Понятие многогранника правильные многогранники. Симметрия в пространстве

Главная > Реферат

МИНИСТЕРСТВО ОБРАЗОВАНИЯ

СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА №3

РЕФЕРАТ

по геометрии

Тема:

«Многогранники».

Выполнила: ученица 11-«б» классаМОУ СОШ №3Алябьева Юлия.Проверила: преподаватель математикиСергеева Любовь Алексеевна.

г. Железноводск

План

I. Введение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 II. Теоретическая часть
    Двугранный угол. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Трехгранный и многогранный углы. . . . . . . . . . . . . . . . 4 Многогранник. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Призма. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Изображение призмы и построение ее сечений. . . . . 7 Прямая призма. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Параллелепипед. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Центральная симметрия параллелепипеда. . . . . . . . 10 Прямоугольный параллелепипед. . . . . . . . . . . . . . . . . . 11
10. Симметрия прямоугольного параллелепипеда. . . . 12 11. Пирамида. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 12. Построение пирамиды и ее плоских сечений. . . . . . 13 13. Усеченная пирамида. . . . . . . . . . . . . . . . . . . . . . . . . . . 15 14. Правильная пирамида. . . . . . . . . . . . . . . . . . . . . . . . . 15 15. Правильные многогранники. . . . . . . . . . . . . . . . . . . . 16 III. Практическая часть. . . . . . . . . . . . . . . . . . . . . . . . . . . 17 IV. Заключение. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 V. Литература. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

I. Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета. Ни одни геометрические тела не обладают таким совершенством и красотой, как многогранники. "Многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

II. Теоретическая часть.

1. Двугранный угол Двугранным углом называется фигура, образованная двумя "полуплоскостями с общей ограничивающей их прямой (рис. 1). Полуплоскости называются гранями, а ограничивающая их прямая - ребром двугранного угла. Плоскость, перпендикулярная ребру двугранного угла, пересекает его грани по двум полупрямым. Угол, образованный этими полупрямыми, называется линейным. углом двугранного угла. За меру двугранного угла принимается мера соответствующего ему линейного угла. Все линейные углы двугранного угла совмещаются параллельным переносом, а значит, равны. Поэтому мера двугранного угла не зависит от выбора линейного угла. 2. Трехгранный и многогранный углы Рассмотрим три луча а, Ь, с, исходящие из одной точки и не лежащие в одной плоскости. Трехгранным углом (abc) называется фигура, составленная "из трех плоских углов (аЬ), (Ьс) и (ас) (рис. 2). Эти углы называются гранями трехгранного угла, а их стороны - ребрами, общая вершина плоских углов называется вершиной трехгранного угла. Двугранные углы, образованные гранями трехгранного угла, называются двугранными углами трехгранного угла. Аналогично определяется понятие многогранного угла (рис. 3).

3. Многогранник

В стереометрии изучаются фигуры в пространстве, называемые телами. Наглядно (геометрическое) тело надо представлять себе как часть пространства, занятую физическим телом и ограниченную поверхностью. Многогранник - это такое тело, поверхность которого состоит из конечного числа плоских многоугольников (рис. 4). Многогранник называется выпуклым, если он расположен по одну сторону плоскости каждого плоского многоугольника на его поверхности. Общая часть такой плоскости и поверхности выпуклого многогранника называется гранью. Грани выпуклого многогранника являются плоскими выпуклыми многоугольниками. Стороны граней называются ребрами многогранника, а вершины - вершинами многогранника. Поясним сказанное на примере знакомого вам куба (рис. 5). Куб есть выпуклый многогранник. Его поверхность состоит из шести квадратов: ABCD, BEFC, .... Они являются его гранями. Ребрами куба являются стороны этих квадратов: АВ, ВС, BE,... . Вершинами куба являются вершины квадратов: А, В, С, D, Е, .... У куба шесть граней, двенадцать ребер и восемь вершин.Простейшим многогранникам - призмам и пирамидам, которые будут основным объектом нашего изучения,- мы дадим такие определения, которые, по существу, не используют понятие тела. Они будут определены как геометрические фигуры с указанием всех принадлежащих им точек пространства. Понятие геометрического тела и его поверхности в общем случае будет дано позже.

4. Призма

Призмой называется многогранник, который состоит из двух плоских многоугольников, лежащих в разных плоскостях и совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих многоугольников (рис. 6). Многоугольники называются основаниями призмы, а отрезки, соединяющие соответствующие вершины,- боковыми ребрами призмы. Так как параллельный перенос есть движение, то основания призмы равны. Так как при параллельном переносе плоскость переходит в параллельную плоскость (или в себя), то у призмы основания лежат в параллельных плоскостях.Так как при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то у призмы боковые ребра параллельны и равны. Поверхность призмы состоит из оснований и боковой поверхности. Боковая поверхность состоит из параллелограммов. У каждого из этих параллелограммов две стороны являются соответствующими сторонами оснований, а две другие - соседними боковыми ребрами. Высотой призмы называется расстояние между плоскостями её оснований. Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани, называется диагональю призмы. Призма называется n-угольной, если ее основания - n-угольники. В дальнейшем мы будем рассматривать только призмы, у которых основания - выпуклые многоугольники. Такие призмы являются выпуклыми многогранниками. На рисунке 6 изображена пятиугольная призма. У нее основаниями являются пятиугольники А 1 А 2 ...А 5 , А 1 А" 2 ...А" 5 . XX" - отрезок, соединяющий соответствующие точки оснований. Боковые ребра призмы-отрезки А 1 А" 2 , А 1 А" 2 , ..., А 5 А" 5 . Боковые грани призмы - параллелограммы А 1 А 2 А" 2 А 1 , А 2 А 3 А 3 А" 2 , ... .

5. Изображение призмы и построение ее сечений

В соответствии с правилами параллельного проектирования изображение призмы строится следующим образом. Сначала строится одно из оснований Р (рис. 7). Это будет некоторый плоский многоугольник. Затем из вершин многоугольника Р проводятся боковые ребра призмы в виде параллельных отрезков равной длины. Концы этих отрезков соединяются, и получается другое основание призмы. Невидимые ребра проводятся штриховыми линиями. Сечения призмы плоскостями, параллельными боковым ребрам, являются параллелограммами. В частности, параллелограммами являются диагональные сечения. Это сечения плоскостями, проходящими через два боковых ребра, не принадлежащих одной грани (рис. 8). На практике, в частности, при решении задач часто приходится строить сечение призмы плоскостью, проходящей через заданную прямую g на плоскости одного из оснований призмы. Такая прямая называется следом секущей плоскости на плоскости основания. Для построения сечения призмы достаточно построить отрезки пересечения секущей плоскости с гранями призмы. Покажем, как строится такое сечение, если известна какая-нибудь точка А на поверхности призмы, принадлежащая сечению (рис. 9). Если данная точка А принадлежит другому основанию призмы, то его пересечение с секущей плоскостью представляет собой отрезок ВС, параллельный следу g и содержащий данную точку А (рис. 9, а). Если данная точка А принадлежит боковой грани, то пересечение этой грани с секущей плоскостью строится, как показано на рисунке 9,б. Именно: сначала строится точка D, в которой плоскость грани пересекает заданный след g. Затем проводится прямая через точки А и D. Отрезок ВС прямой AD на рассматриваемой грани и есть пересечение этой грани с секущей плоскостью. Если грань, содержащая точку А, параллельна следу g, то секущая плоскость пересекает эту грань по отрезку ВС, проходящему через точку А и параллельному прямой g.

Концы отрезка ВС принадлежат и соседним граням. Поэтому описанным способом можно построить пересечение этих граней с нашей секущей плоскостью. И т. д. На рисунке 10 показано построение сечения четырехугольной призмы плоскостью, проходящей через прямую а в плоскости нижнего основания призмы и точку А на одном из боковых ребер. 6. Прямая призма Призма называется прямой, если ее боковые ребра перпендикулярны основаниям. В противном случае призма называется наклонной. У прямой призмы боковые грани являются прямоугольниками. При изображении прямой призмы на рисунке боковые ребра обычно проводят вертикально (рис. 11). Прямая призма называется правильной, если ее основания являются правильными многоугольниками. Боковой поверхностью призмы (точнее, площадью боковой поверхности) называется сумма площадей боковых граней. Полная поверхность призмы равна сумме боковой поверхности и площадей оснований. Теорема 19.1. Боковая поверхность прямой призмы равна произведению периметра основания на высоту призмы, т. е. .на длину бокового ребра. Доказательство. Боковые грани прямой призмы - прямоугольники. Основания этих прямоугольников являются сторонами многоугольника, лежащего в основании призмы, а высоты равны длине боковых ребер. Отсюда следует, что боковая поверхность призмы равна

S=a 1 l+a 1 l+...+a n l=pl,

где a 1 ,..., a n - длины ребер основания, р - периметр основания призмы, а 1 - длина боковых ребер. Теорема доказана. 7. Параллелепипед Если основание призмы есть параллелограмм, то она называется параллелепипедом. У параллелепипеда все грани - параллелограммы. На рисунке 12, а изображен наклонный параллелепипед, а на рисунке 12, б - прямой параллелепипед. Грани параллелепипеда, не имеющие общих вершин, называются противолежащими. Т е о р е м а 19.2. У параллелепипеда противолежащие грани параллельны, и равны. Доказательство. Рассмотрим какие-нибудь две противолежащие грани параллелепипеда, например А1А2А"2А"1 и A3A4A"4A"3. (рис. 13). Так как все грани параллелепипеда - параллелограммы, то прямая A1A2 параллельна прямой А4А3, а прямая А1А"1 параллельна прямой А4А4". Отсюда следует, что плоскости рассматриваемых граней параллельны. Из того, что грани параллелепипеда - параллелограммы, следует, что отрезки А1А4, А1"А4", A"2A"3 и A2A3 - параллельны и равны. Отсюда заключаем, что грань А1А2А"2А"1 совмещается параллельным переносом вдоль ребра А1А4. с гранью А3А4А"4А"3. Значит, эти грани равны. Аналогично доказывается параллельность и равенство любых других противолежащих граней параллелепипеда. Теорема доказана.
8. Центральная симметрия параллелепипеда Теорема 19.3. Диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Доказательство. Рассмотрим какие-нибудь две диагонали параллелепипеда, например А 1 А" 3 и A 4 A" 2 (рис. 14). Так как четырехугольники А 1 А 2 А 3 А 4 и A 2 A" 2 A" 3 A 3 - параллелограммы с общей стороной A 2 A 3 , то их стороны А 1 А 4 и A" 2 A" 3 параллельны друг другу, а значит, лежат в одной плоскости. Эта плоскость пересекает плоскости противолежащих граней параллелепипеда по параллельным прямым A 1 A" 2 и A 4 A" 3 . Следовательно, четырехугольник A 4 A 1 A" 2 A" 3 - параллелограмм. Диагонали параллелепипеда A 1 A" 3 и A 4 A" 2 являются диагоналями этого параллелограмма. Поэтому они пересекаются и точкой пересечения О делятся пополам. Аналогично доказывается, что диагонали A1A"3 и A2A"4, а также диагонали A1A"3 и A3A"1 пересекаются и точкой пересечения делятся пополам. Отсюда заключаем, что все четыре диагонали параллелепипеда пересекаются в одной точке и точкой пересечения делятся пополам. Теорема доказана. Из теоремы 19.3 следует, что точка пересечения диагоналей параллелепипеда является его центром симметрий. 9. Прямоугольный параллелепипед Прямой параллелепипед, у которого основанием является прямоугольник, называется прямоугольным параллелепипедом. У прямоугольного параллелепипеда все грани - прямоугольники. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом. Длины непараллельных ребер прямоугольного параллелепипеда называются его линейными размерами (измерениями). У прямоугольного параллелепипеда три измерения. Теорема 19.4. В прямоугольном параллелепипеде квадрат любой диагонали равен сумме квадратов трех его измерений. Доказательство. Рассмотрим прямоугольный параллелепипед ABCDA"B"C"D" (рис. 15). Из прямоугольного треугольника AC"C по теореме Пифагора получаем:

AC" 2 = AC 2 + CC" 2 .

Из прямоугольного треугольника АСВ по теореме Пифагора получаем

АС 2 = АВ 2 + ВС 2 .

Отсюда AC" 2 =CC" 2 +AB 2 + BC 2 .

Ребра АВ, ВС и СС" не параллельны, а, следовательно, их длины являются линейными размерами параллелепипеда. Теорема доказана. 10. Симметрия прямоугольного параллелепипеда У прямоугольного параллелепипеда, как у всякого параллелепипеда, есть центр симметрии - точка пересечения его диагоналей. У него есть также три плоскости симметрий, проходящие через центр симметрии параллельно граням. На рисунке 16 показана одна из таких плоскостей. Она проходит через середины четырех параллельных ребер параллелепипеда. Концы ребер являются симметричными точками. Если у параллелепипеда все линейные размеры разные, то у него нет других плоскостей симметрии, кроме названных. Если же у параллелепипеда два линейных размера равны, то у него есть еще две плоскости симметрии. Это плоскости диагональных сечений, показанные на рисунке 17. Если у параллелепипеда все линейные размеры равны, т. е. он является кубом, то у него плоскость любого диагонального сечения является плоскостью симметрии. Таким образом, у куба девять плоскостей симметрии. 11. Пирамида Пирамидой называется многогранник, который состоит из плоского многоугольника - основания пирамиды, точки, не лежащей в плоскости основания,- вершины пирамиды и всех отрезков, соединяющих вершину пирамиды с точками основания (рис. 18). Отрезки, соединяющие вершину пирамиды с вершинами основания, называются боковыми ребрами. Поверхность пирамиды состоит из основания и боковых граней. Каждая боковая грань - треугольник. Одной из его вершин является вершина пирамиды, а противолежащей стороной – сторона основания пирамиды. Высотой пирамиды, называется перпендикуляр, опущенный из вершины пирамиды на плоскость основания. Пирамида называется n-угольной, если ее основанием является n-угольник. Треугольная пирамида называется также тетраэдром. У пирамиды, изображенной на рисунке 18, основание - многоугольник А 1 А 2 …A n , вершина пирамиды – S, боковые ребра - SА 1 , S А 2 , …, S А n , боковые грани – SА 1 А 2 , SА 2 А 3 , ... . В дальнейшем мы будем рассматривать только пирамиды с выпуклым многоугольником в основании. Такие пирамиды являются выпуклыми многогранниками. 12. Построение пирамиды и ее плоских сечений В соответствии с правилами параллельного проектирования изображение пирамиды строится следующим образом. Сначала строится основание. Это будет некоторый плоский многоугольник. Затем отмечается вершина пирамиды, которая соединяется боковыми ребрами с вершинами основания. На рисунке 18 показано изображение пятиугольной пирамиды. Сечения пирамиды плоскостями, проходящими через ее вершину, представляют собой треугольники (рис. 19). В частности, треугольниками являются диагональные сечения. Это сечения плоскостями, проходящими через два несоседних боковых ребра пирамиды (рис. 20). Сечение пирамиды плоскостью с заданным следом g на плоскости основания строится так же, как и сечение призмы. Для построения сечения пирамиды плоскостью достаточно построить пересечения ее боковых граней с секущей плоскостью. Если на грани, не параллельной следу g, известна какая-нибудь точка А, принадлежащая сечению, то сначала строится пересечение следа g секущей плоскости с плоскостью этой грани - точка D на рисунке 21. Точка D соединяется с точкой А прямой. Тогда отрезок этой прямой, принадлежащий грани, есть пересечение этой грани с секущей плоскостью. Если точка А лежит на грани, параллельной следу g, то секущая плоскость пересекает эту грань по отрезку, параллельному прямой g. Переходя к соседней боковой грани, строят ее пересечение с секущей плоскостью и т. д. В итоге получается требуемое сечение пирамиды.
На рисунке 22 построено сечение четырехугольной пирамиды плоскостью, проходящей через сторону основания и точку А на одном из ее боковых ребер.

13. Усеченная пирамида T е о р е м а 19.5. Плоскость, пересекающая пирамиду и параллельная ее основанию, отсекает подобную пирамиду. Доказательство. Пусть S - вершина пирамиды, А - вершина основания и А"- точка пересечения секущей плоскости с боковым ребром SA (рис. 23). Подвергнем пирамиду преобразованию гомотетии относительно вершины S с коэффициентом гомотетии

При этой гомотетии плоскость основания переходит в параллельную плоскость, проходящую через точку А", т. е. в секущую плоскость, а следовательно, вся пирамида - в отсекаемую этой плоскостью часть. Так как гомотетия есть преобразование подобия, то отсекаемая часть пирамиды является пирамидой, подобной данной. Теорема доказана.

По теореме 19.5 плоскость, параллельная плоскости основания пирамиды и пересекающая ее боковые ребра, отсекает от нее подобную пирамиду. Другая часть представляет собой многогранник, который называется усеченной пирамидой (рис. 24). Грани усеченной пирамиды, лежащие в параллельных плоскостях, называются основаниями; остальные грани называются боковыми гранями. Основания усеченной пирамиды представляют собой подобные (более того, гомотетичные) многоугольники, боковые грани - трапеции. 14. Правильная пирамида Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты совпадает с центром этого многоугольника. Осью правильной пирамиды называется прямая, содержащая ее высоту. Очевидно, у правильной пирамиды боковые ребра равны; следовательно, боковые грани - равные равнобедренные треугольники. Высота боковой грани правильной пирамиды, проведенная из её вершины, называется апофемой. Боковой поверхностью пирамиды называется сумма площадей ее боковых граней. Т е о р е м а 19.6. Боковая поверхность правильной пирамиды равна произведению полупериметра основания на апофему. Доказательство. Если сторона основания а, число сторон п, то боковая поверхность пирамиды равна:

(а1/2)ап=а1п/2= р1/2"

Где I - апофема, a p - периметр основания пирамиды. Теорема доказана. Усеченная пирамида, которая получается из правильной пирамиды, также называется правильной. Боковые грани правильной усеченной пирамиды - равные равнобокие трапеции; их высоты называются апофемами. 15. Правильные многогранники Выпуклый многогранник называется правильным, если его грани являются правильными многоугольниками с одним и тем же числом сторон и в каждой вершине многогранника сходится одно и то же число ребер.) Существует пять типов правильных выпуклых многогранников (рис.25): правильный тетраэдр (1), куб (2), октаэдр (3), додекаэдр (4); икосаэдр (5). У правильного тетраэдра грани - правильные треугольники; в каждой вершине сходится по три ребра. Тетраэдр представляет собой треугольную пирамиду, у которой все ребра равны. У куба все грани - квадраты; в каждой вершине сходится по три ребра. Куб представляет собой прямоугольный параллелепипед с равными ребрами. У октаэдра грани - правильные треугольники, но в отличие от тетраэдра в каждой его вершине сходится по четыре ребра. У додекаэдра грани - правильные пятиугольники. В каждой вершине сходится по три ребра. У икосаэдра грани - правильные треугольники, но в отличие от тетраэдра и октаэдра в каждой вершине сходится по пять ребер.

III. Практическая часть.

Задача 1. Из точек А и В, лежащих в гранях двугранного угла, опущены перпендикуляры АА\ и ВВ\ на ребро угла. Найдите длину отрезка АВ, если АА 1 =а, ВВ 1 =b, А 1 В 1 =с и двугранный угол равен а (рис. 26). Решение. Проведем прямые A 1 C||BB 1 и ВС||А 1 В 1 . Четырехугольник А 1 В 1 ВС - параллелограмм, значит АА 1 ==ВВ 1 =b. Прямая А 1 В 1 перпендикулярна плоскости треугольника АA 1 C, так как она перпендикулярна двум прямым в этой плоскости АА 1 и СА 1 . Следовательно, параллельная ей прямая ВС тоже перпендикулярна этой плоскости. Значит, треугольник АВС - прямоугольный с прямым углом С. По теореме косинусов AC 2 =AA 1 2 +A 1 C 2 -2AA 1 A 1 C cos =a 2 +b 2 -2abcos . По теореме Пифагора АВ =AC 2 + ВС 2 = a 2 + b 2 - 2ab cos  + с 2 . Задача 2. У трехгранного угла (abc) двугранный угол при ребре с прямой, двугранный угол при ребре b равен , а плоский угол (bс) равен  (,  </2). Найдите два других плоских угла: =  (ab), = (ac). Решение. Опустим из произвольной точки А ребра а перпендикуляр АВ на ребро b и перпендикуляр АС на ребро с (рис. 27). По теореме о трех перпендикулярах СВ - перпендикуляр к ребру b. Из прямоугольных треугольников ОАВ, ОСВ, АОС и АВС получаем: tg  =AB/OB=(BC/ cos )/(BC/tg )= tg / cos  tg  =AC/OC=BC tg  / (BC/sin )= tg  sin  Задача 3 . В наклонной призме проведено сечение, перпендикулярное боковым ребрам и пересекающее все боковые ребра. Найдите боковую поверхность призмы, если периметр сечения равен р, а боковые ребра равны l. Решение. Плоскость проведенного сечения разбивает призму на две части (рис. 28). Подвергнем одну из них параллельному переносу, совмещающему основания призмы. При этом получим прямую призму, у которой основанием служит сечение исходной призмы, а боковые ребра равны l. Эта призма имеет ту же боковую поверхность, что и исходная. Таким образом, боковая поверхность исходной призмы равна рl.Задача 4. Боковое ребро пирамиды разделено на четыре равные части и через точки деления проведены плоскости, параллельные основанию. Площадь основания равна 400 см2. Найдите площади сечений. Решение. Сечения подобны основанию пирамиды с коэффициентами подобия ¼, 2/4, и ¾. Площади подобных фигур относятся как квадраты линейных размеров. Поэтому отношения площадей сечений к площади основания пирамиды есть (¼) 2 , (2/4) 2 , и (¾) 2 . Следовательно, площади сечений равны 400 (¼) 2 =25 (см 2), 400 (2/4) 2 =100 (см 2), 400 (¾) 2 =225 (см 2). Задача 5. Докажите, что боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров оснований на апофему. Решение. Боковые грани усеченной пирамиды - трапеции с одним и тем же верхним основанием а, нижним b и высотой (апофемой) l. Поэтому площадь одной грани равна ½ (а + b)l. Площадь всех граней, т. е. боковая поверхность, равна ½ (аn + bn)l, где n - число вершин у основания пирамиды, an и bn - периметры оснований пирамиды.

IV. Заключение

Благодаря этой работе я обобщила и систематизировала знания, полученные за курс обучения в 11 классе, ознакомилась с правилами выполнения творческой работы, получила новые знания и применила их на практике. Хочу отметить 3 наиболее понравившиеся мне книги:. А.В. Погорелов «Геометрия», Г. Якушева «Математика - справочник школьника», Л.Ф. Пичурин «За страницами учебника геометрии». Эти книги помогли мне больше, чем другие. Мне бы хотелось чаще использовать свои новые полученные знания на практике.

V. Литература

1. А.В. Погорелов «Геометрия». – М.: Просвещение, 1992 2. Г. Якушева «Математика - справочник школьника». М.: Слово, 1995 3. Л.Д. Кудрявцев «Курс математического анализа» т.1, Москва 1981 4. Л.Ф. Пичурин «За страницами учебника геометрии». – М.: Просвещение, 1990 5. И.Н. Башмаков «Геометрия».

Михайлова Полина Когай Юля

Целью

Скачать:

Предварительный просмотр:

ПРОЕКТ

(статья по математике)

Выполнили:

Ученицы 11 класса

Михайлова Полина

Когай Юля

Руководитель:

Учитель математики

Лебедева Ирина Николаевна

РЖЕВ 2012

(Л.Кэрролл)

Введение

Целью нашего исследования являлось изучение правильных многогранников, их видов, свойств.

1. Правильные многогранники

Рис.1.

2. Свойства многогранников

В дословном переводе с

Евклид

Платон и Платоновы тела

Многогранники

земля/вода = воздух/огонь .

Многогранник

Число сторон грани

Число граней

Число рёбер

Число вершин

Тетраэдр

Куб

Октаэдр

Икосаэдр

Додекаэдр

Архимед Сиракузский

квазиправильными

ромбокубооктаэдром и ромбоикосододекаэдром

Заключение


Предварительный просмотр:

МОУ СОШ №1 г.Ржева Тверской обл

ПРОЕКТ

Правильные многогранники вокруг нас

(статья по математике)

Выполнили:

Ученицы 11 класса

Михайлова Полина

Когай Юля

Руководитель:

Учитель математики

Лебедева Ирина Николаевна

РЖЕВ 2012

Правильных многогранников вызывающе мало,

но этот весьма скромный по численности отряд

сумел пробраться в самые глубины различных наук.

(Л.Кэрролл)

Введение

Есть в школьной геометрии особые темы, которые ждешь с нетерпением,

предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Правильные многогранники". Здесь не только открывается

удивительный мир геометрических тел, но и неповторимые свойства, особенности которых вызывают споры у ученых и философов.

В течение всей жизни человек тесно связан с многогранниками. Несмотря на отсутствие знания таких сложных терминов, как «тетраэдр», «октаэдр», «додекаэдр» и др., он уже с самого раннего детства испытывает интерес к этим уникальным фигурам. Ведь суть «кубиков» - одной из самых популярных детских игр - состоит в том, чтобы построить из многогранников объект.

На протяжении многих веков людей словно притягивают эти тела. Древние египтяне строили гробницы своим фараонам (которых они считали полубогами) в форме тетраэдра, что еще раз подчеркивает величие и этих фигур.

Но не только руками человека создаются эти загадочные тела. Одни из правильных тел встречаются в природе в виде кристаллов, другие – в виде вирусов (были обнаружены учеными с помощью электрического микроскопа). А биологи говорят о том, что шестиугольные соты пчел, содержащие мед, имеют форму правильного многогранника. Существовала гипотеза, что именно правильная шестиугольная форма сот помогает сохранить полезные свойства этого ценного продукта.

Так что же представляют собой эти столь совершенные тела?

Целью нашего исследования являлось изучение правильных многогранников, их видов, свойств.

В задачи нашего исследования входило:

  • Дать понятие правильных многогранников (на основе определения многогранников).
  • Доказать существование только 5 типов правильных многогранников.
  • Рассмотреть свойства правильных многогранников.
  • Познакомиться с интересными историческими фактами, связанными с правильными многогранниками.
  • Ознакомление с историей изучения многогранников.
  • Показать, как можно с помощью куба построить другие виды правильных многогранников.
  • Рассмотреть связь правильных многогранников с природой.

1. Правильные многогранники

Многогранник – это часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединённых таким образом, что каждая сторона любого многогранника является стороной ровно одного многоугольника. Многоугольники называются гранями, их стороны – рёбрами, а вершины – вершинами.

Правильным называется многогранник, у которого все грани это правильные многоугольники и все многогранные углы при вершинах равны.

Всего существует пять многогранников - ни больше ни меньше. Подтвердить это можно с помощью развертки выпуклого многогранного угла. В самом деле, для того чтобы получить какой-нибудь правильный многогранник согласно его определению, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360 о , иначе никакой многогранной поверхности не получится.

Перебирая возможные целые решения неравенств: 60к

Рис.1.

2. Свойства многогранников

Тетраэдр - составлен из четырёх равносторонних треугольников. Каждая его вершина является вершиной трёх треугольников и в каждой вершине сходится по три ребра и по три грани. Следовательно, сумма плоских углов при каждой вершине равна 180º. У тетраэдра: 4 грани, 4 вершины и 6 ребер.

Октаэдр - составлен из восьми равносторонних треугольников. Каждая вершина октаэдра является вершиной четырёх треугольников и в каждой вершине сходится по четыре ребра и по четыре грани. Следовательно, сумма плоских углов при каждой вершине 240º. У октаэдра: 8 граней, 6 вершин и 12 ребер.

Куб - составлен из шести квадратов. Каждая вершина куба является вершиной трёх квадратов и в каждой вершине сходится по три ребра и три грани. Следовательно, сумма плоских углов при каждой вершине равна 270º. У него: 6 граней, 8 вершин и 12 ребер.

Додекаэдр - составлен из двенадцати правильных пятиугольников. Каждая вершина додекаэдра является вершиной трёх правильных пятиугольников и в каждой вершине сходится по три ребра и три грани. Следовательно, сумма плоских углов при каждой вершине равна 324º.У додекаэдра:12 граней, 20 вершин и 30 ребер.

3. История изучения многогранников.

Названия многогранников пришли из Древней Греции, в них указывается число граней: «эдра» - грань; «тетра» - 4; «гекса» - 6; «окта» - 8; «икоса» - 20; «додека» - 12. В дословном переводе с

греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр"

означают: "четырехгранник", "восьмигранник", "шестигранник".

"двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида.

Кстати, раз уж заговорили о Евклиде, то давайте познакомимся с ним поближе. С ним, и с другими учеными, изучавшими многогранники.

Евклид (ок. 300 г. до н. э.) - древнегреческий математик.

Основное сочинение Евклида называется «Начала». «Начала» состоят из тринадцати книг. XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским. В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. Некоторый «платонизм» Евклида связан с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр - огонь, октаэдр - воздух, икосаэдр - вода, куб - земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». «Начала» могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников - так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Платон и Платоновы тела

Платон (Platon) (род. 427 - ум. 347 гг.до н.э.) - греческий философ. Родился в Афинах. Настоящее имя Платона было Аристокл.

Многогранники называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода = воздух/огонь .

Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомню, что консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин платоновых тел, ни обьемы правильных многогранников, ни число ребер или граней.

В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента - землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным.

Характеристики платоновых тел

Многогранник

Число сторон грани

Число граней, сходящихся в каждой вершине

Число граней

Число рёбер

Число вершин

Тетраэдр

Куб

Октаэдр

Икосаэдр

Додекаэдр

Архимед Сиракузский

Архимед обобщил понятие правильного многогранника и открыл новые математические объекты – полуправильные многогранники. Так он назвал многогранники, у которых все грани – правильные многоугольники более как одного рода, а все многогранные углы конгруэнтны. Только в наше время удалось доказать, что тринадцатью открытыми Архимедом полуправильными многогранниками исчерпывается все множество этих геометрических фигур.

Множество архимедовых тел можно разбить на несколько групп.

Первую из них составят пять многогранников, которые получаются из платоновых тел в результате их усечения. Так могут быть получены пять архимедовых тел: усечённый тетраэдр, усечённый гексаэдр (куб), усечённый октаэдр, усечённый додекаэдр и усечённый икосаэдр.

Другую группу составляют всего два тела, именуемых также квазиправильными многогранниками. Эти два тела носят названия: кубооктаэдр и икосододекаэдр.

Два последующих многогранника называются ромбокубооктаэдром и ромбоикосододекаэдром . Иногда их называют также «малым ромбокубооктаэдром» и «малым ромбоикосододекаэдром» в отличие от большого ромбокубооктаэдра и большого ромбоикосододекаэдра.

Наконец существуют две так называемые «курносые» модификации - одна для куба, другая - для додекаэдра. Для каждой из них характерно несколько повёрнутое положение граней, что даёт возможность построить два различных варианта одного и того же «курносого» многогранника (каждый из них представляет собой как бы
зеркальное отражение другого).

Вклад Кеплера в теорию многогранника – это, во-первых, восстановление математического содержания утерянного трактата Архимеда о полуправильных выпуклых однородных многогранниках. Еще более существенным было предложение Кеплера рассматривать невыпуклые многогранники со звездчатыми гранями, подобными пентаграмме и последовавшее за этим открытие двух правильных невыпуклых однородных многогранников – малого звездчатого додекаэдра и большого звездчатого додекаэдра.

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (платоновых тел). Между каждой парой "небесных сфер", по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы – додекаэдр. Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна. Эта модель выглядела для своего времени довольно правдоподобно. Во-первых, расстояния, вычисленные при помощи этой модели, были достаточно близки к истинным (учитывая доступную тогда точность измерения). Во-вторых, модель Кеплера давала объяснение, почему существует только шесть (именно столько было тогда известно) планет – именно шесть планет гармонировали с пятью платоновыми телами. Однако даже на тот момент эта привлекательная модель имела один существенный недостаток: сам же Кеплер показал, что планеты вращаются вокруг Солнца не по окружностям ("сферам"), а по эллипсам (первый закон Кеплера). Нечего и говорить, что позже, с открытием еще трех планет и более точным измерением расстояний, эта гипотеза была полностью отвергнута.

  1. Икосаэдро-додекаэдровая структура Земли .

Существует много данных о сравнении структур и процессов Земли с правильными многогранниками.

Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозоа - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфичecких свойств, позволяющих объяснить многие непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки.

Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Советские инженеры В. Макаров и В. Морозов потратили десятилетия на исследование данного вопроса. Они пришли к выводу, что развитие Земли шло поэтапно, и в настоящее время процессы, происходящие на поверхности Земли, привели к появлению залежей с икосаэдро-додекаэдровым узором. Еще в 1929 году С.Н. Кислицин в своих работах сопоставлял структуру додекаэдра-икосаэдра с залежами нефти и алмазов.

В. Макаров и В. Морозов утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) - центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников. К тому же согласно исследованиям авторов, в настоящую эпоху все ближайшие небесные тела свои процессы располагают согласно додекаэдро-икосаэдрной системе, что замечено у Марса, Венеры, Солнца. Аналогичные энергетические каркасы присущи всем элементам Космоса (Галактики, звезды и т. д.). Нечто похожее наблюдается и в микроструктурах. Например, строение аденовирусов имеет форму икосаэдра.

5. Правильные многогранники и природа.

Правильные многогранники – самые выгодные фигуры, поэтому они широко распространены в природе. Подтверждением тому служит форма некоторых кристаллов. Например, кристаллы поваренной соли имеют форму куба. При производстве алюминия пользуются алюминиево-калиевыми кварцами, монокристалл которых имеет форму правильного октаэдра. Получение серной кислоты, железа, особых сортов цемента не обходится без сернистого колчедана. Кристаллы этого химического вещества имеют форму додекаэдра. В разных химических реакциях применяется сурьменистый сернокислый натрий – вещество, синтезированное учёными. Кристалл сурьменистого сернокислого натрия имеет форму тетраэдра. Последний правильный многогранник – икосаэдр передаёт форму кристаллов бора.

Правильные многогранники встречаются так же и в живой природе. Например, скелет одноклеточного организма феодарии (Circjgjnia icosahtdra) по форме напоминает икосаэдр. Большинство феодарий живут на морской глубине и служат добычей коралловых рыбок. Но простейшее животное защищает себя двенадцатью иглами, выходящими из 12 вершин скелета. Оно больше похоже на звёздчатый многогранник. Из всех многогранников с тем же числом граней икосаэдр имеет наибольший объём при наименьшей площади поверхности. Это свойство помогает морскому организму преодолевать давление толщи воды.

Икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр.

Заключение

Основной целью представленной работы являлось изучение правильных многогранников, их видов и свойств. Для достижения это й цели был проведен сравнительный анализ учебной и научно-популярной литературы, а также ресурсов сети Интернет.

В процессе исследования мы изучили удивительные особенности строения правильных многогранников, их виды и свойства, особенности строения. Познакомились с интересными историческими гипотезами и фактами. Увидели красоту, совершенство и гармонию форм этих тел, которые изучаются учеными на протяжении многих столетий и не перестают удивлять нас. Узнали, что в строении нашей, казалось бы, шарообразной планеты присутствуют правильные многогранники, что еще раз доказывает их значение в окружающем нас мире. И многие современные ученые склоняются к гипотезе, что вещества в природе состоят именно из этих уникальных фигур.

Подводя итоги, можно считать цели исследования достигнутыми. В дальнейшем тему работы можно развивать, например, рассмотреть использование свойств, особенностей симметрии правильных многогранников в архитектуре, технике, искусстве.

Список используемой литературы

1.Атанасян Л.С., Бутузов В.Ф. Геометрия 10-11 класс – 2008. - №14

2.Потоскуев Е.В., Звавич Л.И. Геометрия 11 класс - 2008 - №4

3.Паповский В.М. Углубленное изучение геометрии в 10-11 классах

4. Веленкин Н.Я. За страницами учебника математики: Арифметика. Алгебра. Геометрия – 1996

5. Математика: Школьная энциклопедия – 2003

6. Депман И.Я. ,Веленкин Н.Я. За страницами учебника математики – 1989

7. Энциклопедия для детей. Аванта+ Математика - 2003

Есть в школьной геометрии особые темы, которые ждешь с нетерпением, предвкушая встречу с невероятно красивым материалом. К таким темам можно отнести "Правильные многогранники". Здесь не только открывается удивительный мир геометрических тел, обладающих неповторимыми свойствами, но и интересные научные гипотезы. И тогда урок геометрии становится своеобразным исследованием неожиданных сторон привычного школьного предмета.

Ни одни геометрические тела не обладают таким совершенством и красотой, как правильные многогранники. "Правильных многогранников вызывающе мало, - написал когда-то Л. Кэролл, - но этот весьма скромный по численности отряд сумел пробраться в самые глубины различных наук".

Каково же это вызывающе малое количество и почему их именно столько. А сколько? Оказывается, ровно пять - ни больше ни меньше. Подтвердить это можно с помощью развертки выпуклого многогранного угла. В самом деле, для того чтобы получить какой-нибудь правильный многогранник согласно его определению, в каждой вершине должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником. Сумма плоских углов многогранного угла должна быть меньше 360 о, иначе никакой многогранной поверхности не получится. Перебирая возможные целые решения неравенств: 60к < 360, 90к < 360 и 108к < 360, можно доказать, что правильных многогранников ровно пять (к - число плоских углов, сходящихся в одной вершине многогранника), рис.1.

Названия правильных многогранников пришли из Греции. В дословном переводе с греческого "тетраэдр", "октаэдр", "гексаэдр", "додекаэдр", "икосаэдр" означают: "четырехгранник", "восьмигранник", "шестигранник". "двенадцатигранник", "двадцатигранник". Этим красивым телам посвящена 13-я книга "Начал" Евклида. Их еще называют телами Платона, т.к. они занимали важное место в философской концепции Платона об устройстве мироздания. Четыре многогранника олицетворяли в ней четыре сущности или "стихии". Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным.

Гармоничные отношения древние греки считали основой мироздания, поэтому четыре стихии у них были связаны такой пропорцией: земля/вода=воздух/огонь . Атомы "стихий" настраивались Платоном в совершенных консонансах, как четыре струны лиры. Напомню, что консонансом называется приятное созвучие. Надо сказать, что своеобразные музыкальные отношения в платоновых телах являются чисто умозрительными и не имеют под собой никакой геометрической основы. Этими отношениями не связаны ни число вершин платоновых тел, ни обьемы правильных многогранников, ни число ребер или граней.

В связи с этими телами уместно будет сказать, что первая система элементов, включавшая четыре элемента - землю, воду, воздух и огонь, - была канонизирована Аристотелем. Эти элементы оставались четырьмя краеугольными камнями мироздания в течение многих веков. Вполне возможно отождествить их с известными нам четырьмя состояниями вещества - твердым, жидким, газообразным и плазменным.

Важное место занимали правильные многогранники в системе гармоничного устройства мира И. Кеплера. Все та же вера в гармонию, красоту и математически закономерное устройство мироздания привела И. Кеплера к мысли о том, что поскольку существует пять правильных многогранников, то им соответствуют только шесть планет. По его мнению, сферы планет связаны между собой вписанными в них платоновыми телами. Поскольку для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором будет находиться Солнце.

Проделав огромную вычислительную работу, в 1596 г. И. Кеплер в книге "Тайна мироздания" опубликовал результаты своего открытия. В сферу орбиты Сатурна он вписывает куб, в куб - сферу Юпитера, в сферу Юпитера - тетраэдр, и так далее последовательно вписываются друг в друга сфера Марса - додекаэдр, сфера Земли - икосаэдр, сфера Венеры - октаэдр, сфера Меркурия. Тайна мироздания кажется открытой.

Сегодня можно с уверенностью сказать, что расстояния между планетами не связаны ни с какими многогранниками. Впрочем, возможно, что без "Тайны мироздания", "Гармонии мира" И. Кеплера, правильных многогранников не было бы трех знаменитых законов И. Кеплера, которые играют важную роль в описании движения планет.

Где еще можно увидеть эти удивительные тела? В очень красивой книге немецкого биолога начала нашего века Э. Геккеля "Красота форм в природе" можно прочитать такие строки: "Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы". Создания природы, приведенные в этой книге, красивы и симметричны. Это неотделимое свойство природной гармонии. Но здесь видно и одноклеточные организмы - феодарии, форма которых точно передает икосаэдр. Чем же вызвана такая природная геометризация? Может быть, тем, что из всех многогранников с таким же количеством граней именно икосаэдр имеет наибольший обьем и наименьшую площадь поверхности. Это геометрическое свойство помогает морскому микроорганизму преодолевать давление водной толщи.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов (KAlSO4)2 12Н2О имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьменистый сернокислый натрий - тетраэдра, бор - икосаэдра. Правильные многогранники определяют форму кристаллических решеток некоторых химических веществ. Проиллюстрирую эту мысль следующей задачей.

Задача. Модель молекулы метана CH4 имеет форму правильного тетраэдра, в четырех вершинах которого находятся атомы водорода, а в центре - атом углерода. Определить угол связи между двумя СН связями.

Решение. Так как правильный тетраэдр имеет шесть равных ребер, то можно подобрать такой куб, чтобы диагонали его граней были ребрами правильного тетраэдра (рис.2). Центр куба является и центром тетраэдра, ведь четыре вершины тетраэдра являются и вершинами куба, а описываемая около них сфера однозначно определяется четырьмя точками, не лежащими в одной плоскости. Искомый угол j между двумя СН связями равен углу АОС. Треугольник АОС-равнобедренный. Отсюда, где а - сторона куба, d- длина диагонали боковой грани или ребро тетраэдра. Итак, откуда =54,73561 О и j= 109,47 О

Идеи Пифагора, Платона, И. Кеплера о связи правильных многогранников с гармоничным устройством мира уже в наше время нашли свое продолжение в интересной научной гипотезе, авторами которой (в начале 80-х годов) явились московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли (рис.3), проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Итак, было выяснено, что правильных многогранников ровно пять. А как определить в них количество ребер, граней, вершин? Это нетрудно сделать для многогранников с небольшим числом ребер, а как, например, получить такие сведения для икосаэдра? Знаменитый математик Л. Эйлер получил формулу В+Г-Р=2, которая связывает число вершин /В/, граней /Г/ и ребер /Р/ любого многогранника. Простота этой формулы заключается в том, что она не связана ни с расстоянием, ни с углами. Для того чтобы определить число ребер, вершин и граней правильного многогранника, найдем сначала число к=2у - ху+2х, где х - число ребер, принадлежащих одной грани, у - число граней, сходящихся в одной вершине. Для нахождения количества граней, вершин и ребер правильного многогранника используем формулы. После этого нетрудно заполнить таблицу, в которой приведены сведения об элементах правильных многогранников:

многогранник Г В Р

тетраэдр 4-4-6

гексаэдр 6-8-12

октаэдр 8-6-12

додекаэдр 12-20-30

икосаэдр 20-12-30

И еще один вопрос возникает в связи с правильными многогранниками: можно ли ими заполнить пространство так, чтобы между ними не было просветов? Он возникает по аналогии с правильными многоугольниками, некоторыми из которых можно заполнить плоскость. Оказывается, заполнить пространство можно только с помощью одного правильного многогранника-куба. Пространство можно заполнить и ромбическими додекаэдрами. Чтобы это понять, надо решить задачу.

Задача. С помощью семи кубов, образующих пространственный "крест", постройте ромбододекаэдр и покажите, что ими можно заполнить пространство.

Решение. Кубами можно заполнить пространство. Рассмотрим часть кубической решетки, изображенной на рис.4. Средний куб оставим нетронутым, а в каждом из "окаймляющих" кубов проведем плоскости через все шесть пар противолежащих ребер. При этом "окаймляющие" кубы разобьются на шесть равных пирамид с квадратными основаниями и боковыми ребрами, равными половине диагонали куба. Пирамиды, примыкающие к нетронутому кубу, и образуют вместе с последним ромбический додекаэдр. Отсюда ясно, что ромбическими додекаэдрами можно заполнить все пространство. Как следствие получаем, что объем ромбического додекаэдра равен удвоенному объему куба, ребро которого совпадает с меньшей диагональю грани додекаэдра.

Решая последнюю задачу, мы пришли к ромбическим додекаэдрам. Интересно, что пчелиные ячейки, которые также заполняют пространство без просветов, также являются в идеале геометрическими фигурами. Верхняя часть пчелиной ячейки представляет собой часть ромбододекаэдра.

Итак, правильные многогранники открыли нам попытки ученых приблизиться к тайне мировой гармонии и показали неотразимую привлекательность геометрии.


Федеральное агентство по образованию
Государственное образовательное учреждение
высшего профессионального образования
«Поволжская государственная социально-гуманитарная академия»

Факультет начального образования

Реферат

Многогранник. Изучение многогранника

в начальной школе.

Выполнила: студентка

51группы ФНО

Петрушина О.В.

САМАРА 2009

Введение…………………………………………………………………….4

Основные понятия………………………………………………………….6

Исторические сведения о правильных многогранниках……………..….9

Формула Эйлера…………………………………………………………...13

Правильные многогранники вокруг нас………………………………....14

Заключение………………………………………………………………...18

Список литературы…………………………………………………...…...20

Введение

Тема «Многогранники» одна из основных в традиционном курсе школьной геометрии. Они составляют, можно сказать, центральный предмет стереометрии. Изучение параллельных и перпендикулярных прямых и плоскостей, двугранных углов и другое, так же как введение векторов и координат,- все это только начала стереометрии, подготовка средств для исследования ее более содержательных объектов – главным образом тел и поверхностей.
Центральная роль многогранников определяется прежде всего тем, что многие результаты, относящиеся к другим телам, получаются исходя из соответствующих результатов для многогранников; Достаточно вспомнить определение объемов тел и площадей поверхностей путем предельного перехода от многогранников.
Кроме того, многогранники сами по себе представляют чрезвычайно содержательный предмет исследования, выделяясь среди всех тел многими интересными свойствами, специально к ним относящимися теоремами и задачами. Можно, например, вспомнить теорему Эйлера о числе граней, ребер и вершин, симметрию правильных многогранников, вопрос о заполнении пространства многогранниками и др.
Многогранникам должно быть уделено в школьном курсе больше внимания еще и потому, что они дают особенно богатый материал для развития пространственных представлений, для развития того соединения живого пространственного воображения со строгой логикой, которое составляет сущность геометрии. Уже самые простые факты, касающиеся многогранников, требуют такого соединения, которое оказывается при этом не совсем легким делом. Даже такой простой факт, как пересечение диагоналей параллелепипеда в одной точке, требует усилия воображения, чтобы его увидеть наглядно, и нуждается в строгом доказательстве.
Более того, использование многогранников с самого начала изучения стереометрии служит различным дидактическим целям. На многогранниках удобно демонстрировать взаимное расположение прямых и плоскостей в пространстве, показывать применение признаков параллельности и перпендикулярности прямых и плоскостей в пространстве. Иллюстрация первых теорем стереометрии на конкретных моделях повышает интерес учащихся к предмету.
Также одной из основных задач обучения математики является развитие у учащихся абстрактного мышления. Этой цели в значительной мере способствует применение наглядных пособий, причем не только в младших классах, но и в старших. Широкие возможности для реализации этой цели предоставляет тема «Многогранники», в частности, самостоятельное изготовление учениками наглядных пособий. В процессе изготовления моделей многогранников, кроме теоретических знаний и навыков, ученики закрепляют сформировавшиеся новые понятия при помощи чертежа и фактического решения задач на построение. При самостоятельном изготовлении моделей образ создается по частям, в силу этого с ними можно производить различные манипуляции. При этом все их свойства и особенности легко познаются и прочно закрепляются в памяти учащихся.

Основные понятия.

    Многогранник – это геометрическое тело, ограниченное со всех сторон плоскими многоугольниками, называемыми гранями.

Стороны граней – рёбра многогранника, а концы рёбер – вершины многогранника. По числу граней различают четырёхгранники, пятигранники и т. д.

    Многогранник называется выпуклым, если он весь расположен по одну сторону от плоскости, каждой из его граней.

    Выпуклый многогранник называется правильным, если все его грани – одинаковые правильные многоугольники, в каждой вершине сходится одно и то же число рёбер, а соседние грани образуют равные углы.

На рисунке изображены тетраэдр, гексаэдр, октаэдр, додекаэдр и икосаэдр. Их форма – образец совершенства! А почему правильные многогранники получили именно такое название? Какими особенностями они обладают? Как изготовить модель какого-либо правильного многогранника? Где можно встретить эти удивительные тела?

Ответить на эти и другие вопросы: цель данной работы.


Все правильные многогранники имеют разное число граней и названия получили по этому числу.

    Тетраэдр (от,тетра”– четыре и греческого,hedra” – грань) составлен из 4-х правильных треугольников, в каждой его вершине сходятся 3 ребра.

    Гексаэдр (от греческого,гекса” – шесть и,hedra” – грань) имеет 6 квадратных граней, в каждой его вершине сходятся 3 ребра.

Гексаэдр больше известен как куб (от латинского, cubus” ; от греческого,kubos”.

    Октаэдр (от греческого okto – восемь и hedra – грань) имеет 8 граней (треугольных), в каждой вершине сходятся 4 ребра.

    Додекаэдр (от греческого dodeka – двенадцать и hedra – грань) имеет 12 граней (пятиугольных), в каждой вершине сходятся 3 ребра.

    Икосаэдр (от греческого eikosi – двадцать и hedra – грань) имеет 20 граней (треугольных), в каждой вершине сходится 5 рёбер. (5, с.267-269)

Оказывается, что правильных многогранников ровно пять - ни больше ни меньше. Ведь для того, чтобы получить какой-нибудь правильный многогранник, в каждой вершине, согласно его определению, должно сходиться одинаковое количество граней, каждая из которых является правильным многоугольником.

Сумма плоских углов многогранного угла должна быть меньше 360 о, иначе никакой многогранной поверхности не получится. Перебирая возможные целые решения неравенств: 60к

Исторические сведения о правильных многогранниках.

Древнегреческий философ Платон, (428 или 427 до н. э. - 348 или 347), проводивший беседы со своими учениками в роще Академа (Академ – древнегреческий мифологический герой, которого, по преданию, похоронили в священной роще недалеко от Афин, откуда и пошло название,академия”), одним из девизов своей школы провозгласил: , Не знающие геометрии не допускаются!”

Правильные многогранники называют также Платоновыми телами. Хотя их знаки пифагорейцы за несколько веков до Платона.

В диалоге,Тимей’’ он связал правильные многогранники с четырьмя основными стихиями. Тетраэдр символизировал огонь, т.к. его вершина устремлена вверх; икосаэдр - воду, т.к. он самый "обтекаемый"; куб - землю, как самый "устойчивый"; октаэдр - воздух, как самый "воздушный". Пятый многогранник, додекаэдр, воплощал в себе "все сущее", символизировал все мироздание, считался главным. Хотя правильные многогранники были известны пифагорейцам за несколько веков до Платона, их называют платоновыми телами. (4, с.340)

Важное место занимали правильные многогранники в системе гармоничного устройства мира И. Кеплера.

Если наблюдать и рассматривать многогранные формы, то можно не только почувствовать их красоту, но и обнаружить некоторые закономерности, возможно, имеющие прикладное значение.

Некоторые из правильных и полуправильных тел встречаются в природе в виде кристаллов, другие - в виде вирусов, простейших микроорганизмов.

Кристаллы - тела, имеющие многогранную форму. Вот один из примеров таких тел: кристалл пирита (сернистый колчедан FeS) - природная модель додекаэдра. Пирит (от греч. “пир” - огонь) - сернистое железо или серный колчедан, наиболее распространенный минерал из группы сульфидов. Размеры кристаллов пирита часто достигают нескольких сантиметров и являются хорошим коллекционным материалом. От других подобных ему минералов отличается твердостью: царапает стекло.

Замечено, что наша матушка-Земля последовательно проходит эволюцию правильных объемных фигур. Существует много данных о сравнении структур и процессов Земли с вышеуказанными фигурами. Полагают, что четырем геологическим эрам Земли соответствуют четыре силовых каркаса правильных Платоновских тел: Протозою - тетраэдр (четыре плиты) Палеозою - гексаэдр (шесть плит) Мезозою - октаэдр (восемь плит) Кайнозою - додекаэдр (двенадцать плит).

Существует гипотеза, по которой ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. «Лучи» этого кристалла, а точнее его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. 62 их вершины и середины ребер, называемые узлами, оказывается, обладают рядом специфичecких свойств, позволяющих объяснить многие непонятные явления.

Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово - додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место.

Советские инженеры В. Макаров и В. Морозов потратили десятилетия на исследование данного вопроса. Они пришли к выводу, что развитие Земли шло поэтапно, и в настоящее время процессы, происходящие на поверхности Земли, привели к появлению залежей с икосаэдро - додекаэдровым узором. Еще в 1929 году С.Н. Кислицин в своих работах сопоставлял структуру додекаэдра-икосаэдра с залежами нефти и алмазов.

В. Макаров и В. Морозов утверждают, что в настоящее время процессы жизнедеятельности Земли имеют структуру додекаэдра-икосаэдра. Двадцать районов планеты (вершины додекаэдра) - центры поясов выходящего вещества, основывающих биологическую жизнь (флора, фауна, человек). Центры всех магнитных аномалий и магнитного поля планеты расположены в узлах системы треугольников. К тому же согласно исследованиям авторов, в настоящую эпоху все ближайшие небесные тела свои процессы располагают согласно додекаэдро - икосаэдрной системе, что замечено у Марса, Венеры, Солнца. Аналогичные энергетические каркасы присущи всем элементам Космоса (Галактики, звезды и т. д.).

С позиций изучения симметрии, учитывая представление о додекаэдро-икосаэдрическом силовом каркасе Земли как планеты, следует признать, что в этом смысле Земля является живым существом. С душою, которую П.А. Флоренский назвал “пневматосфера”, со свободой воли и разумом.

Додекаэдрическая структура, по мнению Д. Винтера (американского математика), присуща не только энергетическому каркасу Земли, но и строению живого вещества. В процессе деления яйцеклетки сначала образуется тетраэдр из четырех клеток, затем октаэдр, куб и, наконец, додекаэдро-икосаэдрическая структура гаструлы. И наконец, самое, пожалуй, главное – структура ДНК генетического кода жизни – представляет собой четырехмерную развертку (по оси времени) вращающегося додекаэдра! Таким образом, оказывается, что вся Вселенная – от Метагалактики и до живой клетки – построена по одному принципу – бесконечно вписываемых друг в друга додекаэдра и икосаэдра, находящихся между собой в пропорции золотого сечения!

Существует семейство тел, родственных платоновым - это полуправильные выпуклые многогранники, или Архимедовы тела. У них все многогранные углы равны, все грани - правильные многоугольники, но нескольких различных типов. Называют 13 или 14 архимедовых тел (число неточное, поскольку псевдоромбокубоктаэдр иногда не причисляют к этому семейству).

Кроме того, имеют равные многогранные углы и правильные грани нескольких типов тела из двух бесконечных семейств - призмы и антипризмы.

Кеплер Иоганн (Kepler I, 1571-1630г) – немецкий астроном. Открыл законы движения планет. В 1596 году Кеплер предложил правило, по которому вокруг сферы Земли описывается додекаэдр, а в нее вписывается икосаэдр. («Гармония мира», 1619г.) И.Кеплер предположил, что расстояния между орбитами планет можно получить на основании Платоновых тел, вложенных друг в друга. Результаты его расчётов хорошо согласовались с действительными расстояниями между планетными орбитами.

Весьма оригинальна космологическая гипотеза Кеплера, в которой он попытался связать некоторые свойства Солнечной системы со свойствами правильных многогранников. Кеплер предположил, что расстояния между шестью известными тогда планетами выражаются через размеры пяти правильных выпуклых многогранников (Платоновых тел). Между каждой парой небесных сфер, по которым, согласно этой гипотезе, вращаются планеты, Кеплер вписал одно из Платоновых тел. Вокруг сферы Меркурия, ближайшей к Солнцу планеты, описан октаэдр. Этот октаэдр вписан в сферу Венеры, вокруг которой описан икосаэдр. Вокруг икосаэдра описана сфера Земли, а вокруг этой сферы - додекаэдр.

Додекаэдр вписан в сферу Марса, вокруг которой описан тетраэдр. Вокруг тетраэдра описана сфера Юпитера, вписанная в куб. Наконец, вокруг куба описана сфера Сатурна.

Эта модель выглядела для своего времени довольно правдоподобно. Во-первых, расстояния, вычисленные при помощи этой модели, были достаточно близки к истинным (учитывая доступную тогда точность измерения). Во-вторых, модель Кеплера давала объяснение, почему существует только шесть (именно столько было тогда известно) планет - именно шесть планет гармонировали с пятью Платоновыми телами.

Формула Эйлера.

    Подсчитаем число вершин (В), граней (Г), рёбер (Р) запишем результаты в таблицу.

Многогранник

Тетраэдр

Гексаэдр

Додекаэдр

Икосаэдр


В последней колонке для всех многогранников один и тот же результат: В+Г- Р=2. Доказал это удивительное соотношение один из величайших математиков Леонард Эйлер (1707 – 1783), поэтому формула названа его именем: формула Эйлера. Этот гениальный учёный, родившийся в Швейцарии, почти всю жизнь прожил в России, и мы с полным основанием и гордостью можем считать его соотечественником.

Самое удивительное в этой формуле, что она верна не только для правильных многогранников, но и для всех многогранников!

Ради интереса можно проверить это для нескольких наугад взятых многогранников. (3, с.42)


Правильные многогранники вокруг нас.

В книге немецкого биолога начала нашего века Э. Геккеля "Красота форм в природе" можно прочитать такие строки: "Природа вскармливает на своем лоне неисчерпаемое количество удивительных созданий, которые по красоте и разнообразию далеко превосходят все созданные искусством человека формы". Так, например, одноклеточные организмы феодарии, имеют форму икосаэдра.

Интересно и то, что именно икосаэдр оказался в центре внимания биологов в их спорах относительно формы вирусов. Вирус не может быть совершенно круглым, как считалось ранее. Чтобы установить его форму, брали различные многогранники, направляли на них свет под теми же углами, что и поток атомов на вирус. Оказалось, что только один многогранник дает точно такую же тень - икосаэдр. Его геометрические свойства, о которых говорилось выше, позволяют экономить генетическую информацию. Правильные многогранники - самые выгодные фигуры. И природа этим широко пользуется. Кристаллы некоторых знакомых нам веществ имеют форму правильных многогранников. Так, куб передает форму кристаллов поваренной соли NaCl, монокристалл алюминиево-калиевых квасцов имеет форму октаэдра, кристалл сернистого колчедана FeS имеет форму додекаэдра, сурьменистый сернокислый натрий - тетраэдра, бор - икосаэдра.

Интересная научная гипотеза, авторами которой (в начале 80-х годов) явились московские инженеры В. Макаров и В. Морозов. Они считают, что ядро Земли имеет форму и свойства растущего кристалла, оказывающего воздействие на развитие всех природных процессов, идущих на планете. Лучи этого кристалла, а точнее, его силовое поле, обусловливают икосаэдро-додекаэдрическую структуру Земли, проявляющуюся в том, что в земной коре как бы проступают проекции вписанных в земной шар правильных многогранников: икосаэдра и додекаэдра. Их 62 вершины и середины ребер, называемых авторами узлами, обладают рядом специфических свойств, позволяющих объяснить некоторые непонятные явления.


Если нанести на глобус очаги наиболее крупных и примечательных культур и цивилизаций Древнего мира, можно заметить закономерность в их расположении относительно географических полюсов и экватора планеты. Многие залежи полезных ископаемых тянутся вдоль икосаэдрово-додекаэдровой сетки. Еще более удивительные вещи происходят в местах пересечения этих ребер: тут располагаются очаги древнейших культур и цивилизаций: Перу, Северная Монголия, Гаити, Обская культура и другие. В этих точках наблюдаются максимумы и минимумы атмосферного давления, гигантские завихрения Мирового океана, здесь шотландское озеро Лох-Несс, Бермудский треугольник. Дальнейшие исследования Земли, возможно, определят отношение к этой красивой научной гипотезе, в которой, как видно, правильные многогранники занимают важное место. (2, с.2)

Заключение.

Исследовательская работа была интересной и разнообразной и заставила понять, что мир, окружающий нас, подчиняется законам геометрии.

В рамках работы над рефератом была изучена литература по теме, выявлены особенности правильных многогранников, изготовлены чертежи, развёртки, модели правильных многогранников.

Многогранник в трёхмерном пространстве, совокупность конечного числа плоских многоугольников, такая, что каждая сторона любого из многоугольников есть одновременно сторона другого (но только одного), называемого смежным с первым (по этой стороне); от любого из многоугольников, составляющих Многогранник , можно дойти до любого из них, переходя к смежному с ним, а от этого, в свою очередь, - к смежному с ним, и т. д. Эти многоугольники называются гранями, их стороны - рёбрами, а их вершины - вершинами Многогранника.

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к правильным многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Форма первоэлемента Земли - куб, Воздуха - октаэдр, Огня - тетраэдр, Воды - икосаэдр, а всему миру творец придал форму пятиугольного додекаэдра. О том, что Земля имеет форму шара, учили Пифагорейцы. По Пифагору, существует 5 телесных фигур: высшее божество само построило Вселенную на основании геометрической формы додекаэдра. Земля подобна Вселенной, и у Платона Земля – тоже додекаэдр.

Греческая математика, в которой впервые появилась теория многогранников, развивалась под большим влиянием знаменитого мыслителя Платона.
Платон (427–347 до н.э.) – великий древнегреческий философ, основатель Академии и родоначальник традиции платонизма. Одним из существенных черт его учения является рассмотрение идеальных объектов - абстракций. Математика, взяв на вооружение идеи Платона, со времен Евклида изучает именно абстрактные, идеальные объекты. Однако и сам Платон, и многие древние математики вкладывали в термин идеальный не только смысл абстрактный, но и смысл наилучший. В соответствии с традицией, идущей от древних математиков, среди всех многогранников лучшие те, которые имеют своими гранями правильные многоугольники.

Теория многогранников – один из увлекательных и ярких разделов математики. В представленном реферате была рассмотрена только одна часть этой теории. Из правильных многогранников – платоновых тел – можно получить так называемые полуправильные многогранники, или архимедовы тела, гранями которых являются также правильные, но разноимённые многоугольники, а также звёздные правильные тела.

Список литературы

1.Дорофеев Г.В., Петерсон Л.Г. Математика. 6 класс. Часть 3 – М: Баласс, 1988.

2.Шарыгин И. Ф., Ерганжиева Л.Н. Наглядная геометрия.Учебное пособие для V – VI классов. – М: Мирос 1992.

3.Энциклопедия для детей. Т. 11. Математика. – М: Аванта плюс, 2002.

4.Энциклопедия для детей. Я познаю мир.Математика. – М: Издательство АСТ, 1999.

5.Погорелов А.В. Геометрия. Учебное пособие для 7-11 классов. М., Просвещение, 1992.

Муниципальное общеобразовательное учреждение

«Средняя общеобразовательная школа №87»

Тема реферата:

Правильные многогранники.

Выполнила: Бушуева М. А.

ученица 10 класса Б.

Руководители:

Кулеш Людмила Егоровна,

учитель математики;

Троегубова Татьяна Сергеевна,

учитель информатики.

Северск -2009.

Введение……………………………………………………………………..…3

    Определение правильного многогранника…………………………….…4

    Платоновы тела………………………………………………………….….5

    Виды правильных многогранников………………………………….……6

    Пять правильных многогранников……...……………………...……….…9

    Свойства правильных многогранников…………………….……….……11

    Полуправильные многогранники…………………………………………16

Заключение………………………………………………………………….…20

Список источников……………...…………………………………………......21

Приложение 1. Картина Сальвадора Дали «Тайная вечеря»………………..23

Приложение 2. Симметрия в архитектуре…………………………………....24

Введение

Я выбрала тему «Правильные многогранники» потому, что в нашей жизни многогранники встречаются повсюду, почти в каждом предмете можно увидеть многогранник.

Мне было очень интересно узнать эти удивительные фигуры получше, ведь в школе с ними знакомятся совсем мало.

Человек проявляет интерес к многогранникам на протяжении всей своей сознательной деятельности – от маленького ребенка, который играет с кубиками, до взрослого человека. Некоторые многогранники встречаются в природе – в виде кристаллов или вирусов, пчелы строят соты в форме шестиугольников.

Мир наш исполнен симметрии. С древнейших времен с ней связаны наши представления о красоте. Наверное, этим объясняется непреходящий интерес человека к многогранникам - удивительным символам симметрии, привлекавшим внимание множества выдающихся мыслителей, от Платона и Евклида до Эйлера и Коши.

Для того чтобы больше узнать о правильных многогранниках, я поставила перед собой такие задачи:

    Найти и проанализировать материал о правильных многогранниках.

    Обобщить обработанный материал.

    Оформить реферат.

    Подготовить презентацию.

    Представить презентацию в PowerPoint.

Моя работа состоит из шести глав. Мной были изучены и обработаны материалы 14 литературных источников, среди которых учебная, справочная, научная литература, периодические издания и Интернет-сайты, а также подготовлена презентация, сделанная в редакторе Power Point.

    Правильные многогранники.

Многогранник - часть пространства, ограниченная совокупностью конечного числа плоских многоугольников, соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого смежным), причем, вокруг каждой вершины существует ровно один цикл многоугольников. Эти многоугольники называются гранями, их стороны – ребрами, а вершины – вершинами многогранника.

Многогранник называется выпуклым, если он весь лежит по одну сторону от плоскости любой его грани, тогда грани его тоже выпуклы. Выпуклый многогранник разрезает пространство на две части - внешнюю и внутреннюю. Внутренняя его часть есть выпуклое тело. Обратно, если поверхность выпуклого тела многогранная, то соответствующий многогранник - выпуклый.

Выпуклый многогранник называется правильным, если все его грани – равные правильные многоугольники и к каждой вершине примыкает одно и то же число граней.

Если все грани – правильные р -угольники и q из них примыкают к каждой вершине, то такой правильный многогранник обозначается {p , q }. Это обозначение было предложено Л.Шлефли (1814–1895), швейцарским математиком, которому принадлежит немало изящных результатов в геометрии и математическом анализе.

Существуют невыпуклые многогранники, у которых грани пересекаются и которые называются «правильными звездчатыми многогранниками». Так как мы условились такие многогранники не рассматривать, то под правильными многогранниками мы будем понимать исключительно выпуклые правильные многогранники.

2.Платоновы тела

Одно из древнейших упоминаний о правильных многогранниках находится в трактате Платона (427-347 до н. э.) ";Тимаус";. Поэтому правильные многогранники также называются платоновыми телами (хотя известны они были задолго до Платона). Каждый из правильных многогранников, а всего их пять, Платон ассоциировал с четырьмя ";земными"; элементами (стихиями): земля (куб), вода (икосаэдр), огонь (тетраэдр), воздух (октаэдр), а также с ";неземным"; элементом - небом (додекаэдр). Знаменитый математик и астроном Кеплер построил модель Солнечной системы как ряд последовательно вписанных и описанных правильных многогранников и сфер.

На рисунках ниже изображены правильные многогранники. Простейшим из них является правильный тетраэдр, гранями которого служат четыре равносторонних треугольника и к каждой из вершин примыкают по три грани. Тетраэдру соответствует запись {3, 3}. Это не что иное, как частный случай треугольной пирамиды. Наиболее известен из правильных многогранников куб (иногда называемый правильным гексаэдром) – прямая квадратная призма, все шесть граней которой – квадраты. Так как к каждой вершине примыкают по 3 квадрата, куб обозначается {4, 3}. Если две конгруэнтные квадратные пирамиды с гранями, имеющими форму равносторонних треугольников, совместить основаниями, то получится многогранник, называемый правильным октаэдром. Он ограничен восемью равносторонними треугольниками, к каждой из вершин примыкают по четыре треугольника, и, следовательно, ему соответствует запись {3, 4}. Правильный октаэдр можно рассматривать и как частный случай прямой правильной треугольной антипризмы. Рассмотрим теперь прямую правильную пятиугольную антипризму, грани которой имеют форму равносторонних треугольников, и две правильные пятиугольные пирамиды, основания которых конгруэнтны основанию антипризмы, а грани имеют форму равносторонних треугольников. Если эти пирамиды присоединить к антипризме, совместив их основания, то получится еще один правильный многогранник. Двадцать его граней имеют форму равносторонних треугольников, к каждой вершине примыкают по пять граней. Такой многогранник называется правильным икосаэдром и обозначается {3, 5}. Помимо четырех названных выше правильных многогранников, существует еще один – правильный додекаэдр, ограниченный двенадцатью пятиугольными гранями; к каждой его вершине примыкают по три грани, поэтому додекаэдр обозначается как {5, 3}.

Тетраэдр

Тетраэдр составлен из четырех равносторонних треугольников. Каждая его вершина является вершиной трех треугольников. Сумма плоских углов при каждой вершине равна 180 градусов. Таким образом, тетраэдр имеет 4 грани, 4 вершины и 6 ребер.

Элементы симметрии:

Тетраэдр не имеет центра симметрии, но имеет 3 оси симметрии и 6 плоскостей симметрии.

Куб составлен из шести квадратов. Каждая его вершина является вершиной трех квадратов. Сумма плоских углов при каждой вершине равна 270 градусов. Таким образом, куб имеет 6 граней, 8 вершин и 12 ребер.

Элементы симметрии:

Куб имеет центр симметрии - центр куба, 9 осей симметрии и 9 плоскостей симметрии

Октаэдр

Октаэдр составлен из восьми равносторонних треугольников. Каждая его вершина является вершиной четырех треугольников. Сумма плоских углов при каждой вершине равна 240 градусов. Таким образом, октаэдр имеет 8 граней, 6 вершин и 12 ребер.

Элементы симметрии:

Октаэдр имеет центр симметрии - центр октаэдра, 9 осей симметрии и 9 плоскостей симметрии.

Икосаэдр

Икосаэдр составлен из двадцати равносторонних треугольников. Каждая его вершина является вершиной пяти треугольников. Сумма плоских углов при каждой вершине равна 300 градусов. Таким образом икосаэдр имеет 20 граней, 12 вершин и 30 ребер.

Элементы симметрии:

Икосаэдр имеет центр симметрии - центр икосаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Додекаэдр

Додекаэдр составлен из двенадцати равносторонних пятиугольников. Каждая его вершина является вершиной трех пятиугольников. Сумма плоских углов при каждой вершине равна 324 градусов. Таким образом, додекаэдр имеет 12 граней, 20 вершин и 30 ребер.

Элементы симметрии: Додекаэдр имеет центр симметрии - центр додекаэдра, 15 осей симметрии и 15 плоскостей симметрии.

Пять перечисленных выше правильных многогранников, часто называемых также «телами Платона», захватили воображение математиков, мистиков и философов древности более двух тысяч лет назад. Древние греки даже установили мистическое соответствие между тетраэдром, кубом, октаэдром и икосаэдром и четырьмя природными началами – огнем, землей, воздухом и водой. Что касается пятого правильного многогранника, додекаэдра, то они рассматривали его как форму Вселенной. Эти идеи не являются одним лишь достоянием прошлого. И сейчас, спустя два тысячелетия, многих привлекает лежащее в их основе эстетическое начало. О том, что они не утратили свою притягательность и поныне, весьма убедительно свидетельствует картина испанского художника Сальвадора Дали Тайная вечеря .

Древними греками исследовались также и многие геометрические свойства платоновых тел; с плодами их изысканий можно ознакомиться по 13-й книге Начал Евклида. Изучение платоновых тел и связанных с ними фигур продолжается и поныне. И хотя основными мотивами современных исследований служат красота и симметрия, они имеют также и некоторое научное значение, особенно в кристаллографии. Кристаллы поваренной соли, тиоантимонида натрия и хромовых квасцов встречаются в природе в виде куба, тетраэдра и октаэдра соответственно. Икосаэдр и додекаэдр среди кристаллических форм не встречаются, но их можно наблюдать среди форм микроскопических морских организмов, известных под названием радиолярий.

4.Пять правильных многогранников

Естественно спросить, существуют ли кроме платоновых тел другие правильные многогранники. Как показывают следующие простые соображения, ответ должен быть отрицательным. Пусть {p , q } – произвольный правильный многогранник. Так как его гранями служат правильные р -угольники, их внутренние углы, как нетрудно показать, равны (180 – 360/р ) или 180 (1 – 2/р ) градусам. Так как многогранник {p , q } выпуклый, сумма всех внутренних углов по граням, примыкающим к любой из его вершин, должна быть меньше 360 градусов. Но к каждой вершине примыкают q граней, поэтому должно выполняться неравенство

где символ

Нетрудно видеть, что p и q должны быть больше 2. Подставляя в (1) р = 3, мы обнаруживаем, что единственными допустимыми значениями q в этом случае являются 3, 4 и 5, т.е. получаем многогранники {3, 3}, {3, 4} и {3, 5}. При р = 4 единственным допустимым значением q является 3, т.е. многогранник {4, 3}, при р = 5 неравенству (1) также удовлетворяет только q = 3, т.е. многогранник {5, 3}. При p > 5 допустимых значений q не существует. Следовательно, других правильных многогранников, кроме тел Платона, не существует.

Все пять правильных многогранников перечислены в таблице, приведенной ниже. В трех последних столбцах указаны N 0 – число вершин, N 1 – число ребер и N 2 – число граней каждого многогранника.

К сожалению, приводимое во многих учебниках геометрии определение правильного многогранника неполно. Распространенная ошибка состоит в том, что в определении требуется лишь выполнение приведенного выше условия (а), но упускается из виду условие (б). Между тем условие (б) совершенно необходимо, в чем проще всего убедиться, рассмотрев выпуклый многогранник, удовлетворяющий условию (б), но не удовлетворяющий условию (б). Простейший пример такого рода можно построить, отождествив грань правильного тетраэдра с гранью еще одного тетраэдра, конгруэнтного первому. В результате мы получим выпуклый многогранник, шестью гранями которого являются конгруэнтные равносторонние треугольники. Однако к одним вершинам примыкают три грани, а к другим – четыре, что нарушает условие (б).

ПЯТЬ ПРАВИЛЬНЫХ МНОГОГРАННИКОВ

Название

Запись Шлефли

N 0 (число вершин)

N 1 (число ребер)

N 2 (число граней)

Тетраэдр

Икосаэдр

Додекаэдр

5.Свойства правильных многогранников

Вершины любого правильного многогранника лежат на сфере (что вряд ли вызовет удивление, если вспомнить, что вершины любого правильного многоугольника лежат на окружности). Помимо этой сферы, называемой «описанной сферой», имеются еще две важные сферы. Одна из них, «срединная сфера», проходит через середины всех ребер, а другая, «вписанная сфера», касается всех граней в их центрах. Все три сферы имеют общий центр, который называется центром многогранника.

Двойственные многогранники. Рассмотрим правильный многогранник {p , q } и его срединную сферу S . Средняя точка каждого ребра касается сферы. Заменяя каждое ребро отрезком перпендикулярной прямой, касательной к S в той же точке, мы получим N 1 ребер многогранника, двойственного многограннику {p , q }. Нетрудно показать, что гранями двойственного многогранника служат правильные q -угольники и что к каждой вершине примыкают р граней. Следовательно, многограннику {p , q } двойствен правильный многогранник {q , p }. Многограннику {3, 3} двойствен другой многогранник {3, 3}, конгруэнтный исходному (поэтому {3, 3} называется самодвойственным многогранником), многограннику {4, 3} двойствен многогранник {3, 4}, а многограннику {5, 3} – многогранник {3, 5}. На рис. 3 многогранники {4, 3} и {3, 4} показаны в положении двойственности друг другу. Кроме того, каждой вершине, каждому ребру и каждой грани многогранника {p , q } соответствует единственная грань, единственное ребро и единственная вершина двойственного многогранника {q , p }. Следовательно, если {p , q } имеет N 0 вершин, N 1 ребер и N 2 граней, то {q , p } имеет N 2 вершин, N 1 ребер и N 0 граней.

Так как каждая из N 2 граней правильного многогранника {p , q } ограничена р ребрами и каждое ребро является общим ровно для двух граней, то всего имеется pN 2 /2 ребер, поэтому N 1 = pN 2 /2. У двойственного многогранника {q , p } ребер также N 1 и N 0 граней, поэтому N 1 = qN 0 /2. Таким образом, числа N 0 , N 1 и N 2 для любого правильного многогранника {p , q } связаны соотношением

Симметрия. Основной интерес к правильным многогранникам вызывает большое число симметрий, которыми они обладают. Под симметрией (или преобразованием симметрии) многогранника мы понимаем такое его движение как твердого тела в пространстве (например, поворот вокруг некоторой прямой, отражение относительно некоторой плоскости и т.д.), которое оставляет неизменными множества вершин, ребер и граней многогранника. Иначе говоря, под действием преобразования симметрии вершина, ребро или грань либо сохраняет свое исходное положение, либо переводится в исходное положение другой вершины, другого ребра или другой грани.

Существует одна симметрия, которая свойственна всем многогранникам. Речь идет о тождественном преобразовании, оставляющем любую точку в исходном положении. С менее тривиальным примером симметрии мы встречаемся в случае прямой правильной р -угольной призмы. Пусть l – прямая, соединяющая центры оснований. Поворот вокруг l на любое целое кратное угла 360/р градусов является симметрией. Пусть, далее, π – плоскость, проходящая посредине между основаниями параллельно им. Отражение относительно плоскости π (движение, переводящее любую точку P в точку P" , такую, что p пересекает отрезок PP" под прямым углом и делит его пополам) – еще одна симметрия. Комбинируя отражение относительно плоскости π с поворотом вокруг прямой l , мы получим еще одну симметрию.

Любую симметрию многогранника можно представить в виде произведения отражений. Под произведением нескольких движений многогранника как твердого тела здесь понимается выполнение отдельных движений в определенном заранее установленном порядке. Например, упоминавшийся выше поворот на угол 360/р градусов вокруг прямой l есть произведение отражений относительно любых двух плоскостей, содержащих l и образующих относительно друг друга угол в 180/р градусов. Симметрия, являющаяся произведением четного числа отражений, называется прямой, в противном случае – обратной. Таким образом, любой поворот вокруг прямой – прямая симметрия. Любое отражение есть обратная симметрия.

Других видов правильных многогранников, кроме перечисленных пяти, нет. Докажем это.

Обозначим через p число сторон у грани правильного многогранника. Так как двугранные углы равны, то все пространственные углы в правильном многограннике также равны. Поэтому в каждой вершине правильного многогранника сходится одно и тоже число граней, которое мы обозначим через q .

Используя правильность граней и равенство двугранных углов, древние греки легко получили, что для правильных многогранников пары целых чисел (p , q ) могут быть лишь такими (3, 3), (4, 3), (3, 4), (3, 5), (5, 3). Однако благодаря теореме Эйлера можно получить те же пять пар чисел не только для правильных многоугольников, но и вообще для произвольных выпуклых многогранников, у которых каждая грань имеет одинаковое число p сторон и в каждой вершине сходится одинаковое число q граней.

Действительно, так как каждое ребро принадлежит ровно двум граням, а каждая грань имеет ровно p ребер, то p · Г равно удвоенному числу ребер в многограннике: p · Г = 2Р. Поскольку каждое ребро имеет ровно два конца, а в каждой вершине сходится ровно q ребер, то q · В = 2Р. Итак,

Г = 2Р/ p и В = 2Р/ q (4)

Подставим отношение (4) в формулу Эйлера:

2P/ q + 2P/ p = P + 2 (5)

Найдем Р из (5):

P = 2 pq /(2 · (p + q ) - pq ) (6)

Знаменатель дроби в (6) равен 4 - (p - 2)(q - 2). а так как знаменатель положителен, то (p - 2)(q - 2) p сторон у грани, так и число q граней, сходящихся в вершине, не меньше 3. Поэтому уравнение (5) при условии p ≥3, q ≥3 имеет пять и только пять целочисленных решений (p , q ): (3, 3), (3, 4), (4, 3), (3, 5), (5, 3).

Отсюда следует, что комбинаторно различных многогранников, у которых все грани одноименные многоугольники и в каждой вершине сходится одинаковое число граней, не более пяти.

Вернемся теперь к правильным многогранникам. Соответствующая правильному многограннику пара чисел (p , q ) называется его символом Шлефли. У правильного многогранника может быть один из пяти символов Шлефли. Теперь покажем, что для каждого из символов Шлефли существует правильный многогранник.

Легко убедиться, что символу Шлефли (3, 3) соответствует правильный тетраэдр, а символу (4, 3) - куб. К многограннику с символом Шлефли (3, 4) - октаэдру - легко прийти от куба. Нужно взять центры квадратных граней куба - их шесть. На каждой тройке центров граней, прилегающих к каждой из 8 вершин куба, построим по правильному треугольнику (рис.16). Легко проверить, что все двугранные углы между гранями равны. Этот многогранник правильный. Он имеет восемь граней и называется октаэдром.

Несколько сложнее убедиться в существование правильного многогранника, соответствующего символу (3, 5), т. е. многогранника с треугольными гранями, сходящимися по пять в каждой вершине. Возьмем три равных золотых прямоугольника, т.е. прямоугольника с соотношением сторон (+1)/2. Расположим их во взаимно перпендикулярных плоскостях, как показано на рисунке 17. Пусть стороны золотых прямоугольников для определенности равны + 1 и 2. Возьмем произвольную вершину А 1 одного из прямоугольников. Существуют в точности пять вершин этих прямоугольников, а именно вершины В1, А2, В3, D3, D2 находящиеся от А 1 на одинаковом расстоянии 2. По теореме Пифагора можно установить, что треугольники А 1 В 1 А 2 , А 1 А 2 В 3 , А 1 В 3 D 3 , А 1 D 3 D 2 , А 1 D 2 В 1 правильные. Кроме того, любые два смежных треугольника образуют равные двугранные углы. Точно такие правильные треугольники появляются во всех 12 вершинах прямоугольников, по пять в каждой. Таким образом, существует правильный многогранник, соответствующий символу (3, 5). Этот многогранник называется икосаэдром , что в переводе с греческого означает двадцатигранник. У икосаэдра 12 вершин.

Чтобы построить правильный многогранник с символом (5, 3), возьмем в качестве вершин этого многогранника центры всех двадцати треугольных граней икосаэдра. Центры пяти треугольников, сходящихся в той или иной вершине икосаэдра, образуют вершины плоского правильного пятиугольника. Всего таких пятиугольников столько же, сколько вершин у икосаэдра - двенадцать. Эти правильные пятиугольники, сходящиеся по три в каждой вершине (в центре треугольной грани икосаэдра), образуют двенадцатигранник - додекаэдр . Все двугранные углы у этого додекаэдра равны. Поэтому этот многогранник является правильным.

Два правильных многогранника - октаэдр и додекаэдр - строились при помощи других многогранников - куба и икосаэдра. Причем каждая вершина, скажем, октаэдра соответствовала некоторой вершине куба. То же самое можно сказать и о паре многогранников икосаэдр - додекаэдр.

Два многогранника называются дуальными , если между множеством граней одного из них и множеством вершин другого существует взаимно однозначное соответствие, причем такое, что если две грани первого из них смежные ребру, то соответствующие этим граням вершины второго многогранника соединяются с ребром. Следует отметить, что у пары дуальных многогранников число вершин одного равно числу граней другого, а ребер у них поровну.

Дуальные многогранники состоят лишь из пяти- и шестиугольников, причем в каждой вершине сходятся по три грани. Такие многогранники называются фуллеренами. Изучение фуллеренов очень важно для приложений в химии, медицине, архитектуре. Теорема Грюнбаума в переводе на язык фуллеренов означает, что во всяком фуллерене имеется в точности двенадцать пятиугольников, а шестиугольников может быть какое угодно число, не меньше двух.

Чрезвычайно важная задача - как перечислить всевозможные структуры фуллеренов с наперед заданным числом n шестиугольников и сколько их в зависимости от n - остается актуальной и по сей день.

6.Полуправильные многогранники

Полуправильные многогранники являются естественным расширением правильных многогранников. Это выпуклые многогранники, гранями которых являются правильные многоугольники, - возможно, с разным числом сторон, и в каждой вершине сходится одинаковое число граней. Большинство из них были открыты еще Архимедом. Но открывались они и в ХХ веке.

Самые простые из многогранников Архимеда получаются из правильных многогранников операцией «усечения», состоящей в отсечении плоскостями углов многогранника. Так, если срезать углы тетраэдра плоскостями, каждая из которых отсекает третью часть его ребер, выходящих из одной вершины, то получим усеченный тетраэдр , имеющий восемь граней (рис.1). Из них четыре – правильные шестиугольники и четыре – правильные треугольники. В каждой вершине этого многогранника сходится три грани.

Если указанным образом срезать вершины октаэдра и икосаэдра, то получим соответственно усеченный октаэдр (рис.2) и усеченный икосаэдр (рис.3). Обратите внимание на то, что поверхность футбольного мяча изготавливают в форме поверхности усеченного икосаэдра. Из куба и додекаэдра также можно получить усеченный куб (рис.4) и усеченный додекаэдр (рис.5).

Для того, чтобы получить еще один правильный многогранник, проведем в кубе отсекающие плоскости через середины ребер, выходящих из одной вершины. В результате получим полуправильный многогранник, который называется кубооктаэдром (рис.6). Его гранями являются шесть квадратов, как у куба, и восемь правильных треугольников, как у октаэдра. Отсюда и название – кубооктаэдр.

Аналогично, если в додекаэдре отсекающие плоскости провести через середины ребер, выходящих из одной вершины, то получим многогранник, который называется икосододекаэдром (рис.7). У него двадцать граней – правильные треугольники и двенадцать граней – правильные пятиугольники, то есть все грани икосаэдра и додекаэдра.

Еще два многогранника называются усеченный кубооктаэдр (рис.8) и усеченный икосододекаэдр (рис.9), хотя их нельзя получить усечением кубооктаэдра и икосододекаэдра. Отсечение углов этих многогранников дает не квадраты, а прямоугольники.

Мы рассмотрели 9 из 13 описанных Архимедом полуправильных многогранников. Четыре оставшихся – многогранники более сложного типа.

На рисунке 10 мы видим ромбокубооктаэдр. Его поверхность состоит из граней куба и октаэдра, к которым добавлены еще 12 квадратов.

На рисунке 11 изображен ромбоикосододекаэдр, поверхность которого состоит из граней икосаэдра, додекаэдра и еще 30 квадратов. На рисунках 12, 13 представлены так называемые плосконосый (курносый) куб и плосконосый (курносый) додекаэдр, поверхности которых состоят из граней куба или додекаэдра, окруженных правильными треугольниками.

Кроме этих тринадцати тел Архимеда в число полуправильных многогранников включается 14-й многогранник, называемый псевдоархимедовым (рис.14). Он получается из ромбокубооктаэдра поворотом нижней чаши на 45º.

Конечно, еcли в определении полуправильного многогранника ослабить второе условие, то можно найти и другие многогранники удовлетворяющие этому определению. По крайней мере, есть еще пять многогранников, получаемых поворотом их частей.

Так, если повернуть нижнюю или верхнюю чашу икосододекаэдра на 36°, то получим новый многогранник, гранями которого являются правильные пятиугольники и треугольники и в каждой вершине сходится четыре ребра.

Поворачивая чаши ромбоикосододекаэдра можно получить еще четыре многогранника, гранями которых являются квадраты и правильные пятиугольники и треугольники, а в каждой вершине сходится четыре ребра.

Какое же определение полуправильного многогранника правильное? Какое определение имел в виду Архидем, описавший тринадцать полуправильных многогранников? Знал ли он о псевдоархимедовом теле или не догадался, что можно повернуть чашу кубооктаэдра? К сожалению, определение полуправильного многогранника, которым пользовался Архимед, не дошло до нас. По-видимому, Архимед не считал псевдоархимедов многогранник полуправильным многогранником.

Действительно, по внешнему виду псевдоархимедов многогранник не такой «правильный», как многогранники Архимеда. Но чем же определяется «правильность»?

Представим полуправильный многогранник, сделанный из прозрачного материала, и посмотрим сквозь одну n-угольную грань. Мы увидим остальные грани, расположенные в определенном порядке. Точно такую же картину мы увидим, если посмотрим сквозь другую n-угольную грань этого многогранника. Этим свойством обладают все полуправильные многогранники, а псевдоархимедов многогранник – нет. Если посмотреть сквозь верхнюю квадратную грань и сквозь боковую квадратную грань, то мы увидим разные расположения остальных граней.

С математической точки зрения правильность определяется наличием симметрий, то есть движений, переводящих многогранник сам в себя.

Для тел Архимеда выполняется следующее свойство: для любых двух вершин существует симметрия, при которой одна вершина переходит в другую. Это означает, что не только все многогранные углы равно, но что для любых двух многогранных углов существует движение многогранника, переводящее один из них в другой. Конечно, это более сильное условие, чем просто равенство многогранных углов. Этому условию не удовлетворяет псевдоархимедов многогранник.

Таким образом, имеется три варианта определения полуправильного многогранника.

Определение 1. Полуправильным многогранником называется выпуклый многогранник, поверхность которого состоит из правильных многоугольников, - возможно, с разным числом сторон – и в каждой вершине одинаковое число ребер. В этом случае, помимо двух бесконечных серий призм и антипризм, имеется по крайней мере 19 таких многогранников.

Определение 2. полуправильным многогранником называется выпуклый многогранник, поверхность которого состоит из правильных многоугольников, - возможно, с разным числом сторон, - и все эти многогранные углы равны. В этом случае, помимо двух бесконечных серий призм и антипризм, имеется 14 таких многогранников – 13 тел Архимеда и псевдоархимедов многогранник.

Определение 3. Полуправильным многогранником называется выпуклый многогранник, поверхность которого состоит из правильных многоугольников, - возможно с разным числом сторон, - и для любых двух вершин существует симметрия многогранника, переводящая одну из них в другую. В этом случае, помимо двух бесконечных серий, имеется 13 таких многогранников – многогранников Архимеда.

Можно предположить, что Архимед пользовался именно третьим определением.

Заключение

Итак, выполнив эту работу, я узнала много нового и интересного о правильных многогранниках, оказывается, что еще есть и полуправильные многогранники.

Изучая весь этот материал, я открыла удивительные вещи для себя: первыми правильные полуправильные многогранники изучали Платон и Архимед, а ведь они жили еще до нашей эры, и в наши дни многие ученые занимаются изучением многогранников. Значит, интерес к многогранникам не пропадет никогда, это такие необыкновенные фигуры, а главное, какие они красивые! Одно из самых главных свойств многогранников – это симметрия. Благодаря ей они и выглядят так необычно.

Свойства многогранников используются в различных сферах деятельности человека. Например, в архитектуре: почти все здания строятся с соблюдением симметрии. Многие знаменитые художники пишут свои картины, используя симметрию. За счет этого картины смотрятся более эффектно.

Таким образов вся наша жизнь наполнена многогранниками, с ними сталкивается каждый человек: и маленькие дети и зрелые люди.

В своей работе я обобщила собранный по теме реферата материал и подготовила для его защиты презентацию, сделанную в редакторе Power Point. Мне было интересно работать над выбранной темой реферата.

Список источников:

    /encicl/articles/15/1001550/1001550A.htm

    /sch758/2003/geomet/new!!/prav.html

    /dict/bse/article/00048/75500.htm

    /dict/krugosvet/article/9/9b/1001550.htm

    http :// ru . wikipedia . org / wiki /% D 0%9 F % D 1%80% D 0% B 0% D 0% B 2% D 0% B 8% D 0% BB % D 1%8 C % D 0% BD % D 1%8 B % D 0% B 9_% D 0% BC % D 0% BD % D 0% BE % D 0% B 3% D 0% BE % D 0% B 3% D 1%80% D 0% B 0% D 0% BD % D 0% BD % D 0% B 8% D 0% BA

    /referat-20446.html

    Смирнова И., Смирнов В. Что такое «Полуправильный многогранник» //Учебно-методическая газета «Математика».- 2007 .-№16-с.23-26

    http :// pravmn . narod . ru / tetr . htm

    http :// pravmn . narod . ru / kub . htm

    http :// pravmn . narod . ru / okto . htm

    http :// pravmn . narod . ru / icos . htm

    http :// pravmn . narod . ru / dod . htm

    Смирнова И.М. В мире многогранников: Кн. Для учащихся.- М.: Просвещение, 1995.

    Литвиненко В.Н. Многогранники. Задачи и решения:- М.: Вита-Пресс, 1995.

Приложение 1

Сальвадор Дали на картине «Тайная вечеря» изобразил Иисуса Христа со своими учениками на фоне огромного прозрачного додекаэдра.

Тема реферата : Правильные многоугольники Выполнила : Бушуева М. А. ученица 10 класса Б. Руководители: Кулеш Людмила Егоровна...

  • Автореферат диссертации

    Школа №11 Выполнили ученицы 10 класса “Б": Алёхина... среди 9-х классов на тему правильных многогранников ), а с другой стороны - ... рефератом 10 ...

  • Выполнили ученицы 10 класса “Б" Алёхина Марина

    Автореферат диссертации

    Школа №11 Выполнили ученицы 10 класса “Б": Алёхина... среди 9-х классов на тему : « ... платоновых тел, т. е. пяти правильных многогранников ), а с другой стороны - ... рефератом Атанасян П.М., Бутузов М.В., Кадомцев А.В., Киселёва А.И..«Геометрия 10 ...

  • Реферат по геометрии «Стереометрия» Северск 2009г Оглавление стр

    Автореферат диссертации

    83» Реферат по геометрии «Стереометрия» Выполнила Давлетшина Р.А. ученица 10 класса Северск... 6). Чем выше громоотвод, тем больше объем такого конуса... совершенством и красотой, как правильные многогранники . "Правильных многогранников вызывающе мало, - ...

  • Похожие статьи

    © 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.