенные выше вычисления демонстрируют, как работать с векторными и скалярными величинами моментов сил, чтобы не допустить ошибок.

Физический смысл величины M¯

Поскольку два рассмотренных в предыдущих пунктах случая связаны с вращательным движением, то можно догадаться, какой смысл несет момент силы. Если сила, действующая на материальную точку, является мерой увеличения скорости линейного перемещения последней, то момент силы - это мера ее вращательной способности применительно к рассматриваемой системе.

Приведем наглядный пример. Любой человек открывает дверь, взявшись за ее ручку. Также это можно сделать, если толкнуть дверь в зоне ручки. Почему никто не открывает ее, толкая в области петель? Очень просто: чем ближе к петлям приложена сила, тем труднее открыть дверь, и наоборот. Вывод предыдущего предложения следует из формулы для момента (M = d*F), откуда видно, что при M = const величины d и F находятся в обратной зависимости.

Момент силы - аддитивная величина

Во всех рассмотренных выше случаях имела место лишь одна действующая сила. При решении же реальных задач дело обстоит гораздо сложнее. Обычно на системы, которые вращаются или находятся в равновесии, действуют несколько сил кручения, каждая из которых создает свой момент. В этом случае решение задач сводится к нахождению суммарного момента сил относительно оси вращения.

Суммарный момент находится путем обычной суммы отдельных моментов для каждой силы, однако, следует не забывать использовать правильный знак для каждого из них.

Пример решения задачи

Для закрепления полученных знаний предлагается решить следующую задачу: необходимо вычислить суммарный момент силы для системы, изображенной на рисунке ниже.

Мы видим, что на рычаг длиной 7 м действуют три силы (F1, F2, F3), причем они имеют разные точки приложения относительно оси вращения. Поскольку направление сил перпендикулярно рычагу, то нет необходимости применять векторное выражение для момента кручения. Можно рассчитать суммарный момент M, используя скалярную формулу и не забывая о постановке нужного знака. Поскольку силы F1 и F3 стремятся повернуть рычаг против часовой стрелки, а F2 - по часовой стрелке, то момент вращения для первых будет положительным, а для второй - отрицательным. Имеем: M = F1*7-F2*5+F3*3 = 140-50+75 = 165 Н*м. То есть суммарный момент является положительным и направлен вверх (на читателя).

Определение

Векторное произведение радиус – вектора (), который проведен из точки О (рис.1) в точку к которой приложена сила на сам вектор называют моментом силы ()по отношению к точке O:

На рис.1 точка О и вектор силы ()и радиус – вектор находятся в плоскости рисунка. В таком случае вектор момента силы () перпендикулярен плоскости рисунка и имеет направление от нас. Вектор момента силы является аксиальным. Направление вектора момента силы выбирается таким образом, что вращение вокруг точки О в направлении силы и вектор создают правовинтовую систему. Направление момента сил и углового ускорения совпадают.

Величина вектора равна:

где – угол между направлениями радиус – вектора и вектора силы, – плечо силы относительно точки О.

Момент силы относительно оси

Моментом силы по отношению к оси является физическая величина, равная проекции вектора момента силы относительно точки избранной оси на данную ось. При этом выбор точки значения не имеет.

Главный момент сил

Главным моментом совокупности сил относительно точки О называется вектор (момент силы), который равен сумме моментов всех сил, действующих в системе по отношению к той же точке:

При этом точку О называют центром приведения системы сил.

Если имеются два главных моменты ( и )для одной системы сил для разных двух центров приведение сил (О и О’), то они связаны выражением:

где - радиус-вектор, который проведен из точки О к точке О’, – главный вектор системы сил.

В общем случае результат действия на твердое тело произвольной системы сил такое же, как действие на тело главного момента системы сил и главного вектора системы сил, который приложен в центре приведения (точка О).

Основной закон динамики вращательного движения

где – момент импульса тела находящегося во вращении.

Для твердого тела этот закон можно представить как:

где I – момент инерции тела, – угловое ускорение.

Единицы измерения момента силы

Основной единицей измерения момента силы в системе СИ является: [M]=Н м

В СГС: [M]=дин см

Примеры решения задач

Пример

Задание. На рис.1 показано тело, которое имеет ось вращения OO". Момент силы, приложенный к телу относительно заданной оси, будет равен нулю? Ось и вектор силы расположены в плоскости рисунка.

Решение. За основу решения задачи примем формулу, определяющую момент силы:

В векторном произведении (видно из рисунка) . Угол между вектором силы и радиус – вектором также будет отличен от нуля (или ), следовательно, векторное произведение (1.1) нулю не равно. Значит, момент силы отличен от нуля.

Ответ.

Пример

Задание. Угловая скорость вращающегося твердого тела изменяется в соответствии с графиком, который представлен на рис.2. В какой из указанных на графике точек момент сил, приложенных к телу равен нулю?

Обозначив момент силы относительно осей , и , можем записать:

где , и модули проекций сил на плоскости, перпендикулярные той оси, относительно которой определяется момент; l – плечи, равные длинам


перпендикуляров от точки пересечения оси с плоскостью до проекции или ее продолжения; знак «плюс» или «минус» ставится в зависимости от того, в какую сторону поворачивается плечо l вектором проекции, если смотреть на плоскость проекции со стороны положительного направления оси; при стремлении вектора проекции повернуть плечо против хода часовой стрелки момент условимся считать положительным, и наоборот.

Следовательно, моментом силы относительно оси называется алгебраическая (скалярная) величина, равная моменту проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью.

Предыдущий рисунок иллюстрирует последовательность определения момента силы относительно оси Z. Если задана сила и выбрана (или задана) ось, то: а) перпендикулярно оси выбирают плоскость (плоскость ХОУ); б) силу F проецируют на эту плоскость и определяют модуль этой проекции; в) из точки 0 пересечения оси с плоскостью опускают перпендикуляр ОС к проекции и определяют плечо l = ОС; г) глядя на плоскость ХОУ со стороны положительного направления оси Z (т.е. в данном случае сверху), видим, что ОС поворачивается вектором против хода стрелки ча­сов, значит

Момент силы относительно оси равен нулю, если сила и ось лежат в одной плоскости: а) сила пересекает ось (в этом случае l = 0);


б) сила параллельна оси ();

в) сила действует вдоль оси (l =0 и ).

Пространственная система произвольно расположенных сил.

Условие равновесия

Ранее подробно изложен процесс приведения сил к точке и доказано, что любая плоская система сил приводится к силе – главному вектору и паре, момент которой называется главным моментом, причем эквивалентные данной системе сил сила и пара действуют в той же плоскости, что и заданная система. Значит, если главный момент изобразить в виде вектора, то главный вектор и главный момент плоской системы сил всегда перпендикулярны друг другу.

Рассуждая аналогично, можно последовательно привести к точке силы пространственной системы. Но теперь главный вектор есть замыкающий вектор пространственного (а не плоского) силового многоугольника; главный момент уже нельзя получить алгебраическим сложением моментов данных сил относительно точки приведения. При приведении к точке пространственной системы сил, присоединенные пары действуют в различных плоскостях и их моменты целесообразно представлять в виде векторов и складывать геометрически. Поэтому полученные в результате приведения пространственной системы сил главный вектор (геометрическая сумма сил системы) и главный момент (геометрическая сумма моментов сил относительно точки приведения), вообще говоря, не перпендикулярны друг другу.

Векторные равенства и выражают необходимое и достаточное условие равновесия пространственной системы произ­вольно расположенных сил.

Если главный вектор равен нулю, то его проекции на три взаим­но перпендикулярные оси также равны нулю. Если главный момент равен нулю, то равны нулю и три его составляющие на те же оси.

Значит, произвольная пространственная система сил статически определима лишь в том случае, когда число неизвестных не превышает шести.

Среди задач статики часто встречаются такие, в которых на тело действует пространственная система параллельных друг другу сил.


В пространственной системе параллельных сил неизвестных должно быть не больше трех, иначе задача становится статически неопределимой.

Глава 6. Кинематика точки

Основные понятия кинематики

Раздел механики, занимающийся изучением движения материальных тел без учета их масс и действующих на них сил, называется кинематикой .

Движение – основная форма существования всего материального мира, покой и равновесие – частные случаи.

Всякое движение, и механическое в том числе, происходит в пространстве и во времени.

Все тела состоят из материальных точек. Чтобы получить правильное представление о движении тел, начинать изучение нужно с движения точки. Перемещение точки в пространстве выражается в метрах, а также в дольных (см, мм) или кратных (км) единицах длины, время – в секундах. В практике или жизненных ситуациях время часто выражают в минутах или часах. Отсчет времени при рассмотрении того или иного движения точки ведут от определенно­го, заранее обусловленного начального момента (t = 0).

Геометрическое место положений движущейся точки в рассматриваемой системе отсчета называется траекторией . По виду траектории движение точки делится на прямолинейное и криволинейное . Траектория точки может быть определена и задана заранее. Так, например, траектории искусственных спутников Земли и межпланетных станций вычисляют заранее, или если принять движущиеся по городу автобусы за материальные точки, то их траектории (маршруты) также известны. В подобных случаях положение точки в каждый момент времени определяется расстоянием (дуговой коорди­натой) S, т.е. длиной участка траектории, отсчитанной от неко­торой ее неподвижной точки, принятой за начало отсчета. Отсчет расстояний от начала траектории можно вести в обе стороны, по­этому отсчет в одну какую-либо сторону условно принимают за положительный, а в


противоположную – за отрицательный, т.е. рас­стояние S – величина алгебраическая. Она может быть положитель­ной (S > 0) или отрицательной (S<0).

При движении точка за определенный промежуток времени прохо­дит некоторый путь L , который измеряется вдоль траектории в направлении движения.

Если точка стала двигаться не из начала отсчета O, а из поло­жения, находящегося на начальном расстоянии S o то

Векторная величина, характеризующая в каждый данный момент времени направление и быстроту движения точки, называется скоростью .

Скорость точки в любой момент ее движения направлена по каса­тельной к траектории.

Отметим, что это векторное равенство характеризует лишь положение , а модуль средней скорости за время :

где – путь, пройденный точкой за время .

Модуль средней скорости равен частному от деления пройденного пути на время, в течение которого этот путь пройден.


Векторная величина, характеризующая быстроту изменения направ­ления и числового значения скорости, называется ускорением .

При равномерном движении по криволинейной траектории точка тоже имеет ускорение, так как и в этом случае изменяется направление скорости.

За единицу ускорения принимают обычно .

6.2. Способы задания движения точки

Существует три способа: естественный , координатный , векторный .

Естественный способ задания движения точки . Если кроме траектории, на которой отмечено начало отсчета O, задана зависимость

между расстоянием S и временем t, это уравнение называется законом движения точки по заданной траектории .


Пусть, например, задана некоторая траектория, движение точки по которой определяется уравнением . Тогда в момент времени , т.е. точка находится в начале отсчета O; в момент времени точка находится на расстоянии ; в момент времени точка находится на расстоянии от начала отсчета O.

Координатный способ задания дви­жения точки . Когда траектория точки заранее не известна, положение точки в пространстве определяется тремя координатами: абсциссой X, ординатой Yи аппликатой Z.

Или , исключив время.

Эти уравнения выражают закон движения точки в прямоугольной системе координат (OXYZ) .

В частном случае, если точка движется в плоскости, закон движения точки выражается двумя уравнениями: или .

Например . Движение точки в плоской системе координат задано уравнениями и (X и Y – см, t – с). Тогда в момент времени и , т.е. точка находится в начале координат; в момент времени координаты точки , ; в момент времени координаты точки , и т.д.


Зная закон движения точки в прямоугольной системе координат, можно определить уравнение траектории точки .

Например, исключив время t из заданных выше уравнений и , получим уравнение траектории . Как видим, в этом случае точка движется по прямой, проходящей через начало координат.

6.3. Определение скорости точки при естественном способе
задания ее движения

Пусть движение точки А по заданной траектории происходит согласно уравнению , требуется определить скорость точки в момент времени t.

За промежуток времени точка прошла путь , значение средней скорости на этом пути называется касательным , илитангенциальным ускорением . Модуль касательного ускорения

,

равный производной от скорости в данный момент по времени или, иначе, второй производной от расстояния по времени, характеризует быстроту изменения значения скорости.


Доказано, что вектор в любой момент времени перпендикулярен касательной, поэтому он называется нормальным ускорением .

Значит, модуль нормального ускорения пропорционален второй степени модуля скорости в данный момент, обратно пропорционален радиусу кривизны траектории в данной точке и характеризует быстроту изменения направления скорости.

Модуль ускорения

Моментом силы относительно оси называется момент проекции силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с этой плоскостью

Момент относительно оси положителен, если сила стремится вращать плоскость перпендикулярную оси против часовой стрелки, если смотреть навстречу оси.

Момент силы относительно оси равен 0 в двух случаях:

    Если сила параллельна оси

    Если сила пересекает ось

Если линия действия и ось лежат в одной плоскости, то момент силы относительно оси равен 0.

27. Связь между моментом силы относительно оси и векторным моментом силы относительно точки.

Mz(F)=Mo(F)*cosαМомент силы, относительно оси равен прекции вектора момента сил, относительно точки оси на эту ось.

28. Основная теорема статики о приведении системы сил к заданному центру (теорема Пуансо). Главный вектор и главный момент системы сил.

Всякую пространственную систему сил в общем случае можно заменить эквивалентной системой, состоящей из одной силы, прило­женной в какой-либо точке тела (центре приведения) и равной глав­ному вектору данной системы сил, и одной пары сил, момент которой равен главному моменту всех сил относительно выбранного центра приведения.

Главным вектором системы сил называется вектор R , равный векторной сумме этих сил:

R = F 1 + F 2 + ... + F n = F i .

Для плоской системы сил ее главный вектор лежит в плоскости действия этих сил.

Главным моментом системы сил относительно центра O называется вектор L O , равный сумме векторных моментов этих сил относительно точки О:

L O = M O (F 1) + M O (F 2) + ... + M O (F n) = M O (F i).

Вектор R не зависит от выбора центра О, а вектор L O при изменении положения центра О может в общем случае изменяться.

Теорема Пуансо: Произвольную пространственную систему сил можно заменить одной силой главным вектором системы сил и парой сил с главным моментом не нарушая состояния твердого тела. Главный вектор представляет собой геометрическую сумму всех сил действующих на твердое тело и расположен в плоскости действия сил. Главный вектор рассматривается через его проекции на оси координат.

Чтобы привести силы к заданному центру приложенному в некоторой точке твердого тела необходимо: 1) перенести параллельно силу самой себе к заданному центру не изменяя модуля силы; 2) в заданном центре приложить пару сил, векторный момент которой равен векторному моменту перенесенной силы относительного нового центра, эту пару называют присоединенной парой.

Зависимость главного момента от выбора центра приведения. Главный момент относительно нового центра приведения равен геометрической сумме главного момента относительно старого центра приведения и векторного произведения радиуса-вектора, соединяющего новый центр приведения со старым, на главный вектор.

29 Частные случаи приведения пространственной системы сил

Значения главного вектора и главного момента

Результат приведения

Система сил приводится к паре сил, момент которой равен главному моменту (главный момент системы сил не зависит от выбора центра приведения О).

Система сил приводится к равнодействующей, равной , проходящей через центр О.

Система сил приводится к равнодействующей , равной главному векторуи параллельной ему и отстоит от него на расстоянии. Положение линии действия равнодействующей должно быть таким, чтобы направление ее момента относительно центра приведения О совпадало с направлениемотносительно центра О.

, причем векторы ине перпендикулярны

Система сил приводится к динаме (силовому винту) – совокупности силы и пары сил, лежащей в плоскости, перпендикулярной к этой силе.

Система сил, приложенных к твердому телу, является уравновешивающейся.

30. Приведение к динаме. Динамой в механике называют такую совокупность силыи пары сил () действующих на твердое тело, у которой сила перпендикулярна плоскости действия пары сил. Используя векторный моментпары сил, можно также определить динаму как совокупность силы и пары, у которы сила параллельна векторному моменту пары сил.

Уравнение центральной винтовой оси Предположим, что в центре приведения, принятом за начало координат, получены главный вектор с проекциями на оси координат и главный момент с проекциями При приведении системы сил к центру приведения О 1 (рис. 30) получается динама с главным вектором и главным моментом , Векторы и как образующие линаму. параллельны и поэтому могут отличаться только скалярным множителем k 0. Имеем, так как .Главные моменты и , удовлетворяют соотношению

Подставляя , получим

Координаты точки О 1 в которой получена динама, обозначим х, у, z. Тогда проекции вектора на оси координат равны координатам х, у, z. Учитывая это, (*) можно выразить в форме

где i. j ,k - единичные векторы осей координат, а векторное произведение *представлено определителем. Векторное уравнение (**) эквивалентно трем скалярным, которые после отбрасывания можно представить в виде

Полученные линейные уравнения для координат х, у, z являются уравнениями прямой линии - центральной винтовой оси. Следовательно, существует прямая, в точках которой система сил приводится к динаме.

В статье мы расскажем про момент силы относительно точки и оси, определения, рисунки и графики, какая единица измерения момента силы, работа и сила во вращательном движении, а также примеры и задачи.

Момент силы представляет собой вектор физической величины, равный произведению векторов плеча силы (радиус-вектор частицы) и силы , действующей на точку. Силовой рычаг представляет собой вектор, соединяющий точку, через которую проходит ось вращения твердого тела с точкой, к которой приложена сила.

где: r — плечо силы, F — сила приложенная на тело.

Направление вектора силы момента всегда перпендикулярно плоскости, определяемой векторами r и F.

Главный момент — любая система сил на плоскости относительно принятого полюса называется алгебраическим моментом момента всех сил этой системы относительно этого полюса.

Во вращательных движениях важны не только сами физические величины, но и то, как они расположены относительно оси вращения, то есть их моменты . Мы уже знаем, что во вращательном движении важна не только масса, но и . В случае силы, ее эффективность для запуска ускорения определяется способом приложения этой силы к оси вращения.

Взаимосвязь между силой и способом ее применения описывает МОМЕНТ СИЛЫ. Момент силы — это векторное произведение силового плеча R на вектор силы F:

Как в каждом векторном произведении, так и здесь


Следовательно, сила не будет влиять на вращение, когда угол между векторами силы F и рычагом R равен 0 o или 180 o . Каков эффект применения момента силы М ?

Мы используем второй Закон движения Ньютона и связь между канатом и угловой скоростью v = Rω в скалярной форме, действительны, когда векторы R и ω перпендикулярны друг другу

Умножив обе части уравнения на R, получим

Поскольку mR 2 = I, мы заключаем, что

Вышеуказанная зависимость справедлива и для случая материального тела. Обратите внимание, что в то время как внешняя сила дает линейное ускорение a , момент внешней силы дает угловое ускорение ε.

Единица измерения момента силы

Основной мерой измерения момента силы в системной координате СИ является: [M]=Н м

В СГС: [M]=дин см

Работа и сила во вращательном движении

Работа в линейном движении определяется общим выражением,

но во вращательном движении,

а следовательно

Исходя из свойств смешанного произведения трех векторов, можно записать

Поэтому мы получили выражение для работы во вращательном движении:

Мощность во вращательном движении:

Найдите момент силы, действующей на тело в ситуациях, показанных на рисунках ниже. Предположим, что r = 1m и F = 2N.

а) поскольку угол между векторами r и F равен 90°, то sin(a)=1:

M = r F = 1м 2N = 2Н м

б) потому что угол между векторами r и F равен 0°, поэтому sin(a)=0:

M = 0
да направленная сила не может дать точке вращательное движение .

c) поскольку угол между векторами r и F равен 30°, то sin(a)=0.5:

M = 0,5 r F = 1Н м.

Таким образом, направленная сила вызовет вращение тела , однако ее эффект будет меньше, чем в случае a) .

Момент силы относительно оси

Предположим, что данные являются точкой O (полюс) и мощность P . В точке O мы принимаем начало прямоугольной системы координат. Момент силы Р по отношению к полюсным O представляет собой вектор М из (Р ), (рисунок ниже).

Любая точка A на линии P имеет координаты (xo , yo , zo).
Вектор силы P имеет координаты Px , Py, Pz . Комбинируя точку A (xo, yo, zo) с началом системы, мы получаем вектор p . Координаты вектора силы P относительно полюса O обозначены символами Mx, My, Mz. Эти координаты могут быть вычислены как минимумы данного определителя, где (i, j, k ) — единичные векторы на осях координат (варианты): i, j, k

После решения определителя координаты момента будут равны:

Координаты вектора моментов Mo (P ) называются моментами силы относительно соответствующей оси. Например, момент силы P относительно оси Oz окружает шаблон:

Mz = Pyxo — Pxyo

Этот паттерн интерпретируется геометрически так, как показано на рисунке ниже.

На основании этой интерпретации момент силы относительно оси Oz можно определить, как момент проекции силы P на перпендикуляр оси Oz относительно точки проникновения этой плоскости осью. Проекция силы P на перпендикуляр оси обозначена Pxy , а точка проникновения плоскости Oxy — осью символом O.
Из приведенного выше определения момента силы относительно оси следует, что момент силы относительно оси равен нулю, когда сила и ось равны, в одной плоскости (когда сила параллельна оси или когда сила пересекает ось).
Используя формулы на Mx, My, Mz, мы можем рассчитать значение момента силы P относительно точки O и определить углы, содержащиеся между вектором M и осями системы:

Если сила лежит в плоскости Oxy, то zo = 0 и Pz = 0 (см. Рисунок ниже).

Момент силы P по отношению к точке (полюсу) O составляет:
Mx = 0,
My = 0,
Mo (P) = Mz = Pyxo — Pxyo .

Метка крутящего момента:
плюс (+) — вращение силы вокруг оси O по часовой стрелке,
минус (-) — вращение силы вокруг оси O против часовой стрелки.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.