В каком веке появилась биохимия. Биохимия

Биохимия является средством выражения понятий и явлений не только в области фундаментальной биологической науки, но и в области клинической медицины. Биохимия, изучающая химические основы жизнедеятельности организмов в норме и при патологии, призвана установить связь между молекулярной структурой и биологической функцией химических компонентов живой материи.

Исторические данные

Рождение биохимии традиционно связывают с концом XIX века, когда химики обнаружили, что клеточные экстракты пивных дрожжей содержат все необходимое для спиртового брожения. Это означало, что процессы, связанные с живыми организмами, могут быть поняты с точки зрения фундаментальной химии. В течение большей части XX века ученые сделали многочисленные открытия в области клеточной биохимии, которые привели к пониманию химической основы жизни. Эти достижения включали описание химической структуры и функции основных классов биомолекул: нуклеиновых кислот, белков , углеводов и липидов . Более того, изучены тысячи метаболических реакций , которые характеризовали молекулярный синтез и деградацию в клетках микроорганизмов, растений и животных. Знания, полученные в результате этих биохимических исследований, были использованы для разработки фармацевтических препаратов, медицинских диагностических тестов, новых промышленных процессов. Развитие биохимии получило большое ускорение в 1970-х годах, когда были разработаны технологии рекомбинантной ДНК.

Современная биохимия охватывает как органическую, так и неорганическую химию, а также области микробиологии, генетики, молекулярной биологии, клеточной биологии, физиологии и вычислительной биологии.

Прикладная роль биохимии

Биохимия, наравне с генетикой и клеточной биологией, является центральной дисциплиной в науках о жизни. Биохимия обеспечивает основные химические принципы, определяющие открытия в медицине, сельском хозяйстве и фармацевтике. Понимание химических реакций в живых клетках на молекулярном уровне, знание того, как клетки сообщаются друг с другом в многоклеточном организме, привело к резкому увеличению ожидаемой продолжительности жизни человека за счет улучшения здравоохранения, производства продуктов питания и науки об окружающей среде. Биохимия является мощной прикладной наукой, которая использует передовые экспериментальные методы для разработки "in vitro " клеточных процессов и ферментативных реакций, например, разработку новых фармацевтических препаратов на основе знаний о биохимических процессах при патологических состояниях, внедрение диагностических тестов, которые обнаруживают эти нарушения. Еще одним примером прикладного характера биохимии являются улучшенные детергенты на основе ферментативных реакций и более быстрое созревание фруктов и овощей с использованием этиленового газа.

Более того, наука об экологии также выиграла от достижений в области биохимии за счет разработки количественных полевых испытаний, которые дают информацию об изменениях в хрупких экосистемах из-за промышленного или биологического загрязнения.

Иерархия сложности химической организации живых систем

В основе, в самом низу этой иерархии - химические элементы и функциональные группы. Подавляющее большинство элементов в живых организмах - это водород и кислород (из которых состоит вода). Живые организмы характеризует обильное содержание углерода, основу органических молекул. Водород, кислород, углерод, азот, фосфор и сера, образуя между собой связи, объединяются в функциональные группы, придающие биомолекулам определенные свойства. Наиболее часто в биомолекулах присутствуют амино-, гидроксильные, сульфгидрильные, фосфорильные, карбокси- и метильные группы.

Биомолекулы

На следующей ступени - химические группы организованы в биомолекулы - мономеры, такие, как аминокислоты , нуклеотиды , простые сахара и жирные кислоты . Биомолекулы - мономеры служат в основном строительными «блоками» для макромолекул - полимеров. Кроме этого, они могут служить сигнальными молекулами для клеток или нейромедиаторами , играть роль в накоплении и преобразовании энергии, катализировать биохимические реакции или иметь структурную функцию.

Макромолекулы

К структурам еще более высокого порядка относят макромолекулы (биомолекулы - полимеры), такие как белки (полимеры аминокислот), нуклеиновые кислоты (полимеры нуклеотидов) или полисахариды , такие как целлюлоза, амилоза и гликоген (полимеры сахаров). Последовательность строительных «блоков» (например, аминокислот) дает важную информацию для определения общей структуры молекулы и ее свойств.

Метаболические пути

Клетки

На следующем уровне - клетки с их специализацией, которая позволяет многоклеточным организмам существовать в своей среде. Благодаря механизмам передачи сигналов между клетками происходит обмен информацией.

Организмы

Организмы представляют собой следующий уровень, так как они состоят из большого числа специализированных клеток, что позволяет многоклеточным организмам реагировать на изменения окружающей среды. Многоклеточные организмы способны адаптироваться к изменениям посредством механизмов трансдукции сигнала, которые облегчают связь клеток между собой. Эти механизмы существуют благодаря специальным мембранным рецепторам, а также системе кровообращения у животных и её аналогам у растений и других организмов.

Экосистемы

Наконец, совместное проживание разных организмов в одной экологической нише создает сбалансированную экосистему, характеризующуюся совместным использованием ресурсов и утилизацией отходов.

Верхняя ступень иерархической лестницы жизни описывает сложные взаимодействия между организмами, которые происходят в экосистемах. Организмы взаимодействуют со своей средой и друг с другом, могут оказывать полезное или вредное воздействие на жизнь на уровне местных или глобальных экосистем.

Например, водные среды чрезвычайно чувствительны к изменениям динамики экосистем, о чем свидетельствуют эффекты цветения водорослей на популяцию рыб. Если быстрое увеличение роста водорослей происходит в ограниченном районе, таком как залив или озеро, это может привести к биохимическому дисбалансу в экосистеме в результате повышенного разложения органических веществ водорослей, а в некоторых случаях к острому истощению запасов кислорода и массовой гибели рыб. Вредные цветения водорослей происходят, когда уровни питательных веществ повышаются в водной экосистеме, а также когда температура воды и солнечный свет являются оптимальными для роста. Внезапные изменения, которые стимулируют цветение водорослей, могут возникать естественным образом в результате сезонных изменений условий окружающей среды или могут возникать в результате промышленных выбросов, которые непосредственно повышают уровень азота или фосфата в воде. Понимание факторов окружающей среды, которые способствуют цветению водорослей и поиска безопасных способов контроля их в чувствительных водных средах, требует понимания ключевых биохимических процессов на нескольких уровнях экосистемы.

Биологическая химия Лелевич Владимир Валерьянович

Глава 1. Введение в биохимию

Глава 1. Введение в биохимию

Биологическая химия – наука, изучающая химическую природу веществ, входящих в состав живых организмов, превращения этих веществ (метаболизм), а также связь этих превращений с деятельностью отдельных тканей и всего организма в целом.

Биохимия – это наука о молекулярных основах жизни. Существует несколько причин тому, что в наши дни биохимия привлекает большое внимание и быстро развивается.

1. Во-первых, биохимикам удалось выяснить химические основы ряда важнейших биохимических процессов.

2. Во-вторых, обнаружены общие пути превращения молекул и общие принципы, лежащие в основе разнообразных проявлений жизни.

3. В-третьих, биохимия оказывает все более глубокое воздействие на медицину.

4. В-четвертых, быстрое развитие биохимии в последние годы позволило исследователям приступить к изучению самых острых, коренных проблем биологии и медицины.

История развития биохимии

В истории развития биохимических знаний и биохимии как науки можно выделить 4 периода.

I период – с древних времен до эпохи Возрождения (XV век). Это период практического использования биохимических процессов без знаний их теоретических основ и первых, порой очень примитивных, биохимических исследований. В самые отдаленные времена люди уже знали технологию таких производств, основанных на биохимических процессах, как хлебопечение, сыроварение, виноделие, дубление кож. Использование растений в пищевых целях, для приготовления красок, тканей наталкивало на попытки понять свойства отдельных веществ растительного происхождения.

II период – от начала эпохи Возрождения до второй половины 19 века, когда биохимия становится самостоятельной наукой. Великий исследователь того времени, автор многих шедевров искусства, архитектор, инженер, анатом Леонардо да Винчи провел опыты и на основании их результатов сделал важный для тех лет вывод, что живой организм способен существовать только в такой атмосфере, в которой может гореть пламя.

В этот период следует выделить работы таких ученых, как Парацельс, М. В. Ломоносов, Ю. Либих, А. М. Бутлеров, Лавуазье.

III период – со второй половины 19 века до 50-х годов 20 века. Ознаменован резким увеличением интенсивности и глубины биохимических исследований, объема получаемой информации, возросшим прикладным значением – использованием достижений биохимии в промышленности, медицине, сельском хозяйстве. К этому времени относятся работы одного из основоположников отечественной биохимии А. Я. Данилевского (1838–1923), М. В. Ненцкого (1847–1901). На рубеже 19 и 20 веков работал крупнейший немецкий химик-органик и биохимик Э. Фишер (1862–1919). Им были сформулированы основные положения полипептидной теории белков, начало которой дали исследования А. Я. Данилевского. К этому времени относятся работы великого русского ученого К. А. Тимирязева (1843–1920), основателя советской биохимической школы А. Н. Баха, немецкого биохимика О. Варбурга. В 1933 г. Г. Кребс подробно изучил орнитиновый цикл образования мочевины, а 1937 г. датируется открытие им же цикла трикарбоновых кислот. В 1933 г. Д. Кейлин (Англия) выделил цитохром С и воспроизвел процесс переноса электронов по дыхательной цепи в препаратах из сердечной мышцы. В 1938 г. А. Е. Браунштейн и М. Г. Крицман впервые описали реакции трансаминирования, являющиеся ключевыми в азотистом обмене.

IV период – с начала 50-х годов 20 века по настоящее время. Характеризуется широким использованием в биохимических исследованиях физических, физико-химических, математических методов, активным и успешным изучением основных биологических процессов (биосинтез белков и нуклеиновых кислот) на молекулярном и надмолекулярном уровнях.

Вот краткая хронология основных открытий в биохимии этого периода:

1953 г. – Дж. Уотсон и Ф. Крик предложили модель двойной спирали строения ДНК.

1953 г. – Ф. Сенгер впервые расшифровал аминокислотную последовательность белка инсулина.

1961 г. – М. Ниренберг расшифровал первую «букву» кода белкового синтеза – триплет ДНК, соответствующий фенилаланину.

1966 г. – П. Митчелл сформулировал хемиосмотическую теорию сопряжения дыхания и окислительного-фосфорилирования.

1969 г. – Р. Мерифильд химическим путем синтезировал фермент рибонуклеазу.

1971 г. – в совместной работе двух лабораторий, руководимых Ю. А. Овчинниковым и А. Е. Браунштейном, установлена первичная структура аспартатаминотрансферазы – белка из 412 аминокислот.

1977 г. – Ф. Сенгер впервые полностью расшифровал первичную структуру молекулы ДНК (фаг? Х 174).

Развитие медицинской биохимии в Беларуси

С момента создания в 1923 г. в Белорусском государственном университете кафедры биохимии началась профессиональная подготовка национальных биохимических кадров. В 1934 г. организована кафедра биохимии в Витебском медицинском институте, в 1959 г. – в Гродненском медицинском институте, в 1992 г. – в Гомельском медицинском институте. На заведование кафедрами приглашались и избирались известные ученые, крупные специалисты в области биохимии: А. П. Бестужев, Г. В. Дервиз, Л. Е. Таранович, Н. Е. Глушакова, В. К. Кухта, В. С. Шапот, Л. Г. Орлова, А. А. Чиркин, Ю. М. Островский, Н. К. Лукашик. На формирование научных школ в области медицинской биохимии огромное влияние оказала деятельность таких выдающихся ученых, как М. Ф. Мережинский (1906–1970), В. А. Бондарин (1909–1985), Л. С. Черкасова (1909–1998), В. С. Шапот (1909–1989), Ю. М. Островский (1925–1991), А. Т. Пикулев (1931–1993).

В 1970 г. в г. Гродно создан Отдел регуляции обмена веществ АН БССР, преобразованный в 1985 г. в Институт биохимии Национальной академии наук Беларуси. Первым заведующим отделом и директором института был академик АН БССР Ю. М. Островский. Под его руководством было начато всестороннее изучение витаминов, в частности, тиамина. Работы

Ю. М. Островского дополнены и продолжены в исследованиях его учеников: Н. К. Лукашика, А. И. Балаклеевского, А. Н. Разумовича, Р. В. Требухиной, Ф. С. Ларина, А. Г. Мойсеенка.

Наиболее важными практическими результатами деятельности научных биохимических школ явилась организация государственной лабораторной службы республики (профессор В. Г. Колб), открытие в Витебском медицинском институте Республиканского липидного лечебно-диагностического центра метаболической терапии (профессор А. А. Чиркин), создание в Гродненском медицинском институте лаборатории медико-биологических проблем наркологии (профессор В. В. Лелевич).

1. Состав и строение химических веществ живого организма – статическая биохимия.

2. Вся совокупность превращения веществ в организме (метаболизм) – динамическая биохимия.

3. Биохимические процессы, лежащие в основе различных проявлений жизнедеятельности – функциональная биохимия.

4. Структура и механизм действия ферментов – энзимология.

5. Биоэнергетика.

6. Молекулярные основы наследственности – передача генетической информации.

7. Регуляторные механизмы метаболизма.

8. Молекулярные механизмы специфических функциональных процессов.

9. Особенности метаболизма в органах и тканях.

Разделы и направления биохимии

1. Биохимия человека и животных.

2. Биохимия растений.

3. Биохимия микроорганизмов.

4. Медицинская биохимия.

5. Техническая биохимия.

6. Эволюционная биохимия.

7. Квантовая биохимия.

Объекты биохимических исследований

1. Организмы.

2. Отдельные органы и ткани.

3. Срезы органов и тканей.

4. Гомогенаты органов и тканей.

5. Биологические жидкости.

6. Клетки.

7. Дрожжи, бактерии.

8. Субклеточные компоненты и органоиды.

9. Ферменты.

10. Химические вещества (метаболиты).

Методы биохимии

1. Гомогенизация тканей.

2. Центрифугирование:

Простое

Ультрацентрифугирование

Центрифугирование в градиенте плотности.

3. Диализ.

4. Электрофорез.

5. Хроматография.

6. Изотопный метод.

7. Колориметрия.

8. Спектрофотометрия.

9. Определение ферментативной активности.

Связь биохимии с другими дисциплинами

1. Биоорганическая химия

2. Физколлоидная химия

3. Биофизическая химия

4. Молекулярная биология

5. Генетика

6. Нормальная физиология

7. Патологическая физиология

8. Клинические дисциплины

9. Фармакология

10. Клиническая биохимия

Из книги Пранаяма. Сознательный способ дыхания. автора Гупта Ранджит Сен

Введение Пранаяма – это сознательное восприятие и овладение жизненной энергией, присущей психофизической системе каждого живого существа. Пранаяма – это нечто большее, нежели система контроля дыхания. Пранаяма имеет несколько аспектов – в грубом и в тонком

Из книги Разведение собак автора Хармар Хиллери

ГЛАВА 1. Практическое введение в генетику и разведение

Из книги Собаки и их разведение [Разведение собак] автора Хармар Хиллери

ГЛАВА 1 Практическое введение в генетику и разведение

Из книги Эволюционно-генетические аспекты поведения: избранные труды автора Крушинский Леонид Викторович

Введение Дарвин, останавливаясь на инстинктивной деятельности животных, указывал на естественный отбор как на направляющую причину ее возникновения и развития. Подойдя к сложному и наиболее запутанному вопросу поведения животных, Дарвин применял к нему те же

Из книги Язык как инстинкт автора Пинкер Стивен

Введение Один из важнейших вопросов учения о поведении животных - происхождение сложно-безусловных, инстинктивных реакций организма. Ч. Дарвин в «Происхождении видов» (1896. С. 161) в главе об инстинктах указал на естественный отбор как на фактор, направляющий развитие этой

Из книги Взаимопомощь как фактор эволюции автора Кропоткин Петр Алексеевич

Введение Биология развития поведения как научная дисциплина начала развиваться на рубеже XIX и XX вв. Наиболее существенные исследования в этом направлении выполнены Когхиллом (Coghill, 1929), работавшим на амблистомах. Когхилл приходит к ряду принципиальных положений, важных

Из книги Гомеопатическое лечение кошек и собак автора Гамильтон Дон

Глава 1 ИНСТИНКТ ОВЛАДЕНИЯ МАСТЕРСТВОМ Введение в теорию о том, что язык является инстинктом человека. В основе этой теории - идеи Чарльза Дарвина, Уильяма Джеймса и Ноама Хомского Когда вы читаете эти слова, вы становитесь причастными к одному из удивительнейших

Из книги Химера и антихимера автора Швецов Михаил Валентинович

Из книги Чем питаются насекомые [иллюстрации В. Гребенникова] автора Мариковский Павел Иустинович

Глава I Введение в гомеопатию

Из книги Распространненость жизни и уникальность разума? автора Мосевицкий Марк Исаакович

Введение Теория Дарвина задаётся целью объяснить механически происхождение целесообразностей в организмах. Мы же считаем способность к целесообразным реакциям за основное свойство организма. Выяснять происхождение целесообразностей приходится не эволюционному

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

Введение Что едят насекомые? Ну, допустим, растения, друг друга, быть может, еще кое-что. Не слишком ли простая и узкая тема, чтобы ей посвятить целую книжку?Мир насекомых бесконечно разнообразен, видов насекомых существует больше, чем всех остальных животных и растений,

Из книги Современное состояние биосферы и экологическая политика автора Колесник Ю. А.

Глава I. Введение Посвящаю родителям и Тане С незапамятных времен человек задумывался над собственным происхождением и возникновением жизни вообще. Библия донесла до нас ответы на эти вопросы, предложенные 2500 лет тому назад. Во многом сходными были воззрения шумеров,

Из книги Синдром Паганини [и другие правдивые истории о гениальности, записанные в нашем генетическом коде] автора Кин Сэм

Введение Биология – наука о жизни. Её название произошло от двух греческих слов: bios (жизнь) и logos (наука, слово). Слово о жизни… Какая наука имеет более глобальное название?.. Изучая биологию, человек познаёт самого себя как индивидуума и как члена определённой популяции,

Из книги Биологическая химия автора Лелевич Владимир Валерьянович

Глава 1 Введение в проблематику биосферы 1.1. Определение биосферы Что же представляет собой биосфера?Напомним некоторые ее характерные признаки.В современной науке имеется много определений биосферы. Приведем лишь некоторые. «Биосфера – особая, охваченная жизнью

Из книги автора

Введение Вот и он, первый абзац книги о ДНК – о том, как перед нами раскрываются истории, хранившиеся в ДНК на протяжении тысяч и даже миллионов лет, о том, как ДНК помогает нам разгадать загадки о человеке, ответы на которые, казалось, давно утрачены. Ах да! Я пишу эту книгу

Из книги автора

Глава 8. Введение в метаболизм Обмен веществ или метаболизм – это совокупность химических реакций в организме, которые обеспечивают его веществами и энергией, необходимыми для жизнедеятельности. Процесс метаболизма, сопровождающийся образованием более простых

БИОХИМИЯ (биологическая химия), наука, изучающая химический состав живых объектов, строение и пути превращения природных соединений в клетках, органах, тканях и целых организмах, а также физиологическую роль отдельных химических превращений и закономерности их регулирования. Термин «биохимия» введён немецким учёным К. Нейбергом в 1903 году. Предмет, задачи и методы исследования биохимии относятся к изучению всех проявлений жизни на молекулярном уровне; в системе естественных наук она занимает самостоятельную область, относящуюся в равной степени как к биологии, так и к химии. Биохимию традиционно подразделяют на статическую, занимающуюся анализом строения и свойств всех органических и неорганических соединений, входящих в состав живых объектов (клеточных органелл, клеток, тканей, органов); динамическую, изучающую всю совокупность превращений отдельных соединений (обмен веществ и энергии); функциональную, исследующую физиологическую роль молекул отдельных соединений и их превращений при определённых проявлениях жизнедеятельности, а также сравнительную и эволюционную биохимию, определяющую сходство и различия состава и обмена веществ у организмов, принадлежащих к разным таксономическим группам. В зависимости от объекта исследования выделяют биохимию человека, растений, животных, микроорганизмов, крови, мышц, нейрохимию и пр., а по мере углубления знаний и их специализации самостоятельными разделами становятся энзимология, изучающая строение и механизм действия ферментов, биохимия углеводов, липидов, нуклеиновых кислот, мембран. Исходя из целей и задач, биохимию часто делят на медицинскую, сельскохозяйственную, техническую, биохимию питания и пр.

Формирование биохимии в 16—19 веках. Становление биохимии как самостоятельной науки тесно связано с развитием других естественнонаучных дисциплин (химия, физика) и медицины. Существенный вклад в развитие химии и медицины в 16 - 1-й половине 17 века внесла ятрохимия. Её представители исследовали пищеварительные соки, жёлчь, процессы брожения и др., ставились вопросы о превращениях веществ в живых организмах. Парацелъс пришёл к выводу, что процессы, происходящие в организме человека, являются химическими процессами. Я. Сильвиус большое значение придавал правильному соотношению в организме человека кислот и щелочей, нарушение которого, как он полагал, лежит в основе многих заболеваний. Я. Б. ван Гельмонт пытался установить, за счёт чего создаётся вещество растений. В начале 17 века итальянский учёный С. Санторио с помощью специально сконструированной им камеры пытался установить соотношение количества принимаемой пищи и выделений человека.

Научные основы биохимии были заложены во 2-й половине 18 века, чему способствовали открытия в области химии и физики (в том числе открытие и описание ряда химических элементов и простых соединений, формулировка газовых законов, открытие законов сохранения и превращения энергии), использование химических методов анализа в физиологии. В 1770-х годах А. Лавуазье сформулировал идею о сходстве процессов горения и дыхания; установил, что дыхание человека и животных с химической точки зрения представляет собой процесс окисления. Дж. Пристли (1772) доказал, что растения выделяют кислород, необходимый для жизни животных, а голландский ботаник Я. Ингенхауз (1779) установил, что очищение «испорченного» воздуха производится только зелёными частями растений и только на свету (этими работами было положено начало изучению фотосинтеза). Л. Спалланцани предложил рассматривать пищеварение как сложную цепь химических превращений. К началу 19 века из природных источников был выделен ряд органических веществ (мочевина, глицерин, лимонная, яблочная, молочная и мочевая кислоты, глюкоза и др.). В 1828 году Ф. Вёлер впервые осуществил химический синтез мочевины из цианата аммония, развенчав тем самым господствовавшее до этого времени представление о возможности синтеза органических соединений только живыми организмами и доказав несостоятельность витализма. В 1835 году И. Берцелиус ввёл понятие катализа; он постулировал, что брожение - каталитический процесс. В 1836 году голландский химик Г. Я. Мульдер впервые предложил теорию строения белковых веществ. Постепенно происходило накопление данных о химическом составе растительных и животных организмов и протекающих в них химических реакциях, к середине 19 века описан ряд ферментов (амилаза, пепсин, трипсин и др.). Во 2-й половине 19 века были получены некоторые сведения о структуре и химических превращениях белков, жиров и углеводов, фотосинтезе. В 1850-55 годах К. Бернар выделил гликоген из печени и установил факт его превращения в глюкозу, поступающую в кровь. Работами И. Ф. Мишера (1868) было положено начало изучению нуклеиновых кислот. В 1870 году Ю. Либих сформулировал химическую природу действия ферментов (основные её принципы сохраняют своё значение и в наши дни); в 1894 году Э. Г. Фишер впервые использовал ферменты в качестве биокатализаторов химических реакций; он пришёл к заключению, что субстрат соответствует ферменту как «ключ замку». Л. Пастер сделал вывод о том, что брожение - биологический процесс, для осуществления которого необходимы живые дрожжевые клетки, отвергнув тем самым химическую теорию брожения (Й. Берцелиус, Э. Митчерлих, Ю. Либих), в соответствии с которой сбраживание сахаров - сложная химическая реакция. Ясность в этот вопрос была окончательно внесена после того, как Э. Бухнер (1897, совместно с братом, Г. Бухнером) доказал способность экстракта клеток микроорганизмов вызывать брожение. Их работы способствовали познанию природы и механизма действия ферментов. Вскоре А. Гарден установил, что брожение сопровождается включением фосфата в соединения углеводов, что послужило толчком к выделению и идентификации фосфорных эфиров углеводов и пониманию их ключевой роли в биохимических превращениях.

Развитие биохимии в России в этот период связано с именами А. Я. Данилевского (изучал белки и ферменты), М. В. Ненцкого (исследовал пути образования мочевины в печени, структуру хлорофилла и гемоглобина), В. С. Гулевича (биохимия мышечной ткани, экстрактивные вещества мышц), С. Н. Виноградского (открыл хемосинтез у бактерий), М. С. Цвета (создал метод хроматографического анализа), А. И. Баха (перекисная теория биологического окисления) и др. Российский врач Н. И. Лунин проложил путь к изучению витаминов, экспериментально доказав (1880) необходимость для нормального развития животных особых веществ (помимо белков, углеводов, жиров, солей и воды). В конце 19 века сформировались представления о сходстве основных принципов и механизмов химических превращений у различных групп организмов, а также об особенностях их обмена веществ (метаболизма).

Накопление большого количества сведений относительно химического состава растительного и животных организмов и протекающих в них химических процессов привело к необходимости систематизации и обобщения данных. Первой работой в этом направлении стал учебник И. Зимона («Handbuch der angewandten medicinischen Chemie», 1842). В 1842 году появилась монография Ю. Либиха «Die Tierchemie oder die organische Chemie in ihrer Anwendung auf Physiologie und Pathologie». Первый отечественный учебник физиологической химии был издан профессором Харьковского университета А. И. Ходневым в 1847 году. Периодические издания регулярно начали выходить с 1873 года. Во 2-й половине 19 века на медицинских факультетах многих российских и зарубежных университетов были организованы специальные кафедры (первоначально их называли кафедрами медицинской или функциональной химии). В России впервые кафедры медицинской химии были созданы А. Я. Данилевским в Казанском университете (1863) и А. Д. Булыгинским (1864) на медицинском факультете Московского университета.

Биохимия в 20 веке . Становление современной биохимии произошло в 1-й половине 20 века. Его начало отмечено открытием витаминов и гормонов, определена их роль в организме. В 1902 году Э. Г. Фишер первым синтезировал пептиды, установив тем самым природу химической связи между аминокислотами в белках. В 1912 году польский биохимик К. Функ выделил вещество, предотвращающее развитие полиневрита, и назвал его витамином. После этого постепенно были открыты многие витамины, и витаминология стала одним из разделов биохимии, а также науки о питании. В 1913 году Л. Михаэлисом и М. Ментен (Германия) были разработаны теоретические основы ферментативных реакций, сформулированы количественные закономерности биологического катализа; установлена структура хлорофилла (Р. Вильштеттер, А. Штоль, Германия). В начале 1920-х годов А. И. Опарин сформулировал общий подход к химическому пониманию проблемы возникновения жизни. Впервые были получены в кристаллическом виде ферменты уреаза (Дж. Самнер, 1926), химотрипсин, пепсин и трипсин (Дж. Нортроп, 1930-е годы), что послужило доказательством белковой природы ферментов и толчком для быстрого развития энзимологии. В эти же годы Х. А. Кребс описал механизм синтеза мочевины у позвоночных в ходе орнитинового цикла (1932); А. Е. Браунштейн (1937, совместно с М. Г. Крицман) открыл реакцию переаминирования как промежуточное звено биосинтеза и распада аминокислот; О. Г. Варбург выяснил природу фермента, реагирующего с кислородом в тканях. В 1930-х годах завершился основной этап изучения природы основополагающих биохимических процессов. Установлена последовательность реакций распада углеводов в ходе гликолиза и брожения (О. Мейергоф, Я. О. Парнас), превращения пировиноградной кислоты в циклах ди- и трикарбоновых кислот (А. Сент-Дъёрдъи, Х. А. Кребс, 1937), открыто фоторазложение воды (Р. Хилл, Великобритания, 1937). Работами В. И. Палладина, А. Н. Баха, Г. Виланда, шведского биохимика Т. Тунберга, О. Г. Варбурга и английского биохимика Д. Кейлина заложены основы современных представлений о внутриклеточном дыхании. Из мышечных экстрактов были выделены аденозинтрифосфат (АТФ) и креатинфосфат. В СССР работами В. А. Энгельгардта (1930) и В. А. Белицера (1939) по окислительному фосфорилированию и количественной характеристике этого процесса было положено начало современной биоэнергетике. Позднее Ф. Липман разработал представления о богатых энергией фосфорных соединениях, установил центральную роль АТФ в биоэнергетике клетки. Открытие ДНК у растений (российские биохимики А. Н. Белозерский и А. Р. Кизель, 1936) способствовало признанию биохимического единства растительного и животного мира. В 1948 году А. А. Красновский открыл реакцию обратимого фотохимического восстановления хлорофилла, значительные успехи были достигнуты в выяснении механизма фотосинтеза (М. Калвин).

Дальнейшее развитие биохимии связано с изучением структуры и функции ряда белков, разработкой основных положений теории ферментативного катализа, установлением принципиальных схем обмена веществ и др. Прогресс биохимии во 2-й половине 20 века в значительной степени обусловлен развитием новых методов. Благодаря усовершенствованию методов хроматографии и электрофореза стала возможной расшифровка последовательностей аминокислот в белках и нуклеотидов в нуклеиновых кислотах. Рентгеноструктурный анализ позволил определить пространственную структуру молекул ряда белков, ДНК и других соединений. С помощью электронной микроскопии были открыты ранее неизвестные клеточные структуры, благодаря ультрацентрифугированию выделены различные клеточные органеллы (в том числе ядро, митохондрии, рибосомы); использование изотопных методов дало возможность понять сложнейшие пути превращения веществ в организмах и т. д. Важное место в биохимических исследованиях заняли различные виды радио- и оптической спектроскопии, масс-спектроскопии. Л. Полинг (1951, совместно с Р. Кори) сформулировал представления о вторичной структуре белка, Ф. Сенгер расшифровал (1953) структуру белкового гормона инсулина, а Дж. Кендрю (1960) определил пространственную структуру молекулы миоглобина. Благодаря усовершенствованию методов исследования было внесено много нового в представления о структуре ферментов, формировании их активного центра, об их работе в составе сложных комплексов. После установления роли ДНК как вещества наследственности (О. Эвери, 1944) особое внимание обращается на нуклеиновые кислоты и их участие в процессе передачи признаков организма по наследству. В 1953 году Дж. Уотсон и Ф. Крик предложили модель пространственной структуры ДНК (так называемая двойная спираль), увязав её строение с биологической функцией. Это событие явилось переломным моментом в развитии биохимии и биологии в целом и послужило основанием для выделения из биохимии новой науки - молекулярной биологии. Исследования по структуре нуклеиновых кислот, их роли в биосинтезе белка и явлениях наследственности связаны также с именами Э. Чаргаффа, А. Корнберга, С. Очоа, Х. Г. Корана, Ф. Сенгера, Ф. Жакоба и Ж. Моно, а также российских учёных А. Н. Белозерского, А. А. Баева, Р. Б. Хесина-Лурье и др. Изучение структуры биополимеров, анализ действия биологически активных низкомолекулярных природных соединений (витамины, гормоны, алкалоиды, антибиотики и др.) привели к необходимости установления связи между строением вещества и его биологической функцией. В связи с этим получили развитие исследования на грани биологической и органической химии. Это направление стало называться биоорганической химией. В 1950-х годах на стыке биохимии и неорганической химии как самостоятельная дисциплина сформировалась бионеорганическая химия.

К числу несомненных успехов биохимии относятся: открытие участия биологических мембран в генерации энергии и последующие исследования в области биоэнергетики; установление путей превращения наиболее важных продуктов обмена веществ; познание механизмов передачи нервного возбуждения, биохимических основ высшей нервной деятельности; выяснение механизмов передачи генетической информации, регуляции важнейших биохимических процессов в живых организмах (клеточная и межклеточная сигнализация) и многие другие.

Современное развитие биохимии. Биохимия является неотъемлемой частью физико-химической биологии - комплекса взаимосвязанных и тесно переплетённых между собой наук, который включает также биофизику, биоорганическую химию, молекулярную и клеточную биологию и др., изучающих физические и химические основы живой материи. Биохимические исследования охватывают широкий круг проблем, решение которых осуществляется на стыке нескольких наук. Например, биохимическая генетика изучает вещества и процессы, участвующие в реализации генетической информации, а также роль различных генов в регуляции биохимических процессов в норме и при различных генетических нарушениях метаболизма. Биохимическая фармакология исследует молекулярные механизмы действия лекарственных средств, способствуя разработке более совершенных и безопасных препаратов, иммунохимия - структуру, свойства и взаимодействия антител (иммуноглобулинов) и антигенов. На современном этапе биохимия характеризуется активным привлечением широкого методического арсенала смежных дисциплин. Даже такой традиционный раздел биохимии, как энзимология, при характеристике биологической роли конкретного фермента, редко обходится без направленного мутагенеза, выключения гена, кодирующего исследуемый фермент в живых организмах, или, наоборот, его повышенной экспрессии.

Хотя основные пути и общие принципы обмена веществ и энергии в живых системах можно считать установленными, множество деталей метаболизма и особенно его регуляции остаются неизвестными. Особенно актуально выяснение причин нарушений метаболизма, приводящих к тяжёлым «биохимическим» болезням (различные формы диабета, атеросклероз, злокачественное перерождение клеток, нейродегенеративные заболевания, циррозы и многие др.), и научное обоснование его направленной коррекции (создание лекарственных средств, диетические рекомендации). Использование биохимических методов позволяет выявить важные биологические маркеры различных заболеваний и предложить эффективные способы их диагностики и лечения. Так, определение в крови кардиоспецифичных белков и ферментов (тропонин Т и изофермент креатинкиназы миокарда) позволяет осуществлять раннюю диагностику инфаркта миокарда. Важная роль отводится биохимии питания, изучающей химические и биохимические компоненты пищи, их ценность и значение для здоровья человека, влияние хранения пищевых продуктов и их обработки на качество пищи. Системный подход в изучении всей совокупности биологических макромолекул и низкомолекулярных метаболитов конкретной клетки, ткани, органа или организма определённого вида привёл к появлению новых дисциплин. К их числу относятся геномика (исследует всю совокупность генов организмов и особенности их экспрессии), транскриптомика (устанавливает количественный и качественный состав молекул РНК), протеомика (анализирует всё многообразие белковых молекул, характерных для организма) и метаболомика (изучает все метаболиты организма или его отдельных клеток и органов, образующиеся в процессе жизнедеятельности), активно использующие биохимическую стратегию и биохимические методы исследований. Получила развитие прикладная область геномики и протеомики - биоинженерия, связанная с направленным конструированием генов и белков. Названные выше направления порождены в равной мере биохимией, молекулярной биологией, генетикой и биоорганической химией.

Научные учреждения, общества и периодические издания . Научные исследования в области биохимии проводятся во многих специализированных научно-исследовательских институтах и лабораториях. В России они находятся в системе РАН (в том числе Институт биохимии, Институт эволюционной физиологии и биохимии, Институт физиологии растений, Институт биохимии и физиологии микроорганизмов, Сибирский институт физиологии и биохимии растений, Институт молекулярной биологии, Институт биоорганической химии), отраслевых академий (в том числе Институт биомедхимии РАМН), ряда министерств. Работы по биохимии ведутся в лабораториях и на многочисленных кафедрах биохимических вузов. Специалистов-биохимиков и за рубежом, и в Российской Федерации готовят на химических и биологических факультетах университетов, имеющих специальные кафедры; биохимиков более узкого профиля - в медицинских, технологических, сельскохозяйственных и других вузах.

В большинстве стран существуют научные биохимические общества, объединённые в Европейскую федерацию биохимиков (Federation of European Biochemical Societies, FEBS) и в Международный союз биохимиков и молекулярных биологов (International Union of Biochemistry, IUBMB). Эти организации собирают симпозиумы, конференции, а также конгрессы. В России Всесоюзное биохимическое общество с многочисленными республиканскими и городскими отделениями было создано в 1959 году (с 2002 года Общество биохимиков и молекулярных биологов).

Велико количество периодических изданий, в которых публикуются работы по биохимии. Наиболее известны: «Journal of Biological Chemistry» (Balt., 1905), «Biochemistry» (Wash., 1964), «Biochemical Journal» (L., 1906), «Phytochemistry» (Oxf.; N. Y., 1962), «Biochimica et Biophisica Acta» (Amst., 1947) и многие др.; ежегодники: «Annual Review of Biochemistry» (Stanford, 1932), «Advances in Enzymology and Related Subjects of Biochemistry» (N. Y., 1945), «Advances in Protein Chemistry» (N.Y., 1945), «Febs Journal» (первоначально «European Journal of Biochemistry», Oxf., 1967), «Febs letters» (Amst., 1968), «Nucleic Acids Research» (Oxf., 1974), «Biochimie» (Р., 1914; Amst., 1986), «Trends in Biochemical Sciences» (Elsevier, 1976) и др. В России результаты экспериментальных исследований печатаются в журналах «Биохимия» (М., 1936), «Физиология растений» (М., 1954), «Журнал эволюционной биохимии и физиологии» (СПб., 1965), «Прикладная биохимия и микробиология» (М., 1965), «Биологические мембраны» (М., 1984), «Нейрохимия» (М., 1982) и др., обзорные работы по биохимии - в журналах «Успехи современной биологии» (М., 1932), «Успехи химии» (М., 1932) и др.; ежегодник «Успехи биологической химии» (М., 1950).

Лит.: Джуа М. История химии. М., 1975; Шамин А. М. История химии белка. М., 1977; он же. История биологической химии. М., 1994; Основы биохимии: В 3 т. М., 1981; Страйер Л. Биохимия: В 3 т. М., 1984-1985; Ленинджер А. Основы биохимии: В 3 т. М., 1985; Азимов А. Краткая история биологии. М., 2002; Эллиот В., Эллиот Д. Биохимия и молекулярная биология. М., 2002; Berg J.М., Tymoczko J.L., Stryer L. Biochemistry. 5th ed. N. Y., 2002; Биохимия человека: В 2 т. 2-е изд. М., 2004; Березов Т. Т., Коровкин Б. Ф. Биологическая химия. 3-е изд. М., 2004; Voet D., VoetJ. Biochemistry. 3rd ed. N. Y., 2004; Nelson D. L., Cox М. М. Lehninger principles of biochemistry. 4th ed. N. Y., 2005; Elliott W., Elliott D. Biochemistry and molecular biology. 3rd ed. Oxf., 2005; Garrett R.Н., Grisham С. М. Biochemistry. 3rd ed. Belmont, 2005.

А. Д. Виноградов, А. Е. Медведев.

В этой статье мы ответим на вопрос, что такое биохимия. Здесь мы рассмотрим определение этой науки, ее историю и методы исследования, уделим внимание некоторым процессам и определим ее разделы.

Введение

Чтобы ответить на вопрос о том, что такое биохимия, достаточно сказать, что это наука, посвященная химическому составу и процессам, протекающим внутри живой клетки организма. Однако она имеет множество составляющих, узнав которые, можно более конкретизировано составить представление о ней.

В некоторых временных эпизодах XIX века терминологическая единица «биохимия» стала впервые использоваться. Однако была введена в научные круги лишь в 1903 году химиком из Германии - Карлом Нейбергом. Эта наука занимает промежуточную позицию между биологией и химией.

Исторические факты

Ответить на вопрос четко, что такое биохимия, человечество смогло лишь около ста лет назад. Несмотря на то что общество использовало биохимические процессы и реакции еще в далекой древности, оно не подозревало о наличии их истинной сути.

Одними из самых отдаленных примеров может служить изготовление хлеба, виноделие, сыроварение и т. д. Ряд вопросов о целебных свойствах растений, проблем со здоровьем и т. п. заставил человека вникнуть в их основу и природу деятельности.

Развитие общего набора направлений, которые в конечном итоге привели к созданию биохимии, наблюдается уже в древних временах. Ученый-врач из Персии в десятом веке написал книгу о канонах врачебной науки, где смог подробно изложить описание различных лекарственных веществ. В XVII веке ван Гельмонт предложил термин «фермента» как единицы реагента химической природы, участвующей в пищеварительных процессах.

В XVIII веке, благодаря работам А.Л. Лавуазье и М.В. Ломоносова, был выведен закон сохранения массы вещества. В конце того же века было определено значение кислорода в процессе дыхания.

В 1827 году наука позволила создать разделение молекул биологической природы на соединения жиров, белков и углеводов. Этими терминами пользуются до сих пор. Годом позже в работе Ф. Велера было доказано, что вещества живых систем могут синтезироваться искусственными способами. Еще одним важным событием было изготовление и составление теории строения органических соединений.

Основы биохимии формировались многие сотни лет, но приняли четкое определение в 1903 году. Эта наука стала первой дисциплиной из разряда биологических, которая обладала собственной системой математических анализов.

Спустя 25 лет, в 1928 году, Ф. Гриффит провел эксперимент, целью которого было исследование механизма трансформации. Ученый заражал мышей пневмококками. Он убивал бактерии одного штамма и добавлял их к бактериям другого. Исследование показало, что процесс очистки болезнетворных агентов привел к образованию нуклеиновой кислоты, а не белка. Перечень открытий пополняется и в настоящее время.

Наличие смежных дисциплин

Биохимия - это отдельная наука, однако ее созданию предшествовал активный процесс развития органического раздела химии. Главное отличие заключается в объектах исследования. В биохимии рассматриваются только те вещества или процессы, которые могут протекать в условиях живых организмов, а не за их пределами.

В конечном итоге биохимия включила понятие молекулярной биологии. Отличаются они между собой преимущественно методами действий и предметам, которые они изучают. В настоящее время терминологические единицы «биохимия» и «молекулярная биология» стали использоваться в качестве синонимов.

Наличие разделов

На сегодняшний день биохимия включает в себя ряд исследовательских направлений, среди которых:

    Раздел статической биохимии - наука о химическом составе живых существ, структур и молекулярном разнообразии, функций и т. д.

    Существует ряд разделов, изучающий биологические полимеры белковых, липидных, углеводных, аминокислотных молекул, а также нуклеиновые кислоты и сам нуклеотид.

    Биохимия, изучающая витамины, их роль и форму воздействия на организм, возможные нарушения в процессах жизнедеятельности при нехватке или чрезмерном количестве.

    Гормональная биохимия - наука, изучающая гормоны, их биологический эффект, причины недостатка или переизбытка.

    Наука об обмене веществ и его механизмах - динамический раздел биохимии (включает в себя биоэнергетику).

    Исследования молекулярной биологии.

    Функциональная составляющая биохимии изучает явление химических превращений, отвечающих за функциональность всех компонентов организма, начиная с тканей, а заканчивая всем телом.

    Медицинская биохимия - раздел о закономерностях обмена веществ между структурами организма под влиянием заболеваний.

    Также существуют ответвления биохимии микроорганизмов, человека, животных, растений, крови, тканей и т. д.

    Средства исследования и решения проблем

    Методы биохимии основываются на фракционировании, анализе, детальном изучении и рассмотрении структуры как отдельного компонента, так и целого организма или его вещества. Большинство из них формировались в течение XX века, а самую широкую известность получила хроматография - процесс центрифугирования и электрофорез.

    В конце XX века биохимические методы начали все чаще и чаще находить свое применение в молекулярных и клеточных разделах биологии. Была определена структура всего генома человеческой ДНК. Это открытие дало возможность узнать о существовании огромного ряда веществ, в частности различных белков, которые не обнаруживались при очистке биомассы, в связи с их чрезвычайно малым содержанием в веществе.

    Геномика поставила под сомнение огромное количество биохимических знаний и обусловила развитие изменений в ее методологии. Появилось понятие компьютерного виртуального моделирования.

    Химическая составляющая

    Физиология и биохимия тесно связаны между собой. Это объясняется зависимостью нормы протекания всех физиологических процессов с содержанием различного ряда химических элементов.

    В природе можно встретить 90 компонентов периодической таблицы химических элементов, но для жизни необходимо около четверти. Во многих редких компонентах наш организм вовсе не нуждается.

    Различное положение таксона в иерархической таблице живых существ обуславливает разную потребность в наличии тех или иных элементов.

    99 % человеческой массы состоит из шести элементов (С, Н, N, O, F, Ca). Помимо основного количества данных видов атомов, образующих вещества, нам необходимы еще 19 элементов, но в малых или микроскопических объемах. Среди них имеются: Zn, Ni, Ma, K, Cl, Na и другие.

    Биомолекула белка

    Главные молекулы, изучением которых занимается биохимия, относятся к углеводам, белкам, липидам, нуклеиновым кислотам, а также внимание этой науки сосредоточенно на их гибридах.

    Белки - соединения, обладающие крупными размерами. Они образуются посредством связывания цепочек из мономеров - аминокислот. Большая часть живых существ получает белки при помощи синтеза двадцати видов этих соединений.

    Эти мономеры отличаются между собой структурой радикальной группы, которая играет огромную роль в ходе свертывания белка. Цель этого процесса заключается в образовании трехмерной структуры. Соединяются между собой аминокислоты при помощи образования пептидных связей.

    Отвечая на вопрос о том, что такое биохимия, нельзя не упомянуть такие сложные и многофункциональные биологические макромолекулы, как белки. Они имеют больше задач, чем полисахариды или нуклеиновые кислоты, которые необходимо выполнить.

    Некоторые белки представлены ферментами и занимаются катализом различных реакции биохимической природы, что очень важно для обмена веществ. Другие белковые молекулы могут выполнять роль сигнальных механизмов, образовывать цитоскелеты, участвовать в иммунной защите и т. д.

    Некоторые виды белков способны образовывать небелковые биомолекулярные комплексы. Вещества, созданные путем слияния белков с олигосахаридами, позволяют существовать таким молекулам, как гликопротеины, а взаимодействие с липидами приводит к появлению липопротеинов.

    Молекула нуклеиновой кислоты

    Нуклеиновые кислоты представлены комплексами макромолекул, состоящих из полинуклеотидного набора цепочек. Их главное функциональное предназначение заключается в кодировке наследственной информации. Синтез нуклеиновый кислоты происходит благодаря наличию мононуклеозидтрифосфатных макроэнергетических молекул (АТФ, ТТФ, УТФ, ГТФ, ЦТФ).

    Самые широко распространенные представители таких кислот - это ДНК и РНК. Эти структурные элементы находятся в составе каждой живой клетки, от археи, до эукариотов, и даже в вирусах.

    Молекула липида

    Липиды - это молекулярные вещества, составленные глицерином, к которым посредством сложно-эфирных связей прикрепляются жирные кислоты (от 1 до 3). Такие вещества делят на группы в соответствие с длиной углеводородной цепочки, а также обращают внимание на насыщенность. Биохимия воды не позволяет ей растворять в себе соединения липидов (жиров). Как правило, такие вещества растворяются в полярных растворах.

    Основные задачи липидов заключаются в обеспечении энергией организма. Некоторые входят в состав гормонов, могут выполнять сигнальную функцию или переносить липофильные молекулы.

    Молекула углевода

    Углеводы - это биополимеры, образованные путем соединения мономеров, которые в данном случае представлены моносахаридами, такими как, например, глюкоза или фруктоза. Изучение биохимии растений позволило человеку определить, что основная часть углеводов содержится именно в них.

    Свое применение эти биополимеры находят в структурной функции и предоставлении энергетических ресурсов организму или клетке. У растительных организмов главным запасающим веществом служит крахмал, а у животных - гликоген.

    Течение цикла Кребса

    Существует в биохимии цикл Кребса - явление, в ходе которого преобладающее количество эукариотических организмов получают большую часть энергии, расходуемой на процессы окисления поглощаемой пищи.

    Наблюдать его можно внутри клеточных митохондрий. Образуется посредством нескольких реакций, в ходе которых высвобождаются запасы «спрятанной» энергии.

    В биохимии цикл Кребса - это важный фрагмент общего дыхательного процесса и вещественного обмена внутри клеток. Цикл был открыт и изучен Х. Кребсом. За это ученый получил Нобелевскую премию.

    Данный процесс также называют системой для переноса электронов. Это связано с сопутствующим переходом АТФ в АДФ. Первое соединение, в свою очередь, занимается обеспечением метаболических реакций при помощи выделения энергии.

    Биохимия и медицина

    Биохимия медицины представлена нам в виде науки, охватывающей множество областей биологических и химических процессов. В настоящее время существует целая отрасль в образовании, которая готовит специалистов для данных исследований.

    Здесь изучают все живое: от бактерии или вируса до человеческого организма. Наличие специальности биохимика дает субъекту возможность следить за постановкой диагноза и анализировать лечение, применимое к индивидуальной единице, делать выводы и т. д.

    Чтобы подготовить высококвалифицированного эксперта в этой области, нужно обучить его естественным наукам, медицинским основам и биотехнологическим дисциплинам, проводят множество тестов по биохимии. Также студенту дают возможность практически применять свои знания.

    вузы биохимии в настоящее время приобретают все большую популярность, что обуславливается быстрым развитием этой науки, ее важностью для человека, востребованностью и т. д.

    Среди самых известных учебных заведений, где готовят специалистов этой отрасли науки, самые популярные и значимые: МГУ им. Ломоносова, ПГПУ им. Белинского, МГУ им. Огарева, Казанский и Красноярский государственные университеты и другие.

    Перечень документов, необходимых для поступления в подобные вузы не отличается от списка для зачисления в другие высшие учебные заведения. Биология и химия являются основными предметами, которые необходимо сдавать при поступлении.

Биохимия – это целая наука которая изучает, во-первых, химический состав клеток и организмов, а во-вторых, химические процессы, которые лежат в основе их жизнедеятельности. Термин был введён в научную среду в 1903 году химиком из Германии по имени Карл Нойберг.

Однако сами процессы биохимии были известны ещё с давних времён. И на основе этих процессов люди пекли хлеб и варили сыр, делали вино и выделывали кожи животных, лечили болезни при помощи трав, а потом и лекарственных средств. И в основе всего этого лежат именно биохимические процессы.

Так, например, не зная ничего о самой науке, арабский учёный и врач Авиценна, который жил в 10 веке, описал многие лекарственные вещества и их влияние на организм. А Леонардо да Винчи сделал вывод – живой организм способен жить только в той атмосфере, в которой способно гореть пламя.

Как и любая другая наука, биохимия применяет свои собственные методы исследования и изучения. И самые важные из них – это хроматография, центрифугирование и электрофорез.

Биохимия сегодня- это наука, которая сделала большой скачок в своём развитии. Так, например, стало известно, что из всех химических элементов на земле в теле человека присутствует чуть больше четверти. И большинство редких элементов, кроме йода и селена, совершенно не нужны человеку для того, чтобы поддерживать жизнь. А вот такие два распространённых элемента, как алюминий и титан в организме человека пока найдены не были. Да и найти их просто невозможно – для жизни они не нужны. И среди всех них только 6 – это те, что необходимы человеку ежедневно и именно из них состоит наш организм на 99%. Это углерод, водород, азот, кислород, кальций и фосфор.

Биохимия – это наука, которая изучает такие важные составляющие продуктов, как белки, жиры, углеводы и нуклеиновые кислоты. Сегодня об этих веществах мы знаем практически всё.

Некоторые путают две науки – биохимию и органическую химию. Но биохимия – это наука, которая изучает биологические процессы, которые протекают только в живом организме. А вот органическая химия – это наука, которая изучает те или иные соединения углерода, а это и спирты, и эфиры, и альдегиды и многие-многие другие соединения.

Биохимия – это ещё и наука, в состав которой входит цитология, то есть изучение живой клетки, её строение, функционирование, размножение, старение и смерть. Нередко этот раздел биохимии называют молекулярной биологией.

Однако молекулярная биология, как правило, работает с нуклеиновыми кислотами, а вот биохимикам больше интересны белки и ферменты, которые запускают те или иные биохимические реакции.

Сегодня биохимия всё чаще и чаще применяет разработки генной инженерии и биотехнологий. Однако сами по себе – это тоже разные науки, которые изучают каждый своё. Например, биотехнология изучает методы клонирования клеток, а генная инженерия пытается найти способы того, как заменить больной ген в организме человека на здоровый и тем самым избежать развития многих наследственных заболеваний.

И все эти науки тесно связаны между собой, что помогает им развиваться и работать на благо человечества.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.