Как называется график распределения случайной величины х. Биномиальный закон распределения

Правило трёх сигм.

Подставим значение? в формулу (*), получим:

Итак, с вероятностью сколь угодно близкой к единице можно утверждать, что модуль отклонения нормально распределенной случайной величины от её математического ожидания не превосходит утроенного среднего квадратического отклонения.

Центральная предельная теорема.

Центральная предельная теорема представляет собой группу теорем, посвященных установлению условий, при которых возникает нормальный закон распределения. Среди этих теорем важнейшее место принадлежит теореме Ляпунова.

Если случайная величина Х представляет собой сумму большого числа взаимно? независимых случайных величин, то есть, влияние каждой из которых на всю сумму ничтожно мало, то случайная величинаХ имеет распределение, неограниченно приближающееся к нормальному распределению.

Начальные и центральные моменты непрерывной случайной величины, асимметрия и эксцесс. Мода и медиана.

В прикладных задачах, например в математической ста­тистике, при теоретическом изучении эмпирических распре­делений, отличающихся от нормального распределения, воз­никает необходимость количественных оценок этих различий. Для этой цели введены специальные безразмерные характеристики.

Определение. Мода непрерывной случайной величины (Мо (X )) – это её наиболее вероятное значение, для которого вероятность p i или плотность вероятности f(x) достигает максимума.

Определение. Медиана непрерывной случайной величины X (Me (X )) – это такое её значение, для которого выполняется равенство:

Геометрически вертикальная прямая x = Me (X) делит площадь фигуры под кривой на две равные части.

В точке X = Me (X), функция распределения F (Me (X)) =

Найти моду Mo, медиану Me и математическое ожидание M случайной величины X с плотностью вероятности f(x) = 3x 2 , при x I [ 0; 1 ].

Плотность вероятности f (x) максимальна при x = 1, т.е. f (1) = 3, следовательно, Mo (X) = 1 на интервале [ 0; 1 ].

Для нахождения медианы обозначим Me (X) = b.

Так как Me (X) удовлетворяет условию P (X 3 = .

b 3 = ; b = » 0,79

M (X) = =+=

Отметим получившиеся 3 значения Mo (x), Me (X), M (X) на оси Ox:

Определение. Асимметрией теоретического распределения называется отношение центрального момента третьего поряд­ка к кубу среднего квадратического отклонения:

Определение. Эксцессом теоретического распределения на­зывается величина, определяемая равенством:

где ? центральный момент четвертого порядка.

Для нормального распределения . При отклоне­нии от нормального распределения асимметрия положительна, если «длинная» и более пологая часть кривой распределения расположена справа от точки на оси абсцисс, соответствую­щей моде; если эта часть кривой расположена слева от моды, то асимметрия отрицательна (рис. 1, а, б).

Эксцесс характеризует «крутизну» подъема кривой распре­деления по сравнению с нормальной кривой: если эксцесс поло­жителен, то кривая имеет более высокую и острую вершину; в случае отрицательного эксцесса сравниваемая кривая имеет более низкую и пологую вершину.

Следует иметь в виду, что при использовании указанных характеристик сравнения опорными являются предположения об одинаковых величинах математического ожидания и дис­персии для нормального и теоретического распределений.

Пример. Пусть дискретная случайная величина Х задана законом распределения:

Найти: асимметрию и эксцесс теоретического распределения.

Найдем сначала математическое ожидание слу­чайной величины:

Затем вычисляем начальные и центральные моменты 2, 3 и 4-го порядков и :

Теперь по формулам находим искомые вели­чины:

В данном случае «длинная» часть кривой распределения рас­положена справа от моды, причем сама кривая является не­сколько более островершинной, чем нормальная кривая с теми же величинами математического ожидания и дисперсии.

Теорема. Для произвольной случайной величины Х и любого числа

?>0 справедливы неравенства:

Вероятность противоположного неравенства.

Средний расход воды на животноводческой ферме составляет 1000 л в день, а среднее квадратичное отклонение этой случайной величины не превышает 200 л. Оценить вероятность того, что расход воды на ферме в любой выбранный день не превзойдет 2000 л, используя неравенство Чебышева.

Пусть X –расход воды на животноводческой ферме (л).

Дисперсия D (X ) = . Так как границы интервала 0X 2000 симметричны относительно математического ожиданияМ (Х ) = 1000, то для оценки вероятности искомого события можно применить неравенство Чебышева:

То есть не менее, чем 0,96.

Для биномиального распределения неравенство Чебышева примет вид:

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН

ЗАКОНЫ РАСПРЕДЕЛЕНИЯ СЛУЧАЙНЫХ ВЕЛИЧИН — раздел Математика, ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА Наиболее Часто Встречаются Законы Равномерного, Нормального И Показательного.

Наиболее часто встречаются законы равномерного, нормального и показательного распределения вероятностей непрерывных случайных величин.

Равномерным называется распределение вероятностей непрерывной случайной величины Х, если на интервале (а,b), которому принадлежат все возможные значения Х, плотность распределения сохраняет постоянное значение (6.1)

Функция распределения имеет вид:

Нормальным называется распределение вероятностей непрерывной случайной величины Х, плотность которого имеет вид:

Вероятность того, что случайная величина Х примет значение, принадлежащее интервалу (?; ?):

где — функция Лапласа, причем,

Вероятность того, что абсолютная величина отклонения будет меньше положительного числа?:

В частности, при а = 0, . (6.7)

Показательным (экспоненциальным) называют распределение вероятностей непрерывной случайной величины Х, которое описывается плотностью:

где? – постоянная положительная величина.

Функция распределения показательного закона:

Вероятность попадания непрерывной случайной величины Х в интервал (а, в), распределенной по показательному закону:

1. Случайная величина Х равномерно распределена в интервале (-2;N). Найти: а) дифференциальную функцию случайной величины Х; б) интегральную функцию; в) вероятность попадания случайной величины в интервал (-1;); г) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х.

2. Найти математическое ожидание и дисперсию случайной величины, равномерно распределенной в интервале: а) (5; 11); б) (-3; 5). Начертить графики этих функций.

3. Случайная величина Х равномерно распределена на интервале (2; 6), причем Д(х) = 12. Найти функции распределения случайной величины Х. Начертить графики функций.

4. Случайная величина Х распределена по закону прямоугольного треугольника (рис. 1) в интервале (0; а). Найти: а) дифференциальную функцию случайной величины Х; б) интегральную функцию; в) вероят-

ность попадания случайной величины

в интервал (); г) математическое

ожидание, дисперсию и среднее квад-

ратическое отклонение случайной

5. Случайная величина Х распределена по закону Симпсона («закону равнобедренного треугольника») (Рис. 2) на интервале (-а; а). Найти: а) дифференциальную функцию распределения вероятностей случайной величины Х;

б) интегральную функцию и построить ее график; в) вероятность попадания случайной величины в интервал (-); г) математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины Х.

6. Для исследования продуктивности определенной породы домашней птицы измеряют диаметр яиц. Наибольший поперечный диаметр яиц представляет собой случайную величину, распределенную по нормальному закону со средним значением 5 см и средним квадратическим отклонением 0,3 см. Найти вероятность того, что: а) диаметр взятого наудачу яйца будет заключен в границах от 4,7 до 6,2 см; б) отклонение диаметра от среднего не превзойдет по абсолютной величине 0,6 см.

7. Вес вылавливаемых в пруду рыб подчиняется нормальному закону распределения со средним квадратическим отклонением 150 г и математическим ожиданием а = 1000 г. Найти вероятность того, что вес пойманной рыбы будет: а) от 900 до 1300 г; б) не более 1500 г; в) не менее 800 г; г) отличаться от среднего веса по модулю не более чем на 200 г; д) начертить график дифференциальной функции случайной величины Х.

8. Урожайность озимой пшеницы по совокупности участков распределяется по нормальному закону с параметрами: а = 50 ц/га, = 10 ц/га. Определить: а) какой процент участков будет иметь урожайность свыше 40 ц/га; б) процент участков с урожайность от 45 до 60 ц/га.

9. Выборочным методом измеряется засоренность зерна, случайные ошибки измерения подчинены нормальному закону распределения со средним квадратическим отклонением 0,2 г и математическим ожиданием а = 0. Найти вероятность того, что из четырех независимых измерений ошибка хотя бы одного из них не превзойдет по абсолютной величине 0,3 г.

10. Количество зерна, собранного с каждой делянки опытного поля, есть нормально распределенная случайная величина Х, имеющая математическое ожидание а = 60 кг и среднее квадратическое отклонение равно 1,5 кг. Найти интервал, в котором с вероятностью 0,9906 будет заключена величина Х. Написать дифференциальную функцию этой случайной величины.

11. С вероятностью 0,9973 было установлено, что абсолютное отклонение живого веса случайно взятой головы крупного рогатого скота от среднего веса животного по всему стаду не превосходит 30 кг. Найти среднее квадратическое отклонение живого веса скота, считая, что распределение скота по живому весу подчиняется нормальному закону.

12. Урожайность овощей по участкам является нормально-распределенной случайной величиной с математическим ожиданием 300 ц/га и средним квадратическим отклонением 30 ц/га. С вероятностью 0,9545 определить границы, в которых будет находиться средняя урожайность овощей на участках.

13. Нормально-распределенная случайная величина Х задана дифференциальной функцией:

Определить: а) вероятность попадания случайной величины в интервал

(3; 9); б) моду и медиану случайной величины Х.

14. Торговая фирма продает однотипные изделия двух производителей. Срок службы изделий подчиняется нормальному закону. Средний срок службы изделий первого производителя составляет 5,5 тыс. часов, а второго 6 тыс. часов. Первый производитель утверждает, что с вероятностью 0,95 срок службы первого производителя находится в границах от 5 до 6 тыс. часов, а второй, с вероятностью 0,9, в границах от 5 до 7 тыс. часов. Какой производитель имеет большую колеблемость срока службы изделий.

15. Месячная заработная плата работников предприятия распределяется по нормальному закону с математическим ожиданием а = 10 тыс. руб. Известно, что 50 % работников предприятия получает заработную плату от 8 до 12 тыс. руб. Определить, какой процент работников предприятия имеет месячную заработную плату от 9 до 18 тыс. руб.

16. Написать плотность и функцию распределения показательного закона, если: а) параметр; б) ; в) . Начертить графики функций.

17. Случайная величина Х распределена по показательному закону, причем. Найти вероятность попадания случайной величины Х в интервал: а) (0; 1); б) (2; 4). М(Х), Д(Х), (Х).

18. Найти М(Х), Д(Х), (Х) показательного закона распределения случайной величины Х заданной функцией:

19. Испытываются два независимо работающих элемента. Длительность безотказной работы первого имеет показательнее распределение, второго. Найти вероятность того, что за время длительностью 20 часов: а) оба элемента будут работать; б) откажет только один элемент; в) откажет хотя бы один элемент; г) оба элемента откажут.

20. Вероятность того, что оба независимых элемента будут работать в течении 10 суток равна 0,64. Определить функцию надежности для каждого элемента, если функции одинаковы.

21. Среднее число ошибок, которые делает оператор в течение часа работы равно 2. Найти вероятность того, что за 3 часа работы оператор сделает: а) 4 ошибки; б) не менее двух ошибок; в) хотя бы одну ошибку.

22. Среднее число вызовов, поступающих на АТС в одну минуту, равно трем. Найти вероятность того, что за 2 минуты поступит: а) 4 вызова; б) не менее трех вызовов.

23. Случайная величина Х распределена по закону Коши

Непрерывные случайные величины

6. Непрерывные случайные величины

6.1. Числовые характеристики непрерывных случайных величин

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного промежутка.

Функцией распределения называют функцию F (x) ? определяющую вероятность того, что случайная величина Х в результате испытания примет значение, меньше х, т.е.

Свойства функции распределения:

1. Значения функции распределения принадлежат отрезку , т.е.

2. F (x)- неубывающая функция, т.е. если , то .

· Вероятность того, что случайная величина Х примет значение, заключенное в интервале , равна:

· Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.

Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию — первую производную от функции распределения .

Вероятность попадания непрерывной случайной величины в заданный интервал:

Нахождения функции распределения по известной плотности распределения:

Свойства плотности распределения

1. Плотность распределения неотрицательная функция:

2. Условие нормировки:

Среднее квадратическое отклонение

6.2. Равномерное распределение

Распределение вероятностей называют равномерным, если на интервале, которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение.

Плотность вероятности равномерно распределенной случайной величины

Среднее квадратическое отклонение

6.3. Нормальное распределение

Нормальным называют распределение вероятностей случайной величины, которое описывается плотностью распределения

а- математическое ожидание

среднее квадратическое отклонение

дисперсия

Вероятность попадания в интервал

Где — функция Лапласа. Данная функция табулирована, т.е. интеграл нет необходимости вычислять, необходимо пользоваться таблицей.

Вероятность отклонения случайной величины х от математического ожидания

Правило трех сигм

Если случайная величина распределена нормально, то абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратичческого отклонения.

Если быть точным, то вероятность выхода за пределы указанного интервала равна 0,27%

Вероятность нормального распределения онлайн калькулятор

6.4. Показательное распределение

Случайная величина Х распределена по показательному закону, если плотность распределения имеет вид

Среднее квадратическое отклонение

Отличительной особенностью данного распределения является то, что математическое ожидание равно среднему квадратическому отклонению.

Теория вероятностей. Случайные события (стр. 6)

12. Случайные величины Х , если , , , .

13. Вероятность изготовления бракованного изделия равна 0,0002. Вычислить вероятность того, что контролер, проверяющий качество 5000 изделий, обнаружит среди них 4 бракованных.

Х Х примет значение, принадлежащее интервалу . Построить графики функций и .

15. Вероятность безотказной работы элемента распределена по показательному закону (). Найти вероятность того, что элемент проработает безотказно в течение 50 часов.

16. Устройство состоит из 10 независимо работающих элементов. Вероятность отказа каждого элемента за время Т равна 0,05. С помощью неравенства Чебышева оценить вероятность того, что абсолютная величина разности между числом отказавших элементов и средним числом (математическим ожиданием) отказов за время Т окажется меньше двух.

17. По цели (на рис.4.1 м, м) сделано три независимых выстрела без систематической ошибки () с ожидаемым разбросом попадания м. Найти вероятность хотя бы одного попадания в цель.

1. Сколько трехзначных чисел можно составить из цифр 0,1,2,3,4,5?

2. Хор состоит из 10 участников. Сколькими способами можно выбрать в течение 3 дней по 6 участников так, чтобы каждый день были различные составы хора?

3. Сколькими способами можно разделить колоду из 52 тасованных карт пополам так, чтобы в одной половине оказалось три туза?

4. Из ящика, содержащего жетоны с номерами от 1 до 40, участники жеребьевки вытягивают жетоны. Определить вероятность того, что номер первого наудачу извлеченного жетона не содержит цифры 2.

5. На испытательном стенде в определенных условиях испытываются 250 приборов. Найти вероятность того, что в течение часа откажет хотя бы один из испытываемых приборов, если известно, что вероятность отказа в течение часа одного из этих приборов равна 0,04 и одинакова для всех приборов.

6. В пирамиде 10 винтовок, из которых 4 снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовок без оптического прицела эта вероятность равна 0,8. Стрелок поразил мишень из наудачу взятой винтовки. Найти вероятность того, что стрелок стрелял из винтовки с оптическим прицелом.

7. Прибор состоит из 10 узлов. Надежность (вероятность безотказной работы в течение времени t для каждого узла равна . Узлы выходят из строя независимо один от другого. Найти вероятность того, что за время t : а) откажет хотя бы один узел; б) откажут ровно два узла; в) откажет ровно один узел; г) откажут не менее двух узлов.

8. Испытывается каждый из 16 элементов некоторого устройства. Вероятность того, что элемент выдержит испытания, равна 0,8. Найти наивероятнейшее число элементов, которые выдержат испытание.

9. Найти вероятность того, что событие А (переключение передач) наступит 70 раз на 243-километровой трассе, если вероятность переключения на каждом километре этой трассы равна 0,25.

10. Вероятность поражения мишени при одном выстреле равна 0,8. Найти вероятность того, что при 100 выстрелах мишень будет поражена не менее 75 раз и не более 90 раз.

Х .

12. Случайные величины Х и независимы. Найти математическое ожидание и дисперсию случайной величины , если , , , .

13. Рукопись объемом в 1000 страниц машинописного текста содержит 100 опечаток. Найти вероятность того, что наудачу взятая страница содержит ровно 2 опечатки.

14. Непрерывная случайная величина Х распределена равномерно с постоянной плотностью вероятностей , где Найти 1) параметр и записать закон распределения; 2) Найти , ; 3) Найти вероятность того, что Х примет значение, принадлежащее интервалу .

15. Длительность безотказной работы элемента имеет показательное распределение (). Найти вероятность того, что за t = 24 ч элемент не откажет.

16. Непрерывная случайная величина Х распределена по нормальному закону . Найти , . Найти вероятность того, что в результате испытания Х примет значение, заключенное в интервале .

17. Задано распределение вероятностей дискретной двумерной случайной величины:

Найти закон распределения составляющих Х и ; их математические ожидания и ; дисперсии и ; коэффициент корреляции .

1. Сколько трехзначных чисел можно составить из цифр 1,2, 3, 4, 5, если каждую из этих цифр использовать не более одного раза?

2. Дано n точек, никакие 3 из которых не лежат на одной прямой. Сколько прямых можно провести, соединяя точки попарно?

Сколько можно сделать костей домино, используя числа от 0 до 9?

3. Какова вероятность того, что наудачу вырванный листок из нового календаря соответствует первому числу месяца? (Год считается не високосным).

4. В цехе имеется 3 телефона, работающих независимо друг от друга.

5. Вероятности занятости каждого из них соответственно следующие: ; ; . Найти вероятность того, что хотя бы один телефон свободен.

6. Имеются три одинаковые по виду урны. В первой урне 20 белых шаров, во второй — 10 белых и 10 черных шаров, в третьей — 20 черных шаров. Из выбранной наугад урны вынули белый шар. Найти вероятность того, что шар вынут из первой урны.

7. В некоторых районах летом в среднем 20% дней бывают дождливыми. Какова вероятность того, что в течение одной недели: а) будет хотя бы один дождливый день; б) будет ровно один дождливый день; в) число дождливых дней будет не более четырех; г) дождливых дней не будет.

8. Вероятность нарушения точности в сборке прибора составляет 0,32. Определить наиболее вероятное число точных приборов в партии на 9 штук.

9. Определить вероятность того, что при 150 выстрелах из винтовки мишень будет поражена 70 раз, если вероятность поражения мишени при одном выстреле равна 0,4.

10. Определить вероятность того, что из 1000 родившихся детей число мальчиков будет не менее 455 и не более 555, если вероятность рождения мальчиков равна 0,515.

11. Дан закон распределения дискретной случайной величины Х :

Найти: 1) значение вероятности , соответствующее значению ; 2) , , ; 3) функцию распределения ; построить ее график. Построить многоугольник распределения случайной величины Х .

12. Случайные величины Х и независимы. Найти математическое ожидание и дисперсию случайной величины , если , , , .

13. Вероятность изготовления нестандартной детали равна 0,004. Найти вероятность того, что среди 1000 деталей окажется 5 нестандартных.

14. Непрерывная случайная величина Х задана функцией распределения Найти: 1) функцию плотности ; 2) , , ; 3) вероятность того, что в результате опыта случайная величина Х примет значение, принадлежащее интервалу . Построить графики функций и .км, км. Определить вероятность двух попаданий в цель.

1. На собрании должны выступать ораторы А , В , С , D . Сколькими способами их можно разместить в списке выступающих так, чтобы В выступал после оратора А ?

2. Сколькими способами можно разложить 14 одинаковых шаров по 8-ми ящикам?

3. Сколько пятизначных чисел можно составить из цифр от 1 по 9?

4. Студент пришел на экзамен, зная лишь 24 из 32-х вопросов программы. Экзаменатор задал ему 3 вопроса. Найти вероятность того, что студент ответил на все вопросы.

5. К концу дня в магазине осталось 60 арбузов, среди которых 50 спелых. Покупатель выбирает 2 арбуза. Какова вероятность того, что оба арбуза спелые?

6. В группе спортсменов 20 бегунов, 6 прыгунов и 4 метателя молота. Вероятность того, что будет выполнена норма мастера спорта бегуном, равна 0,9; прыгуном — 0,8 и метателем — 0,75. Определить вероятность того, что наудачу вызванный спортсмен выполнит норму мастера спорта.

7. Вероятность того, что вещь, взятая напрокат, будет возвращена исправной, равна 0,8. Определить вероятность того, что из пяти взятых вещей: а) три будут возвращены исправными; б) все пять вещей будут возвращены исправными; в) будут возвращены исправными не менее двух вещей.

8. Вероятность появления брака в партии из 500 деталей равна 0,035. Определить наивероятнейшее число бракованных деталей в этой партии.

9. При производстве электрических лампочек вероятность изготовления лампы первого сорта принимается равной 0,64. Определить вероятность того, что из 100 взятых наудачу электроламп, 70 будут первого сорта.

10. Подлежат исследованию 400 проб руды. Вероятность промышленного содержания металла в каждой пробе одинакова и равна 0,8. Найти вероятность того, что число проб с промышленным содержанием металла будет заключено между 290 и 340.

11. Дан закон распределения дискретной случайной величины Х, если Х Х и ; 4) выяснить, являются ли эти величины зависимыми.

1. Сколькими способами можно рассадить 8 гостей за круглым столом так, чтобы два известных гостя сидели рядом?

2. Сколько различных «слов» можно составить, переставляя буквы слова «комбинаторика»?

3. Сколько существует треугольников, длины сторон которых принимают одно из следующих значений: 4, 5, 6, 7 см?

4. В конверте лежат буквы разрезной азбуки: О , П , Р , С , Т . Буквы тщательно перемешаны. Определить вероятность того, что, вынимая эти буквы и укладывая их рядом, получится слово «СПОРТ ‘.

5. С первого автомата на сборку поступает 20%, со второго 30%, с третьего — 50% деталей. Первый автомат дает в среднем — 0,2% брака, второй — 0,3%, третий — 1 %. Найти вероятность того, что поступившая на сборку деталь бракованная.

6. Один из трех стрелков вызывается на линию огня и производит выстрел. Цель поражена. Вероятность попадания в мишень при одном выстреле для первого стрелка равна 0,3, для второго — 0,5, для третьего — 0,8. Найти вероятность того, что выстрел произведён вторым стрелком.

7. В цехе 6 моторов. Для каждого мотора вероятность того, что он в данный момент включен, равна 0,8. Найти вероятность того, что в данный момент: а) включено 4 мотора; б) включен хотя бы один мотор; в) включены все моторы.

8. В телевизоре стоят 12 ламп. Каждая из них с вероятностью 0,4 может выйти из строя в течение гарантийного срока. Найти наивероятнейшее число ламп, вышедших из строя в течение гарантийного срока.

9. Вероятность рождения мальчика равна 0,515. Найти вероятность того, что из 200 родившихся детей мальчиков и девочек будет поровну.

10. Вероятность того, что деталь не прошла проверку ОТК, будет . Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей.

11. Дан закон распределения дискретной случайной величины Х :

  • Основные законы распределения случайной величины Учреждение образования «Белорусская государственная Кафедра высшей математики по изучению темы «Основные законы распределения случайной величины» студентами бухгалтерского факультета заочной формы получения образования (НИСПО) Основные законы распределения случайной […]
  • Штрафы гибдд лениногорск Поздно государство предпримет меры по Штрафы гибдд лениногорск взысканию вашей если Вы не обжаловали Штрафы гибдд лениногорск нужно Условные обозначения. Без регистрационных документов и без полиса ОСАГО обойдется в 500 места гиперссылки на данную статью. Должностных Штрафы гибдд лениногорск […]
  • Выходное пособие чернобыльцу: (3 + 1) или только 3? Для граждан, пострадавших вследствие Чернобыльской катастрофы (далее - чернобыльцы), Законом № 796* установлены определенные льготы и гарантии. Так, чернобыльцам, отнесенным к категории 1, среди прочего указанным Законом определено преимущественное право остаться на […]
  • Налог на дачу. Это надо знать. Думаем с мужем о да че, куда можно было бы приехать, покапаться немного в грядках, а вечером сесть в кресло-качалку у костра и ни о чём не думать. Просто отдыхать. Не понаслышке знаем, что садоводство и огородничество обходится недешево (навоз, удобрения, рассада), налоги… Какие налоги […]
  • Совет 1: Как определить закон распределения Как определить закон распределения Как построить диаграмму Парето Как найти математическое ожидание, если известна дисперсия - математический справочник; - простой карандаш; - тетрадь; - ручка. Нормальный закон распределения в 2018 Совет 2: Как […]
  • 3. СЛУЧАЙНЫЕ ВЕЛИЧИНЫ. ПОНЯТИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ Случайной величиной Называется величина, которая в результате испытаний, проводимых в одних и тех же условиях, принимает различные, вообще говоря, значения, зависящие от не учитываемых случайных факторов. Примеры случайных величин: число выпавших очков на […]
  • Ликвидация проход Sобщ-общая площадь объекта, км 2 ; N пор -число пораженных элементов объекта (зданий, цехов, сооружений, систем); Nобщ -общее число элементов объекта. Для определения числа жертв можно использовать следующее выражение: где Sпор - число жертв при внезапном взрыве; Lс -численность работающих данной […]
  • Законы излучения стефана больцмана Для реальных тел закон Стефана-Больцмана выполняется лишь качественно, то есть с ростом температуры энергетические светимости всех тел увеличиваются. Однако, для реальных тел зависимость энергетической светимости от температуры уже не описывается простым соотношением (16.7), а […]

1.2.4. Случайные величины и их распределения

Распределения случайных величин и функции распределения . Распределение числовой случайной величины – это функция, которая однозначно определяет вероятность того, что случайная величина принимает заданное значение или принадлежит к некоторому заданному интервалу.

Первое – если случайная величина принимает конечное число значений. Тогда распределение задается функцией Р(Х = х), ставящей каждому возможному значению х случайной величины Х вероятность того, что Х = х .

Второе – если случайная величина принимает бесконечно много значений. Это возможно лишь тогда, когда вероятностное пространство, на котором определена случайная величина, состоит из бесконечного числа элементарных событий. Тогда распределение задается набором вероятностей P(a < X для всех пар чисел a, b таких, что a. Распределение может быть задано с помощью т.н. функции распределения F(x) = P(Xопределяющей для всех действительных х вероятность того, что случайная величина Х принимает значения, меньшие х . Ясно, что

P(a < X

Это соотношение показывает, что как распределение может быть рассчитано по функции распределения, так и, наоборот, функция распределения – по распределению.

Используемые в вероятностно-статистических методах принятия решений и других прикладных исследованиях функции распределения бывают либо дискретными, либо непрерывными, либо их комбинациями.

Дискретные функции распределения соответствуют дискретным случайным величинам, принимающим конечное число значений или же значения из множества, элементы которого можно перенумеровать натуральными числами (такие множества в математике называют счетными). Их график имеет вид ступенчатой лестницы (рис. 1).

Пример 1. Число Х дефектных изделий в партии принимает значение 0 с вероятностью 0,3, значение 1 с вероятностью 0,4, значение 2 с вероятностью 0,2 и значение 3 с вероятностью 0,1. График функции распределения случайной величины Х изображен на рис.1.

Рис.1. График функции распределения числа дефектных изделий.

Непрерывные функции распределения не имеют скачков. Они монотонно возрастают при увеличении аргумента – от 0 при до 1 при . Случайные величины, имеющие непрерывные функции распределения, называют непрерывными.

Непрерывные функции распределения, используемые в вероятностно-статистических методах принятия решений, имеют производные. Первая производная f(x) функции распределения F(x) называется плотностью вероятности,

По плотности вероятности можно определить функцию распределения:

Для любой функции распределения

Перечисленные свойства функций распределения постоянно используются в вероятностно-статистических методах принятия решений. В частности, из последнего равенства вытекает конкретный вид констант в формулах для плотностей вероятностей, рассматриваемых ниже.

Пример 2. Часто используется следующая функция распределения:

(1)

где a и b – некоторые числа, a. Найдем плотность вероятности этой функции распределения:

(в точках x = a и x = b производная функции F(x) не существует).

Случайная величина с функцией распределения (1) называется «равномерно распределенной на отрезке [a; b ]».

Смешанные функции распределения встречаются, в частности, тогда, когда наблюдения в какой-то момент прекращаются. Например, при анализе статистических данных, полученных при использовании планов испытаний на надежность, предусматривающих прекращение испытаний по истечении некоторого срока. Или при анализе данных о технических изделиях, потребовавших гарантийного ремонта.

Пример 3. Пусть, например, срок службы электрической лампочки – случайная величина с функцией распределения F(t), а испытание проводится до выхода лампочки из строя, если это произойдет менее чем за 100 часов от начала испытаний, или до момента t 0 = 100 часов. Пусть G(t) – функция распределения времени эксплуатации лампочки в исправном состоянии при этом испытании. Тогда

Функция G(t) имеет скачок в точке t 0 , поскольку соответствующая случайная величина принимает значение t 0 с вероятностью 1-F(t 0)> 0.

Характеристики случайных величин. В вероятностно-статистических методах принятия решений используется ряд характеристик случайных величин, выражающихся через функции распределения и плотности вероятностей.

При описании дифференциации доходов, при нахождении доверительных границ для параметров распределений случайных величин и во многих иных случаях используется такое понятие, как «квантиль порядка р », где 0 < p < 1 (обозначается х р ). Квантиль порядка р – значение случайной величины, для которого функция распределения принимает значение р или имеет место «скачок» со значения меньше р до значения больше р (рис.2). Может случиться, что это условие выполняется для всех значений х, принадлежащих этому интервалу (т.е. функция распределения постоянна на этом интервале и равна р ). Тогда каждое такое значение называется «квантилем порядка р ». Для непрерывных функций распределения, как правило, существует единственный квантиль х р порядка р (рис.2), причем

F(x p) = p . (2)

Рис.2. Определение квантиля х р порядка р .

Пример 4. Найдем квантиль х р порядка р для функции распределения F(x) из (1).

При 0 < p < 1 квантиль х р находится из уравнения

т.е. х р = a + p(b – a) = a(1- p) +bp . При p = 0 любое x < a является квантилем порядка p = 0. Квантилем порядка p = 1 является любое число x > b .

Для дискретных распределений, как правило, не существует х р , удовлетворяющих уравнению (2). Точнее, если распределение случайной величины дается табл.1, где x 1 < x 2 < … < x k , то равенство (2), рассматриваемое как уравнение относительно х р , имеет решения только для k значений p , а именно,

p = p 1 ,

p = p 1 + p 2 ,

p = p 1 + p 2 + p 3 ,

p = p 1 + p 2 + … + p m , 3 < m < k ,

p = p 1 + p 2 + … + p k .

Таблица 1.

Распределение дискретной случайной величины

Для перечисленных k значений вероятности p решение х р уравнения (2) неединственно, а именно,

F(x) = p 1 + p 2 + … + p m

для всех х таких, что x m < x < x m+1 . Т.е. х р – любое число из интервала (x m ; x m+1 ]. Для всех остальных р из промежутка (0;1), не входящих в перечень (3), имеет место «скачок» со значения меньше р до значения больше р . А именно, если

p 1 + p 2 + … + p m

то х р = x m+1 .

Рассмотренное свойство дискретных распределений создает значительные трудности при табулировании и использовании подобных распределений, поскольку невозможным оказывается точно выдержать типовые численные значения характеристик распределения. В частности, это так для критических значений и уровней значимости непараметрических статистических критериев (см. ниже), поскольку распределения статистик этих критериев дискретны.

Большое значение в статистике имеет квантиль порядка р = ½. Он называется медианой (случайной величины Х или ее функции распределения F(x)) и обозначается Me(X). В геометрии есть понятие «медиана» - прямая, проходящая через вершину треугольника и делящая противоположную его сторону пополам. В математической статистике медиана делит пополам не сторону треугольника, а распределение случайной величины: равенство F(x 0,5) = 0,5 означает, что вероятность попасть левее x 0,5 и вероятность попасть правее x 0,5 (или непосредственно в x 0,5 ) равны между собой и равны ½, т.е.

P (X < x 0,5) = P (X > x 0,5) = ½.

Медиана указывает «центр» распределения. С точки зрения одной из современных концепций – теории устойчивых статистических процедур – медиана является более хорошей характеристикой случайной величины, чем математическое ожидание . При обработке результатов измерений в порядковой шкале (см. главу о теории измерений) медианой можно пользоваться, а математическим ожиданием – нет.

Ясный смысл имеет такая характеристика случайной величины, как мода – значение (или значения) случайной величины, соответствующее локальному максимуму плотности вероятности для непрерывной случайной величины или локальному максимуму вероятности для дискретной случайной величины.

Если x 0 – мода случайной величины с плотностью f(x), то, как известно из дифференциального исчисления, .

У случайной величины может быть много мод. Так, для равномерного распределения (1) каждая точка х такая, что a < x < b , является модой. Однако это исключение. Большинство случайных величин, используемых в вероятностно-статистических методах принятия решений и других прикладных исследованиях, имеют одну моду. Случайные величины, плотности, распределения, имеющие одну моду, называются унимодальными.

Математическое ожидание для дискретных случайных величин с конечным числом значений рассмотрено в главе «События и вероятности». Для непрерывной случайной величины Х математическое ожидание М(Х) удовлетворяет равенству

являющемуся аналогом формулы (5) из утверждения 2 главы «События и вероятности».

Пример 5. Математическое ожидание для равномерно распределенной случайной величины Х равно

Для рассматриваемых в настоящей главе случайных величин верны все те свойства математических ожиданий и дисперсий, которые были рассмотрены ранее для дискретных случайных величин с конечным числом значений. Однако доказательства этих свойств не приводим, поскольку они требуют углубления в математические тонкости, не являющегося необходимым для понимания и квалифицированного применения вероятностно-статистических методов принятия решений.

Замечание. В настоящем учебнике сознательно обходятся математические тонкости, связанные, в частности, с понятиями измеримых множеств и измеримых функций, -алгебры событий и т.п. Желающим освоить эти понятия необходимо обратиться к специальной литературе, в частности, к энциклопедии .

Каждая из трех характеристик – математическое ожидание, медиана, мода – описывает «центр» распределения вероятностей. Понятие «центр» можно определять разными способами – отсюда три разные характеристики. Однако для важного класса распределений – симметричных унимодальных – все три характеристики совпадают.

Плотность распределения f(x) – плотность симметричного распределения, если найдется число х 0 такое, что

. (3)

Равенство (3) означает, что график функции y = f(x) симметричен относительно вертикальной прямой, проходящей через центр симметрии х = х 0 . Из (3) следует, что функция симметричного распределения удовлетворяет соотношению

(4)

Для симметричного распределения с одной модой математическое ожидание, медиана и мода совпадают и равны х 0 .

Наиболее важен случай симметрии относительно 0, т.е. х 0 = 0. Тогда (3) и (4) переходят в равенства

(6)

соответственно. Приведенные соотношения показывают, что симметричные распределения нет необходимости табулировать при всех х , достаточно иметь таблицы при x > x 0 .

Отметим еще одно свойство симметричных распределений, постоянно используемое в вероятностно-статистических методах принятия решений и других прикладных исследованиях. Для непрерывной функции распределения

P(|X|< a) = P(-a < X < a) = F(a) – F(-a),

где F – функция распределения случайной величины Х . Если функция распределения F симметрична относительно 0, т.е. для нее справедлива формула (6), то

P(|X|< a) = 2F(a) – 1.

Часто используют другую формулировку рассматриваемого утверждения: если

.

Если и - квантили порядка и соответственно (см. (2)) функции распределения, симметричной относительно 0, то из (6) следует, что

От характеристик положения – математического ожидания, медианы, моды – перейдем к характеристикам разброса случайной величины Х : дисперсии , среднему квадратическому отклонению и коэффициенту вариации v . Определение и свойства дисперсии для дискретных случайных величин рассмотрены в предыдущей главе. Для непрерывных случайных величин

Среднее квадратическое отклонение – это неотрицательное значение квадратного корня из дисперсии:

Коэффициент вариации – это отношение среднего квадратического отклонения к математическому ожиданию:

Коэффициент вариации применяется при M(X)> 0. Он измеряет разброс в относительных единицах, в то время как среднее квадратическое отклонение – в абсолютных.

Пример 6. Для равномерно распределенной случайной величины Х найдем дисперсию, среднеквадратическое отклонение и коэффициент вариации. Дисперсия равна:

Замена переменной дает возможность записать:

где c = (b a )/ 2. Следовательно, среднее квадратическое отклонение равно а коэффициент вариации таков:

По каждой случайной величине Х определяют еще три величины – центрированную Y , нормированную V и приведенную U . Центрированная случайная величина Y – это разность между данной случайной величиной Х и ее математическим ожиданием М(Х), т.е. Y = Х – М(Х). Математическое ожидание центрированной случайной величины Y равно 0, а дисперсия – дисперсии данной случайной величины: М(Y ) = 0, D (Y ) = D (X ). Функция распределения F Y (x ) центрированной случайной величины Y связана с функцией распределения F (x ) исходной случайной величины X соотношением:

F Y (x ) = F (x + M (X )).

Для плотностей этих случайных величин справедливо равенство

f Y (x ) = f (x + M (X )).

Нормированная случайная величина V – это отношение данной случайной величины Х к ее среднему квадратическому отклонению , т.е. . Математическое ожидание и дисперсия нормированной случайной величины V выражаются через характеристики Х так:

,

где v – коэффициент вариации исходной случайной величины Х . Для функции распределения F V (x ) и плотности f V (x ) нормированной случайной величины V имеем:

где F (x ) – функция распределения исходной случайной величины Х , а f (x ) – ее плотность вероятности.

Приведенная случайная величина U – это центрированная и нормированная случайная величина:

.

Для приведенной случайной величины

Нормированные, центрированные и приведенные случайные величины постоянно используются как в теоретических исследованиях, так и в алгоритмах, программных продуктах, нормативно-технической и инструктивно-методической документации. В частности, потому, что равенства позволяют упростить обоснования методов, формулировки теорем и расчетные формулы.

Используются преобразования случайных величин и более общего плана. Так, если Y = aX + b , где a и b – некоторые числа, то

Пример 7. Если то Y – приведенная случайная величина, и формулы (8) переходят в формулы (7).

С каждой случайной величиной Х можно связать множество случайных величин Y , заданных формулой Y = aX + b при различных a > 0 и b . Это множество называют масштабно-сдвиговым семейством , порожденным случайной величиной Х . Функции распределения F Y (x ) составляют масштабно сдвиговое семейство распределений, порожденное функцией распределения F (x ). Вместо Y = aX + b часто используют запись

Число с называют параметром сдвига, а число d - параметром масштаба. Формула (9) показывает, что Х – результат измерения некоторой величины – переходит в У – результат измерения той же величины, если начало измерения перенести в точку с , а затем использовать новую единицу измерения, в d раз большую старой.

Для масштабно-сдвигового семейства (9) распределение Х называют стандартным. В вероятностно-статистических методах принятия решений и других прикладных исследованиях используют стандартное нормальное распределение, стандартное распределение Вейбулла-Гнеденко, стандартное гамма-распределение и др. (см. ниже).

Применяют и другие преобразования случайных величин. Например, для положительной случайной величины Х рассматривают Y = lg X , где lg X – десятичный логарифм числа Х . Цепочка равенств

F Y (x) = P(lg X < x) = P(X < 10 x) = F(10 x)

связывает функции распределения Х и Y .

При обработке данных используют такие характеристики случайной величины Х как моменты порядка q , т.е. математические ожидания случайной величины X q , q = 1, 2, … Так, само математическое ожидание – это момент порядка 1. Для дискретной случайной величины момент порядка q может быть рассчитан как

Для непрерывной случайной величины

Моменты порядка q называют также начальными моментами порядка q , в отличие от родственных характеристик – центральных моментов порядка q , задаваемых формулой

Так, дисперсия – это центральный момент порядка 2.

Нормальное распределение и центральная предельная теорема. В вероятностно-статистических методах принятия решений часто идет речь о нормальном распределении. Иногда его пытаются использовать для моделирования распределения исходных данных (эти попытки не всегда являются обоснованными – см. ниже). Более существенно, что многие методы обработки данных основаны на том, что расчетные величины имеют распределения, близкие к нормальному.

Пусть X 1 , X 2 ,…, X n M (X i ) = m и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Как следует из результатов предыдущей главы,

Рассмотрим приведенную случайную величину U n для суммы , а именно,

Как следует из формул (7), M (U n ) = 0, D (U n ) = 1.

(для одинаково распределенных слагаемых). Пусть X 1 , X 2 ,…, X n , …– независимые одинаково распределенные случайные величины с математическими ожиданиями M (X i ) = m и дисперсиями D (X i ) = , i = 1, 2,…, n ,… Тогда для любого х существует предел

где Ф(х) – функция стандартного нормального распределения.

Подробнее о функции Ф(х) – ниже (читается «фи от икс», поскольку Ф – греческая прописная буква «фи»).

Центральная предельная теорема (ЦПТ) носит свое название по той причине, что она является центральным, наиболее часто применяющимся математическим результатом теории вероятностей и математической статистики. История ЦПТ занимает около 200 лет – с 1730 г., когда английский математик А.Муавр (1667-1754) опубликовал первый результат, относящийся к ЦПТ (см. ниже о теореме Муавра-Лапласа), до двадцатых – тридцатых годов ХХ в., когда финн Дж.У. Линдеберг, француз Поль Леви (1886-1971), югослав В. Феллер (1906-1970), русский А.Я. Хинчин (1894-1959) и другие ученые получили необходимые и достаточные условия справедливости классической центральной предельной теоремы.

Развитие рассматриваемой тематики на этом отнюдь не прекратилось – изучали случайные величины, не имеющие дисперсии, т.е. те, для которых

(академик Б.В.Гнеденко и др.), ситуацию, когда суммируются случайные величины (точнее, случайные элементы) более сложной природы, чем числа (академики Ю.В.Прохоров, А.А.Боровков и их соратники), и т.д.

Функция распределения Ф(х) задается равенством

,

где - плотность стандартного нормального распределения, имеющая довольно сложное выражение:

.

Здесь =3,1415925… - известное в геометрии число, равное отношению длины окружности к диаметру, e = 2,718281828… - основание натуральных логарифмов (для запоминания этого числа обратите внимание, что 1828 – год рождения писателя Л.Н.Толстого). Как известно из математического анализа,

При обработке результатов наблюдений функцию нормального распределения не вычисляют по приведенным формулам, а находят с помощью специальных таблиц или компьютерных программ. Лучшие на русском языке «Таблицы математической статистики» составлены членами-корреспондентами АН СССР Л.Н. Большевым и Н.В.Смирновым .

Вид плотности стандартного нормального распределения вытекает из математической теории, которую не имеем возможности здесь рассматривать, равно как и доказательство ЦПТ.

Для иллюстрации приводим небольшие таблицы функции распределения Ф(х) (табл.2) и ее квантилей (табл.3). Функция Ф(х) симметрична относительно 0, что отражается в табл.2-3.

Таблица 2.

Функция стандартного нормального распределения.

Если случайная величина Х имеет функцию распределения Ф(х), то М(Х) = 0, D (X ) = 1. Это утверждение доказывается в теории вероятностей, исходя из вида плотности вероятностей . Оно согласуется с аналогичным утверждением для характеристик приведенной случайной величины U n , что вполне естественно, поскольку ЦПТ утверждает, что при безграничном возрастании числа слагаемых функция распределения U n стремится к функции стандартного нормального распределения Ф(х), причем при любом х .

Таблица 3.

Квантили стандартного нормального распределения.

Квантиль порядка р

Квантиль порядка р

Введем понятие семейства нормальных распределений. По определению нормальным распределением называется распределение случайной величины Х , для которой распределение приведенной случайной величины есть Ф(х). Как следует из общих свойств масштабно-сдвиговых семейств распределений (см. выше), нормальное распределение – это распределение случайной величины

где Х – случайная величина с распределением Ф(Х), причем m = M (Y ), = D (Y ). Нормальное распределение с параметрами сдвига m и масштаба обычно обозначается N (m , ) (иногда используется обозначение N (m , ) ).

Как следует из (8), плотность вероятности нормального распределения N (m , ) есть

Нормальные распределения образуют масштабно-сдвиговое семейство. При этом параметром масштаба является d = 1/ , а параметром сдвига c = - m / .

Для центральных моментов третьего и четвертого порядка нормального распределения справедливы равенства

Эти равенства лежат в основе классических методов проверки того, что результаты наблюдений подчиняются нормальному распределению. В настоящее время нормальность обычно рекомендуется проверять по критерию W Шапиро – Уилка. Проблема проверки нормальности обсуждается ниже.

Если случайные величины Х 1 и Х 2 имеют функции распределения N (m 1 , 1) и N (m 2 , 2) соответственно, то Х 1 + Х 2 имеет распределение Следовательно, если случайные величины X 1 , X 2 ,…, X n N (m , ) , то их среднее арифметическое

имеет распределение N (m , ) . Эти свойства нормального распределения постоянно используются в различных вероятностно-статистических методах принятия решений, в частности, при статистическом регулировании технологических процессов и в статистическом приемочном контроле по количественному признаку.

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных.

Распределение (хи - квадрат) – распределение случайной величины

где случайные величины X 1 , X 2 ,…, X n независимы и имеют одно и тоже распределение N (0,1). При этом число слагаемых, т.е. n , называется «числом степеней свободы» распределения хи – квадрат.

Распределение t Стьюдента – это распределение случайной величины

где случайные величины U и X независимы, U имеет распределение стандартное нормальное распределение N (0,1), а X – распределение хи – квадрат с n степенями свободы. При этом n называется «числом степеней свободы» распределения Стьюдента. Это распределение было введено в 1908 г. английским статистиком В. Госсетом, работавшем на фабрике, выпускающей пиво. Вероятностно-статистические методы использовались для принятия экономических и технических решений на этой фабрике, поэтому ее руководство запрещало В. Госсету публиковать научные статьи под своим именем. Таким способом охранялась коммерческая тайна, «ноу-хау» в виде вероятностно-статистических методов, разработанных В. Госсетом. Однако он имел возможность публиковаться под псевдонимом «Стьюдент». История Госсета - Стьюдента показывает, что еще сто лет менеджерам Великобритании была очевидна большая экономическая эффективность вероятностно-статистических методов принятия решений.

Распределение Фишера – это распределение случайной величины

где случайные величины Х 1 и Х 2 независимы и имеют распределения хи – квадрат с числом степеней свободы k 1 и k 2 соответственно. При этом пара (k 1 , k 2 ) – пара «чисел степеней свободы» распределения Фишера, а именно, k 1 – число степеней свободы числителя, а k 2 – число степеней свободы знаменателя. Распределение случайной величины F названо в честь великого английского статистика Р.Фишера (1890-1962), активно использовавшего его в своих работах.

Выражения для функций распределения хи - квадрат, Стьюдента и Фишера, их плотностей и характеристик, а также таблицы можно найти в специальной литературе (см., например, ).

Как уже отмечалось, нормальные распределения в настоящее время часто используют в вероятностных моделях в различных прикладных областях. В чем причина такой широкой распространенности этого двухпараметрического семейства распределений? Она проясняется следующей теоремой.

Центральная предельная теорема (для разнораспределенных слагаемых). Пусть X 1 , X 2 ,…, X n ,… - независимые случайные величины с математическими ожиданиями М(X 1 ), М(X 2 ),…, М(X n), … и дисперсиями D (X 1 ), D (X 2 ),…, D (X n), … соответственно. Пусть

Тогда при справедливости некоторых условий, обеспечивающих малость вклада любого из слагаемых в U n ,

для любого х .

Условия, о которых идет речь, не будем здесь формулировать. Их можно найти в специальной литературе (см., например, ). «Выяснение условий, при которых действует ЦПТ, составляет заслугу выдающихся русских ученых А.А.Маркова (1857-1922) и, в особенности, А.М.Ляпунова (1857-1918)» .

Центральная предельная теорема показывает, что в случае, когда результат измерения (наблюдения) складывается под действием многих причин, причем каждая из них вносит лишь малый вклад, а совокупный итог определяется аддитивно , т.е. путем сложения, то распределение результата измерения (наблюдения) близко к нормальному.

Иногда считают, что для нормальности распределения достаточно того, что результат измерения (наблюдения) Х формируется под действием многих причин, каждая из которых оказывает малое воздействие. Это не так. Важно, как эти причины действуют. Если аддитивно – то Х имеет приближенно нормальное распределение. Если мультипликативно (т.е. действия отдельных причин перемножаются, а не складываются), то распределение Х близко не к нормальному, а к т.н. логарифмически нормальному, т.е. не Х , а lg X имеет приблизительно нормальное распределение. Если же нет оснований считать, что действует один из этих двух механизмов формирования итогового результата (или какой-либо иной вполне определенный механизм), то про распределение Х ничего определенного сказать нельзя.

Из сказанного вытекает, что в конкретной прикладной задаче нормальность результатов измерений (наблюдений), как правило, нельзя установить из общих соображений, ее следует проверять с помощью статистических критериев. Или же использовать непараметрические статистические методы, не опирающиеся на предположения о принадлежности функций распределения результатов измерений (наблюдений) к тому или иному параметрическому семейству.

Непрерывные распределения, используемые в вероятностно-статистических методах принятия решений. Кроме масштабно-сдвигового семейства нормальных распределений, широко используют ряд других семейств распределения – логарифмически нормальных, экспоненциальных, Вейбулла-Гнеденко, гамма-распределений. Рассмотрим эти семейства.

Случайная величина Х имеет логарифмически нормальное распределение, если случайная величина Y = lg X имеет нормальное распределение. Тогда Z = ln X = 2,3026…Y также имеет нормальное распределение N (a 1 ,σ 1) , где ln X - натуральный логарифм Х . Плотность логарифмически нормального распределения такова:

Из центральной предельной теоремы следует, что произведение X = X 1 X 2 X n независимых положительных случайных величин X i , i = 1, 2,…, n , при больших n можно аппроксимировать логарифмически нормальным распределением. В частности, мультипликативная модель формирования заработной платы или дохода приводит к рекомендации приближать распределения заработной платы и дохода логарифмически нормальными законами. Для России эта рекомендация оказалась обоснованной - статистические данные подтверждают ее.

Имеются и другие вероятностные модели, приводящие к логарифмически нормальному закону. Классический пример такой модели дан А.Н.Колмогоровым , который из физически обоснованной системы постулатов вывел заключение о том, что размеры частиц при дроблении кусков руды, угля и т.п. на шаровых мельницах имеют логарифмически нормальное распределение.

Перейдем к другому семейству распределений, широко используемому в различных вероятностно-статистических методах принятия решений и других прикладных исследованиях, - семейству экспоненциальных распределений. Начнем с вероятностной модели, приводящей к таким распределениям. Для этого рассмотрим "поток событий", т.е. последовательность событий, происходящих одно за другим в какие-то моменты времени. Примерами могут служить: поток вызовов на телефонной станции; поток отказов оборудования в технологической цепочке; поток отказов изделий при испытаниях продукции; поток обращений клиентов в отделение банка; поток покупателей, обращающихся за товарами и услугами, и т.д. В теории потоков событий справедлива теорема, аналогичная центральной предельной теореме, но в ней речь идет не о суммировании случайных величин, а о суммировании потоков событий. Рассматривается суммарный поток, составленный из большого числа независимых потоков, ни один из которых не оказывает преобладающего влияния на суммарный поток. Например, поток вызовов, поступающих на телефонную станцию, слагается из большого числа независимых потоков вызовов, исходящих от отдельных абонентов. Доказано , что в случае, когда характеристики потоков не зависят от времени, суммарный поток полностью описывается одним числом - интенсивностью потока. Для суммарного потока рассмотрим случайную величину Х - длину промежутка времени между последовательными событиями. Ее функция распределения имеет вид

(10)

Это распределение называется экспоненциальным распределением, т.к. в формуле (10) участвует экспоненциальная функция e x . Величина 1/λ - масштабный параметр. Иногда вводят и параметр сдвига с , экспоненциальным называют распределение случайной величины Х + с , где распределение Х задается формулой (10).

Экспоненциальные распределения - частный случай т. н. распределений Вейбулла - Гнеденко. Они названы по фамилиям инженера В. Вейбулла, введшего эти распределения в практику анализа результатов усталостных испытаний, и математика Б.В.Гнеденко (1912-1995), получившего такие распределения в качестве предельных при изучении максимального из результатов испытаний. Пусть Х - случайная величина, характеризующая длительность функционирования изделия, сложной системы, элемента (т.е. ресурс, наработку до предельного состояния и т.п.), длительность функционирования предприятия или жизни живого существа и т.д. Важную роль играет интенсивность отказа

(11)

где F (x ) и f (x ) - функция распределения и плотность случайной величины Х .

Опишем типичное поведение интенсивности отказа. Весь интервал времени можно разбить на три периода. На первом из них функция λ(х) имеет высокие значения и явную тенденцию к убыванию (чаще всего она монотонно убывает). Это можно объяснить наличием в рассматриваемой партии единиц продукции с явными и скрытыми дефектами, которые приводят к относительно быстрому выходу из строя этих единиц продукции. Первый период называют "периодом приработки" (или "обкатки"). Именно на него обычно распространяется гарантийный срок.

Затем наступает период нормальной эксплуатации, характеризующийся приблизительно постоянной и сравнительно низкой интенсивностью отказов. Природа отказов в этот период носит внезапный характер (аварии, ошибки эксплуатационных работников и т.п.) и не зависит от длительности эксплуатации единицы продукции.

Наконец, последний период эксплуатации - период старения и износа. Природа отказов в этот период - в необратимых физико-механических и химических изменениях материалов, приводящих к прогрессирующему ухудшению качества единицы продукции и окончательному выходу ее из строя.

Каждому периоду соответствует свой вид функции λ(х) . Рассмотрим класс степенных зависимостей

λ(х) = λ 0 bx b -1 , (12)

где λ 0 > 0 и b > 0 - некоторые числовые параметры. Значения b < 1, b = 0 и b > 1 отвечают виду интенсивности отказов в периоды приработки, нормальной эксплуатации и старения соответственно.

Соотношение (11) при заданной интенсивности отказа λ(х) - дифференциальное уравнение относительно функции F (x ). Из теории дифференциальных уравнений следует, что

(13)

Подставив (12) в (13), получим, что

(14)

Распределение, задаваемое формулой (14) называется распределением Вейбулла - Гнеденко. Поскольку

то из формулы (14) следует, что величина а , задаваемая формулой (15), является масштабным параметром. Иногда вводят и параметр сдвига, т.е. функциями распределения Вейбулла - Гнеденко называют F (x - c ), где F (x ) задается формулой (14) при некоторых λ 0 и b .

Плотность распределения Вейбулла - Гнеденко имеет вид

(16)

где a > 0 - параметр масштаба, b > 0 - параметр формы, с - параметр сдвига. При этом параметр а из формулы (16) связан с параметром λ 0 из формулы (14) соотношением, указанным в формуле (15).

Экспоненциальное распределение - весьма частный случай распределения Вейбулла - Гнеденко, соответствующий значению параметра формы b = 1.

Распределение Вейбулла - Гнеденко применяется также при построении вероятностных моделей ситуаций, в которых поведение объекта определяется "наиболее слабым звеном". Подразумевается аналогия с цепью, сохранность которой определяется тем ее звеном, которое имеет наименьшую прочность. Другими словами, пусть X 1 , X 2 ,…, X n - независимые одинаково распределенные случайные величины,

X(1) = min (X 1 , X 2 ,…, X n ), X(n) = max (X 1 , X 2 ,…, X n ).

В ряде прикладных задач большую роль играют X (1) и X (n ) , в частности, при исследовании максимально возможных значений ("рекордов") тех или иных значений, например, страховых выплат или потерь из-за коммерческих рисков, при изучении пределов упругости и выносливости стали, ряда характеристик надежности и т.п. Показано, что при больших n распределения X (1) и X (n ) , как правило, хорошо описываются распределениями Вейбулла - Гнеденко. Основополагающий вклад в изучение распределений X (1) и X (n ) внес советский математик Б.В.Гнеденко. Использованию полученных результатов в экономике, менеджменте, технике и других областях посвящены труды В. Вейбулла, Э. Гумбеля, В.Б. Невзорова, Э.М. Кудлаева и многих иных специалистов.

Перейдем к семейству гамма-распределений. Они широко применяются в экономике и менеджменте, теории и практике надежности и испытаний, в различных областях техники, метеорологии и т.д. В частности, гамма-распределению подчинены во многих ситуациях такие величины, как общий срок службы изделия, длина цепочки токопроводящих пылинок, время достижения изделием предельного состояния при коррозии, время наработки до k -го отказа, k = 1, 2, …, и т.д. Продолжительность жизни больных хроническими заболеваниями, время достижения определенного эффекта при лечении в ряде случаев имеют гамма-распределение. Это распределение наиболее адекватно для описания спроса в экономико-математических моделях управления запасами (логистики).

Плотность гамма-распределения имеет вид

(17)

Плотность вероятности в формуле (17) определяется тремя параметрами a , b , c , где a >0, b >0. При этом a является параметром формы, b - параметром масштаба и с - параметром сдвига. Множитель 1/Γ(а) является нормировочным, он введен, чтобы

Здесь Γ(а) - одна из используемых в математике специальных функций, так называемая "гамма-функция", по которой названо и распределение, задаваемое формулой (17),

При фиксированном а формула (17) задает масштабно-сдвиговое семейство распределений, порождаемое распределением с плотностью

(18)

Распределение вида (18) называется стандартным гамма-распределением. Оно получается из формулы (17) при b = 1 и с = 0.

Частным случаем гамма-распределений при а = 1 являются экспоненциальные распределения (с λ = 1/ b ). При натуральном а и с =0 гамма-распределения называются распределениями Эрланга. С работ датского ученого К.А.Эрланга (1878-1929), сотрудника Копенгагенской телефонной компании, изучавшего в 1908-1922 гг. функционирование телефонных сетей, началось развитие теории массового обслуживания. Эта теория занимается вероятностно-статистическим моделированием систем, в которых происходит обслуживание потока заявок, с целью принятия оптимальных решений. Распределения Эрланга используют в тех же прикладных областях, в которых применяют экспоненциальные распределения. Это основано на следующем математическом факте: сумма k независимых случайных величин, экспоненциально распределенных с одинаковыми параметрами λ и с , имеет гамма-распределение с параметром формы а = k , параметром масштаба b = 1/λ и параметром сдвига kc . При с = 0 получаем распределение Эрланга.

Если случайная величина X имеет гамма-распределение с параметром формы а таким, что d = 2 a - целое число, b = 1 и с = 0, то 2Х имеет распределение хи-квадрат с d степенями свободы.

Случайная величина X с гвмма-распределением имеет следующие характеристики:

Математическое ожидание М(Х) = ab + c ,

Дисперсию D (X ) = σ 2 = ab 2 ,

Коэффициент вариации

Асимметрию

Эксцесс

Нормальное распределение - предельный случай гамма-распределения. Точнее, пусть Z - случайная величина, имеющая стандартное гамма-распределение, заданное формулой (18). Тогда

для любого действительного числа х , где Ф(х) - функция стандартного нормального распределения N (0,1).

В прикладных исследованиях используются и другие параметрические семейства распределений, из которых наиболее известны система кривых Пирсона, ряды Эджворта и Шарлье. Здесь они не рассматриваются.

Дискретные распределения, используемые в вероятностно-статистических методах принятия решений. Наиболее часто используют три семейства дискретных распределений - биномиальных, гипергеометрических и Пуассона, а также некоторые другие семейства - геометрических, отрицательных биномиальных, мультиномиальных, отрицательных гипергеометрических и т.д.

Как уже говорилось, биномиальное распределение имеет место при независимых испытаниях, в каждом из которых с вероятностью р появляется событие А . Если общее число испытаний n задано, то число испытаний Y , в которых появилось событие А , имеет биномиальное распределение. Для биномиального распределения вероятность принятия случайной величиной Y значения y определяется формулой

Число сочетаний из n элементов по y , известное из комбинаторики. Для всех y , кроме 0, 1, 2, …, n , имеем P (Y = y )= 0. Биномиальное распределение при фиксированном объеме выборки n задается параметром p , т.е. биномиальные распределения образуют однопараметрическое семейство. Они применяются при анализе данных выборочных исследований , в частности, при изучении предпочтений потребителей, выборочном контроле качества продукции по планам одноступенчатого контроля, при испытаниях совокупностей индивидуумов в демографии, социологии, медицине, биологии и др.

Если Y 1 и Y 2 - независимые биномиальные случайные величины с одним и тем же параметром p 0 , определенные по выборкам с объемами n 1 и n 2 соответственно, то Y 1 + Y 2 - биномиальная случайная величина, имеющая распределение (19) с р = p 0 и n = n 1 + n 2 . Это замечание расширяет область применимости биномиального распределения, позволяя объединять результаты нескольких групп испытаний, когда есть основания полагать, что всем этим группам соответствует один и тот же параметр.

Характеристики биномиального распределения вычислены ранее:

M (Y ) = np , D (Y ) = np (1- p ).

В разделе "События и вероятности" для биномиальной случайной величины доказан закон больших чисел:

для любого . С помощью центральной предельной теоремы закон больших чисел можно уточнить, указав, насколько Y / n отличается от р .

Теорема Муавра-Лапласа. Для любых чисел a и b , a < b , имеем

где Ф (х ) – функция стандартного нормального распределения с математическим ожиданием 0 и дисперсией 1.

Для доказательства достаточно воспользоваться представлением Y в виде суммы независимых случайных величин, соответствующих исходам отдельных испытаний, формулами для M (Y ) и D (Y ) и центральной предельной теоремой.

Эта теорема для случая р = ½ доказана английским математиком А.Муавром (1667-1754) в 1730 г. В приведенной выше формулировке она была доказана в 1810 г. французским математиком Пьером Симоном Лапласом (1749 – 1827).

Гипергеометрическое распределение имеет место при выборочном контроле конечной совокупности объектов объема N по альтернативному признаку. Каждый контролируемый объект классифицируется либо как обладающий признаком А , либо как не обладающий этим признаком. Гипергеометрическое распределение имеет случайная величина Y , равная числу объектов, обладающих признаком А в случайной выборке объема n , где n < N . Например, число Y дефектных единиц продукции в случайной выборке объема n из партии объема N имеет гипергеометрическое распределение, если n < N . Другой пример – лотерея. Пусть признак А билета – это признак «быть выигрышным». Пусть всего билетов N , а некоторое лицо приобрело n из них. Тогда число выигрышных билетов у этого лица имеет гипергеометрическое распределение.

Для гипергеометрического распределения вероятность принятия случайной величиной Y значения y имеет вид

(20)

где D – число объектов, обладающих признаком А , в рассматриваемой совокупности объема N . При этом y принимает значения от max{0, n - (N - D )} до min{n , D }, при прочих y вероятность в формуле (20) равна 0. Таким образом, гипергеометрическое распределение определяется тремя параметрами – объемом генеральной совокупности N , числом объектов D в ней, обладающих рассматриваемым признаком А , и объемом выборки n .

Простой случайной выборкой объема n из совокупности объема N называется выборка, полученная в результате случайного отбора, при котором любой из наборов из n объектов имеет одну и ту же вероятность быть отобранным. Методы случайного отбора выборок респондентов (опрашиваемых) или единиц штучной продукции рассматриваются в инструктивно-методических и нормативно-технических документах. Один из методов отбора таков: объекты отбирают один из другим, причем на каждом шаге каждый из оставшихся в совокупности объектов имеет одинаковые шансы быть отобранным. В литературе для рассматриваемого типа выборок используются также термины «случайная выборка», «случайная выборка без возвращения».

Поскольку объемы генеральной совокупности (партии) N и выборки n обычно известны, то подлежащим оцениванию параметром гипергеометрического распределения является D . В статистических методах управления качеством продукции D – обычно число дефектных единиц продукции в партии. Представляет интерес также характеристика распределения D / N – уровень дефектности.

Для гипергеометрического распределения

Последний множитель в выражении для дисперсии близок к 1, если N >10 n . Если при этом сделать замену p = D / N , то выражения для математического ожидания и дисперсии гипергеометрического распределения перейдут в выражения для математического ожидания и дисперсии биномиального распределения. Это не случайно. Можно показать, что

при N >10 n , где p = D / N . Справедливо предельное соотношение

и этим предельным соотношением можно пользоваться при N >10 n .

Третье широко используемое дискретное распределение – распределение Пуассона. Случайная величина Y имеет распределение Пуассона, если

,

где λ – параметр распределения Пуассона, и P (Y = y )= 0 для всех прочих y (при y=0 обозначено 0! =1). Для распределения Пуассона

M (Y ) = λ, D (Y ) = λ.

Это распределение названо в честь французского математика С.Д.Пуассона (1781-1840), впервые получившего его в 1837 г. Распределение Пуассона является предельным случаем биномиального распределения, когда вероятность р осуществления события мала, но число испытаний n велико, причем np = λ. Точнее, справедливо предельное соотношение

Поэтому распределение Пуассона (в старой терминологии «закон распределения») часто называют также «законом редких событий».

Распределение Пуассона возникает в теории потоков событий (см. выше). Доказано, что для простейшего потока с постоянной интенсивностью Λ число событий (вызовов), происшедших за время t , имеет распределение Пуассона с параметром λ = Λt . Следовательно, вероятность того, что за время t не произойдет ни одного события, равна e - Λ t , т.е. функция распределения длины промежутка между событиями является экспоненциальной.

Распределение Пуассона используется при анализе результатов выборочных маркетинговых обследований потребителей, расчете оперативных характеристик планов статистического приемочного контроля в случае малых значений приемочного уровня дефектности, для описания числа разладок статистически управляемого технологического процесса в единицу времени, числа «требований на обслуживание», поступающих в единицу времени в систему массового обслуживания, статистических закономерностей несчастных случаев и редких заболеваний, и т.д.

Описание иных параметрических семейств дискретных распределений и возможности их практического использования рассматриваются в литературе.


В некоторых случаях, например, при изучении цен, объемов выпуска или суммарной наработки на отказ в задачах надежности, функции распределения постоянны на некоторых интервалах, в которые значения исследуемых случайных величин не могут попасть.

Предыдущая

Нормальный закон распределения наиболее часто встречается на практике. Главная особенность, выделяющая его среди других законов, состоит в том, что он является предельным законом, к которому приближаются другие законы распределения при весьма часто встречающихся типичных условиях (см. гл. 6).

Определение. Непрерывная случайная величина X имеет нормальный закон распределения (закон Гаусса) с параметрами а и а 2 , если ее плотность вероятности имеет вид

Термин «нормальный» не совсем удачный. Многие признаки подчиняются нормальному закону, например, рост человека, дальность полета снаряда и т.п. Но если какой-либо признак подчиняется другому, отличному от нормального, закону распределения, то это вовсе не говорит о «ненормальности» явления, связанного с этим признаком.

Кривую нормального закона распределения называют нормальной , или гауссовой , кривой. На рис. 4.6, а , 6 приведены нормальная кривая фд, (х) с параметрами йио 2 , т.е. И[а а 2), и график функции распределения случайной величины X , имеющей нормальный закон. Обратим внимание на то, что нормальная кривая симметрична относительно прямой х = а, имеет максимум в точке х = а ,

равный , т.е.

И две точки перегиба х = а±

с ординатой

Можно заметить, что в выражении плотности нормального закона параметры обозначены буквами а и ст 2 , которыми мы обозначаем математическое ожидание М(Х ) и дисперсию О(Х). Такое совпадение неслучайно. Рассмотрим теорему, устанавливающую теоретико-вероятностный смысл параметров нормального закона.

Теорема. Математическое ожидание случайной величины X, распределенной по нормальному закону, равно параметру а этого закона, т.е.

а ее дисперсия - параметру а 2 , т.е.

Математическое ожидание случайной величины X:

Произведем замену переменной, положив

Тогда пределы интегрирования не меняются

и, следовательно,

(первый интеграл равен нулю как интеграл от нечетной функции по симметричному относительно начала координат промежутку, а второй интеграл - интеграл Эйлера - Пуассона).

Дисперсия случайной величины X:

Сделаем ту же замену переменной х = а + о^2 t, как и при вычислении предыдущего интеграла. Тогда

Применяя метод интегрирования по частям, получим

Выясним, как будет меняться нормальная кривая при изменении параметров а и с 2 (или а). Если а = const, и меняется параметр а {а х а 3), т.е. центр симметрии распределения, то нормальная кривая будет смещаться вдоль оси абсцисс, не меняя формы (рис. 4.7).

Если а = const и меняется параметр а 2 (или а), то меняется ордината

максимума кривой При увеличении а ордината максимума

кривой уменьшается, но так как площадь под любой кривой распределения должна оставаться равной единице, то кривая становится более плоской, растягиваясь вдоль оси абсцисс; при уменьшении су, напротив, нормальная кривая вытягивается вверх, одновременно сжимаясь с боков. На рис. 4.8 показаны нормальные кривые с параметрами а 1(о 2 и а 3 , где о, а (он же математическое ожидание) характеризует положение центра, а параметр а 2 (он же дисперсия) - фор м у нормальной кривой.

Нормальный закон распределения случайной величины X с параметрами а = 0, ст 2 = 1, г.е. X ~ N(0; 1), называется стандартным или нормированным, а соответствующая нормальная кривая - стандартной или нормированной.

Сложность непосредственного нахождения функции распределения случайной величины, распределенной по нормальному закону, по формуле (3.23) и вероятности ее попадания на некоторый промежуток по формуле (3.22) связана с гем, что интеграл от функции (4.26) является «нсберу- щимся» в элементарных функциях. Поэтому их выражают через функцию

- функцию (интеграл вероятностей) Лапласа, для которой составлены таблицы. Напомним, что функция Лапласа уже встречалась нам при рассмотрении интегральной теоремы Муавра - Лапласа (см. параграф 2.3). Там же были рассмотрены ее свойства. Геометрически функция Лапласа Ф(.с) представляет собой площадь под стандартной нормальной кривой на отрезке [-х; х ] (рис. 4.9) 1 .

Рис. 4.10

Рис. 4.9

Теорема. Функция распределения случайной величины X, распределенной по нормальному закону, выражается через функцию Лапласа Ф(х) по формуле

По формуле (3.23) функция распределения:

Сделаем замену переменной, полагая при X -> -оо? -» -00, поэтому

1 Наряду с интегралом вероятностей вида (4.29), представляющим функцию Ф(х), в литературе используется его выражения и в виде других табулированных функций:

представляющих собой площади иод стандартной нормальной кривой соответственно на интервалах (0; х], (-оо; х], [-х>/2; Хл/2.

Первый интеграл

(в силу четности подынтегральной функции и того, что интеграл Эйлера - Пуассона равен ).

Второй интеграл с учетом формулы (4.29) составляет

Геометрически функция распределения представляет собой площадь под нормальной кривой на интервале (-со, х) (рис. 4.10). Как видим, она состоит из двух частей: первой, на интервале (-оо, а), равной 1/2, т.е. половине всей площади под нормальной кривой, и второй, на интервале (я, х),

равной

Рассмотрим свойства случайной величины, распределенной по нормальному закону.

1. Вероятность попадания случайной величины X, распределенной по нормальному закону, в интервал [х 1(х 2 ], равна

Учитывая, что согласно свойству (3.20) вероятность Р(х,

где и Г 2 определяются по формуле (4.33) (рис. 4.11). ?

2. Вероятность того, что отклонение случайной величины X, распределенной по нормальному закону, от математического ожидания а не превысит величину А > 0 (по абсолютной величине), равна

а также свойство нечетности функции Лапласа, получим

где? =Д/о (рис. 4.12). ?

На рис. 4.11 и 4.12 приведена геометрическая интерпретация свойств нормального закона .

Замечание. Рассмотренная в гл. 2 приближенная интегральная формула Муавра - Лапласа (2.10) следует из свойства (4.32) нормально распределенной случайной величины при х { = а, х 2 = Ь } а = пр и так

как биномиальный закон распределения случайной величины X = т с параметрами п и р, для которого получена эта формула, при п -> ос стремится к нормальному закону (см. гл. 6).

Аналогично и следствия (2.13), (2.14) и (2.16) интегральной формулы Муавра - Лапласа для числа X = т появления события в п независимых испытаниях и его частости т/п вытекают из свойств (4.32) и (4.34) нормального закона.

Вычислим по формуле (4.34) вероятности Р(Х-а д) при различных значениях Д (используем табл. II приложений). Получим

Отсюда вытекает «правило трех сигм».

Если случайная величина X имеет нормальный закон распределения с параметрами а и а 2 , т.е. М(а; а 2), то практически достоверно, что ее значения заключены в интервале (а - За, а + За).

Нарушение «правила трех сигм», т.е. отклонение нормально распределенной случайной величины X больше, чем на За (но абсолютной величине), является событием практически невозможным, так как его вероятность весьма мала:

Заметим, что отклонение Д в, при котором , называется

вероятным отклонением. Для нормального закона Д в « 0,675а, т.е. на интервал (а - 0,675а, а + 0,675а) приходится половина всей площади под нормальной кривой.

Найдем коэффициент асимметрии и эксцесс случайной величины X, распределенной по нормальному закону.

Очевидно, в силу симметрии нормальной кривой относительно вертикальной прямой х = а, проходящей через центр распределения а = М(Х), коэффициент асимметрии нормального распределения Л = 0.

Эксцесс нормально распределенной случайной величины X найдем по формуле (3.37), т.е.

где учли, что центральный момент 4-го порядка, найденный по формуле (3.30) с учетом определения (4.26), т.е.

(вычисление интеграла опускаем).

Таким образом, эксцесс нормального распределения равен нулю и крутость других распределений определяется по отношению к нормальному (об этом мы уже упоминали в параграфе 3.7).

О Пример 4.9. Полагая, что рост мужчин определенной возраст-ной группы есть нормально распределенная случайная величинах X с параметрами а = 173 и а 2 =36:

  • 1) Найти: а) выражение плотности вероятности и функции распределения случайной величины X; б) доли костюмов 4-го роста (176-182 см) и 3-го роста (170-176 см), которые нужно предусмотреть в общем объеме производства для данной возрастной группы; в) квантиль х 07 и 10%-ную точку случайной величины X.
  • 2) Сформулировать «правило трех сигм» для случайной величины X. Решение. 1, а) По формулам (4.26) и (4.30) запишем

1, б) Доля костюмов 4-го роста (176-182 см) в общем объеме производства определится по формуле (4.32) как вероятность


(рис. 4.14), так как по формулам (4.33)

Долю костюмов 3-го роста (170-176 см) можно было определить аналогично но формуле (4.32), но проще это сделать по формуле (4.34), если учесть, что данный интервал симметричен относительно математического ожидания а = М(Х) = 173, т.е. неравенство 170 X Х -173|

(см. рис. 4.14;.

1, в) Квантиль х 07 (см. параграф 3.7) случайной величины X найдем из уравнения (3.29) с учетом формулы (4.30):

откуда

По табл. 11 приложений находим I- 0,524 и

Это означает, что 70% мужчин данной возрастной группы имеют рост до 176 см.

  • 10%-ная точка - эго квантиль х 09 = 181 см (находится аналогично), т.е. 10% мужчин имеют рост не менее 181 см.
  • 2) Практически достоверно, что рост мужчин данной возрастной группы заключен в границах от а - Зет = 173 - 3 6 = 155 до а + Зет = 173 + 3 - 6 = = 191 (см), т.е. 155

    В силу особенностей нормального закона распределения, отмеченных в начале параграфа (и в гл. 6), он занимает центральное место в теории и практике вероятностно-статистических методов. Большое теоретическое значение нормального закона состоит в том, что с его помощью получен ряд важных распределений, рассматриваемых ниже.

    • Стрелками на рис. 4.11-4.13 отмечены условно п л о щ а д и соответствующих фигурпод нормальной кривой.
    • Значения функции Лапласа Ф(х) определяем но табл. II приложений.

Во многих задачах, связанных с нормально распределенными случайными величинами, приходится определять вероятность попадания случайной величины , подчиненной нормальному закону с параметрами , на участок от до . Для вычисления этой вероятности воспользуемся общей формулой

где - функция распределения величины .

Найдем функцию распределения случайной величины , распределенной по нормальному закону с параметрами . Плотность распределения величины равна:

. (6.3.2)

Отсюда находим функцию распределения

. (6.3.3)

Сделаем в интеграле (6.3.3) замену переменной

и приведем его к виду:

(6.3.4)

Интеграл (6.3.4) не выражается через элементарные функции, но его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или (так называемый интеграл вероятностей), для которого составлены таблицы. Существует много разновидностей таких функций, например:

;

и т.д. Какой из этих функций пользоваться – вопрос вкуса. Мы выберем в качестве такой функции

. (6.3.5)

Нетрудно видеть, что эта функция представляет собой не что иное, как функцию распределения для нормально распределенной случайной величины с параметрами .

Условимся называть функцию нормальной функцией распределения. В приложении (табл. 1) приведены таблицы значений функции .

Выразим функцию распределения (6.3.3) величины с параметрами и через нормальную функцию распределения . Очевидно,

. (6.3.6)

Теперь найдем вероятность попадания случайной величины на участок от до . Согласно формуле (6.3.1)

Таким образом, мы выразили вероятность попадания на участок случайной величины , распределенной по нормальному закону с любыми параметрами, через стандартную функцию распределения , соответствующую простейшему нормальному закону с параметрами 0,1. Заметим, что аргументы функции в формуле (6.3.7) имеют очень простой смысл: есть расстояние от правого конца участка до центра рассеивания, выраженное в средних квадратических отклонениях; - такое же расстояние для левого конца участка, причем это расстояние считается положительным, если конец расположен справа от центра рассеивания, и отрицательным, если слева.

Как и всякая функция распределения, функция обладает свойствами:

3. - неубывающая функция.

Кроме того, из симметричности нормального распределения с параметрами относительно начала координат следует, что

Пользуясь этим свойством, собственно говоря, можно было бы ограничить таблицы функции только положительными значениями аргумента, но, чтобы избежать лишней операции (вычитание из единицы), в таблице 1 приложения приводятся значения как для положительных, так и для отрицательных аргументов.

На практике часто встречается задача вычисления вероятности попадания нормально распределенной случайной величины на участок, симметричный относительно центра рассеивания . Рассмотрим такой участок длины (рис. 6.3.1). Вычислим вероятность попадания на этот участок по формуле (6.3.7):

Учитывая свойство (6.3.8) функции и придавая левой части формулы (6.3.9) более компактный вид, получим формулу для вероятности попадания случайной величины, распределенной по нормальному закону на участок, симметричный относительно центра рассеивания:

. (6.3.10)

Решим следующую задачу. Отложим от центра рассеивания последовательные отрезки длиной (рис. 6.3.2) и вычислим вероятность попадания случайной величины в каждый из них. Так как кривая нормального закона симметрична, достаточно отложить такие отрезки только в одну сторону.

По формуле (6.3.7) находим:

(6.3.11)

Как видно из этих данных, вероятности попадания на каждый из следующих отрезков (пятый, шестой и т.д.) с точностью до 0,001 равны нулю.

Округляя вероятности попадания в отрезки до 0,01 (до 1%), получим три числа, которые легко запомнить:

0,34; 0,14; 0,02.

Сумма этих трех значений равна 0,5. Это значит, что для нормально распределенной случайной величины все рассеивания (с точностью до долей процента) укладывается на участке .

Это позволяет, зная среднее квадратическое отклонение и математическое ожидание случайной величины, ориентировочно указать интервал её практически возможных значений. Такой способ оценки диапазона возможных значений случайной величины известен в математической статистике под названием «правило трех сигма». Из правила трех сигма вытекает также ориентировочный способ определения среднего квадратического отклонения случайной величины: берут максимальное практически возможное отклонение от среднего и делят его на три. Разумеется, этот грубый прием может быть рекомендован, только если нет других, более точных способов определения .

Пример 1. Случайная величина , распределенная по нормальному закону, представляет собой ошибку измерения некоторого расстояния. При измерении допускается систематическая ошибка в сторону завышения на 1,2 (м); среднее квадратическое отклонения ошибки измерения равно 0,8 (м). Найти вероятность того, что отклонение измеренного значения от истинного не превзойдет по абсолютной величине 1,6 (м).

Решение. Ошибка измерения есть случайная величина , подчиненная нормальному закону с параметрами и . Нужно найти вероятность попадания этой величины на участок от до . По формуле (6.3.7) имеем:

Пользуясь таблицами функции (приложение, табл. 1), найдем:

; ,

Пример 2. Найти ту же вероятность, что и в предыдущем примере, но при условии, что систематической ошибки нет.

Решение. По формуле (6.3.10), полагая , найдем:

.

Пример 3. По цели, имеющей вид полосы (автострада), ширина которой равна 20 м, ведется стрельба в направлении, перпендикулярном автостраде. Прицеливание ведется по средней линии автострады. Среднее квадратическое отклонение в направлении стрельбы равно м. Имеется систематическая ошибка в направлении стрельбы: недолет 3 м. Найти вероятность попадания в автостраду при одном выстреле.

– количество мальчиков среди 10 новорождённых.

Совершенно понятно, что это количество заранее не известно, и в очередном десятке родившихся детей может оказаться:

Либо мальчиков – один и только один из перечисленных вариантов.

И, дабы соблюсти форму, немного физкультуры:

– дальность прыжка в длину (в некоторых единицах) .

Её не в состоянии предугадать даже мастер спорта:)

Тем не менее, ваши гипотезы?

2) Непрерывная случайная величина – принимает все числовые значения из некоторого конечного или бесконечного промежутка.

Примечание : в учебной литературе популярны аббревиатуры ДСВ и НСВ

Сначала разберём дискретную случайную величину, затем – непрерывную .

Закон распределения дискретной случайной величины

– этосоответствие между возможными значениями этой величины и их вероятностями. Чаще всего закон записывают таблицей:

Довольно часто встречается термин ряд распределения , но в некоторых ситуациях он звучит двусмысленно, и поэтому я буду придерживаться «закона».

А теперь очень важный момент : поскольку случайная величина обязательно примет одно из значений , то соответствующие события образуют полную группу и сумма вероятностей их наступления равна единице:

или, если записать свёрнуто:

Так, например, закон распределения вероятностей выпавших на кубике очков имеет следующий вид:

Без комментариев.

Возможно, у вас сложилось впечатление, что дискретная случайная величина может принимать только «хорошие» целые значения. Развеем иллюзию – они могут быть любыми:

Пример 1

Некоторая игра имеет следующий закон распределения выигрыша:

…наверное, вы давно мечтали о таких задачах:) Открою секрет – я тоже. В особенности после того, как завершил работу над теорией поля .

Решение : так как случайная величина может принять только одно из трёх значений, то соответствующие события образуют полную группу , а значит, сумма их вероятностей равна единице:

Разоблачаем «партизана»:

– таким образом, вероятность выигрыша условных единиц составляет 0,4.

Контроль: , в чём и требовалось убедиться.

Ответ :

Не редкость, когда закон распределения требуется составить самостоятельно. Для этого используют классическое определение вероятности , теоремы умножения / сложения вероятностей событий и другие фишки тервера :

Пример 2

В коробке находятся 50 лотерейных билетов, среди которых 12 выигрышных, причём 2 из них выигрывают по 1000 рублей, а остальные – по 100 рублей. Составить закон распределения случайной величины – размера выигрыша, если из коробки наугад извлекается один билет.

Решение : как вы заметили, значения случайной величины принято располагать в порядке их возрастания . Поэтому мы начинаем с самого маленького выигрыша, и именно рублей.

Всего таковых билетов 50 – 12 = 38, и по классическому определению :
– вероятность того, что наудачу извлечённый билет окажется безвыигрышным.

С остальными случаями всё просто. Вероятность выигрыша рублей составляет:

Проверка: – и это особенно приятный момент таких заданий!

Ответ : искомый закон распределения выигрыша:

Следующее задание для самостоятельного решения:

Пример 3

Вероятность того, что стрелок поразит мишень, равна . Составить закон распределения случайной величины – количества попаданий после 2 выстрелов.

…я знал, что вы по нему соскучились:) Вспоминаем теоремы умножения и сложения . Решение и ответ в конце урока.

Закон распределения полностью описывает случайную величину, однако на практике бывает полезно (а иногда и полезнее) знать лишь некоторые её числовые характеристики .

Математическое ожидание дискретной случайной величины

Говоря простым языком, это среднеожидаемое значение при многократном повторении испытаний. Пусть случайная величина принимает значения с вероятностями соответственно. Тогда математическое ожидание данной случайной величины равно сумме произведений всех её значений на соответствующие вероятности:

или в свёрнутом виде:

Вычислим, например, математическое ожидание случайной величины – количества выпавших на игральном кубике очков:

Теперь вспомним нашу гипотетическую игру:

Возникает вопрос: а выгодно ли вообще играть в эту игру? …у кого какие впечатления? Так ведь «навскидку» и не скажешь! Но на этот вопрос можно легко ответить, вычислив математическое ожидание, по сути – средневзвешенный по вероятностям выигрыш:

Таким образом, математическое ожидание данной игры проигрышно .

Не верь впечатлениям – верь цифрам!

Да, здесь можно выиграть 10 и даже 20-30 раз подряд, но на длинной дистанции нас ждёт неминуемое разорение. И я бы не советовал вам играть в такие игры:) Ну, может, только ради развлечения .

Из всего вышесказанного следует, что математическое ожидание – это уже НЕ СЛУЧАЙНАЯ величина.

Творческое задание для самостоятельного исследования:

Пример 4

Мистер Х играет в европейскую рулетку по следующей системе: постоянно ставит 100 рублей на «красное». Составить закон распределения случайной величины – его выигрыша. Вычислить математическое ожидание выигрыша и округлить его до копеек. Сколько в среднем проигрывает игрок с каждой поставленной сотни?

Справка : европейская рулетка содержит 18 красных, 18 чёрных и 1 зелёный сектор («зеро»). В случае выпадения «красного» игроку выплачивается удвоенная ставка, в противном случае она уходит в доход казино

Существует много других систем игры в рулетку, для которых можно составить свои таблицы вероятностей. Но это тот случай, когда нам не нужны никакие законы распределения и таблицы, ибо доподлинно установлено, что математическое ожидание игрока будет точно таким же. От системы к системе меняется лишь

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.