Среднее ускорение движения. Ускорение

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

Рис. 1.8. Среднее ускорение. В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

V 2 > v 1

а направление вектора ускорения совпадает с вектором скорости

Если скорость тела по модулю уменьшается, то есть

V 2 < v 1

то направление вектора ускорения противоположно направлению вектора скорости Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

3.1. Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой - движение по прямой с постоянным по модулю и направлению ускорением:

3.1.2. Ускорение () - физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

В векторном виде:

где - начальная скорость тела, - скорость тела в момент времени t .

В проекции на ось Ox :

где - проекция начальной скорости на ось Ox , - проекция скорости тела на ось Ox в момент времени t .

Знаки проекций зависят от направления векторов и оси Ox .

3.1.3. График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

3.1.4. Скорость при равнопеременном движении.

В векторном виде:

В проекции на ось Ox :

Для равноускоренного движения:

Для равнозамедленного движения:

3.1.5. График проекции скорости в зависимости от времени.

График проекции скорости от времени - прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox .

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где - изменение скорости за время

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox - время - это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции: (3.9)

3.1.7. Формулы для расчета пути

Равноускоренное движение Равнозамедленное движение
(3.10) (3.12)
(3.11) (3.13)
(3.14)

Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

Если же пересечение произошло, то движение проще разбить на два этапа:

до пересечения (торможение):

После пересечения (разгон, движение в обратную сторону)

В формулах выше - время от начала движения до пересечения с осью времени (время до остановки), - путь, который прошло тело от начала движения до пересечения с осью времени, - время, прошедшее с момента пересечения оси времени до данного момента t , - путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t , - модуль вектора перемещения за все время движения, L - путь, пройденный телом за все время движения.

3.1.8. Перемещение за -ую секунду.

За время тело пройдет путь:

За время тело пройдет путь:

Тогда за -ый промежуток тело пройдет путь:

За промежуток можно принимать любой отрезок времени. Чаще всего с.

Тогда за 1-ую секунду тело проходит путь:

За 2-ую секунду:

За 3-ю секунду:

Если внимательно посмотрим, то увидим, что и т. д.

Таким образом, приходим к формуле:

Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при

3.1.9. Уравнение координаты тела при равнопеременном движении

Уравнение координаты

Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox .

Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:

3.2. Графики кинематических величин при прямолинейном движении

3.3. Свободное падение тела

Под свободным падением подразумевается следующая физическая модель:

1) Падение происходит под действием силы тяжести:

2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют - «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);

3.3.1. Уравнения движения в проекции на ось Oy

В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy .

Уравнение координаты тела:

Уравнение проекции скорости:

Как правило, в задачах удобно выбрать ось Oy следующим образом:

Ось Oy направлена вертикально вверх;

Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

При таком выборе уравнения и перепишутся в следующем виде:

3.4. Движение в плоскости Oxy .

Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

Или в векторном виде:

И изменение проекции скорости на обе оси:

3.5. Применение понятия производной и интеграла

Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

Производная:

где A , B и то есть постоянные величины.

Интеграл:

Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «"», в физике производная по времени обозначается «∙» над функцией.

Скорость:

то есть скорость является производной от радиус-вектора.

Для проекции скорости:

Ускорение:

то есть ускорение является производной от скорости.

Для проекции ускорения:

Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.

Теперь воспользуемся понятием интеграла.

Скорость:

то есть, скорость можно найти как интеграл по времени от ускорения.

Радиус-вектор:

то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.

Константы в формулах определяются из начальных условий - значения и в момент времени

3.6. Треугольник скоростей и треугольник перемещений

3.6.1. Треугольник скоростей

В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).

В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

3.6.2. Треугольник перемещений

В векторном виде закон движения при постоянном ускорении имеет вид:

При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).

Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.



Определение

Ускорением тела называют векторную величину показывающую быстроту изменения скорости движения тела. Обозначают ускорение как $\overline{a}$.

Среднее ускорение тела

Допустим, что в моменты времени $t$ и $t+\Delta t$ скорости равны $\overline{v}(t)$ и $\overline{v}(t+\Delta t)$. Получается, что за время $\Delta t$ скорость изменяется на величину:

\[\Delta \overline{v}=\overline{v}\left(t+\Delta t\right)-\overline{v}\left(t\right)\left(1\right),\]

тогда среднее ускорение тела равно:

\[\left\langle \overline{a}\right\rangle \left(t,\ t+\Delta t\right)=\frac{\Delta \overline{v}}{\Delta t}\left(2\right).\]

Мгновенное ускорение тела

Устремим промежуток времени $\Delta t$ к нулю, тогда из уравнения (2) получим:

\[\overline{a}={\mathop{\lim }_{\Delta t\to 0} \frac{\Delta \overline{v}}{\Delta t}=\frac{d\overline{v}}{dt}\left(3\right).\ }\]

Формула (3) является определением мгновенного ускорения. Принимая во внимание, что в декартовой системе координат:

\[\overline{r}=x\left(t\right)\overline{i}+y\left(t\right)\overline{j}+z\left(t\right)\overline{k}\left(4\right),\ а\ \overline{v}=\frac{d\overline{r}}{dt}(5)\]

получаем:

\[\overline{a}=\overline{i}\frac{d^2x}{dt^2}+\overline{j}\frac{d^2y}{dt^2}+\overline{k}\frac{d^2z}{dt^2}=\frac{d^2\overline{r}}{dt^2}\left(6\right).\]

Из выражения (6) следует, что проекции ускорения на оси координат (X,Y,Z) равны:

\[\left\{ \begin{array}{c} a_x=\frac{d^2x}{dt^2}, \\ a_y=\frac{d^2y}{dt^2} \\ a_z=\frac{d^2z}{dt^2}. \end{array} \right.(7),\]

При этом модуль ускорения найдем в соответствии с выражением:

Для выяснения вопроса о направлении ускорения движения тела Вектор скорости представим как:

\[\overline{v}=v\overline{\tau }\left(8\right),\]

где $v$ - модуль скорости тела; $\overline{\tau }$ - единичный вектор касательный к траектории движения материальной точки. Подставим выражение (8) в определение мгновенной скорости, получим:

\[\overline{a}={\frac{d\overline{v}}{dt} =\frac{d}{dt}\left(v\overline{\tau }\right)=\overline{\tau }\frac{dv}{dt}+v\frac{d\overline{\tau }}{dt}\left(9\right).\ }\]

Единичный касательный вектор $\overline{\tau }$ определяется точкой траектории, которая в свою очередь характеризуется расстоянием ($s$) от начальной точки. Значит вектор $\overline{\tau }$ - это функция от $s$:

\[\overline{\tau }=\overline{\tau }\left(s\right)\left(10\right).\]

Параметр $s$ - функция от времени. Получаем:

\[\frac{d\overline{\tau }}{dt}=\frac{d\overline{\tau }}{ds}\frac{ds}{dt}\left(11\right),\]

где вектор $\overline{\tau }$ по модулю не изменяется. Это означает, что вектор $\frac{d\overline{\tau }}{ds}$ перпендикулярен $\overline{\tau }$. Вектор $\overline{\tau }{\rm \ }$ является касательным к траектории, $\frac{d\overline{\tau }}{ds}$ перпендикулярен к этой касательной, то есть, направлен по нормали, которая называется главной. Единичный вектор в направлении главной нормали обозначим $\overline{n}$.

Величина $\left|\frac{d\overline{\tau }}{ds}\right|=\frac{1}{R}$, где $R$ - радиус кривизны траектории.

И так мы получили:

\[\frac{d\overline{\tau }}{ds}=\frac{\overline{n}}{R}\left(12\right).\]

Принимая во внимание, что $\frac{ds}{dt}=v$, из (9) можно записать следующее:

\[\overline{a}=\overline{\tau }\frac{dv}{dt}+v\frac{\overline{n}}{R}v=\overline{\tau }\frac{dv}{dt}+\frac{v^2}{R}\overline{n}\left(13\right).\]

Выражение (13) показывает, что полное ускорение тела состоит из двух компонент, которые взаимно перпендикулярны. Тангенциального ускорения (${\overline{a}}_{\tau }$), направленного по касательной к траектории движения и равного:

\[{\overline{a}}_{\tau }=\overline{\tau }\frac{dv}{dt}(14)\]

и нормального (центростремительного) ускорения (${\overline{a}}_n$), направленного перпендикулярно касательной к траектории в точке расположения тела по главной нормали (к центру кривизны траектории) и равного:

\[{\overline{a}}_n=\frac{v^2}{R}\overline{n}\left(15\right).\]

Модуль полного ускорения равен:

Единицей измерения ускорения в Международной системе единиц (СИ) является метр на секунду в квадрате:

\[\left=\frac{м}{с^2}.\]

Прямолинейное движение тела

Если траекторией движения материальной точки является прямая, то вектор ускорения направлен вдоль той же прямой, что и вектор скорости. Изменяется только величина скорости.

Переменное движение называют ускоренным, если скорость материальной точки постоянно увеличивается по модулю. При этом $a>0$, векторы ускорения и скорости сонаправлены.

Если скорость по модулю убывает, то движение называют замедленным ($a

Движение материальной точки называют равнопеременным и прямолинейным, если движение происходит с постоянным ускорением ($\overline{a}=const$). При равнопеременном движении мгновенная скорость ($\overline{v}$) и ускорение материальной точки связаны выражением:

\[\overline{v}={\overline{v}}_0+\overline{a}t\ \left(3\right),\]

где ${\overline{v}}_0$ - скорость тела в начальный момент времени.

Примеры задач с решением

Пример 1

Задание: Движения двух материальных точек заданы следующими кинематическими уравнениями: $x_1=A+Bt-Ct^2$ и $x_2=D+Et+Ft^2,$ чему равны ускорения этих двух точек в момент времени, когда равны их скорости, если $A$, B,C,D,E.F - постоянные большие нуля.

Решение: Найдем ускорение первой материальной точки:

\[{a_1=a}_{x1}=\frac{d^2x_1}{dt^2}=\frac{d^2}{dt^2}\left(A+Bt-Ct^2\right)=-2С\ (\frac{м}{с^2}).\]

У второй материальной точки ускорение будет равно:

\[{a_2=a}_{x2}=\frac{d^2x_2}{dt^2}=\frac{d^2}{dt^2}\left(D+Et+Ft^2\right)=2F\left(\frac{м}{с^2}\right).\]

Мы получили, что точки движутся с постоянными ускорениями, которые не зависят от времени, поэтому момент времени, в который скорости равны, искать не обязательно.

Ответ: $a_1=-2С\frac{м}{с^2}$, $a_2=2F\frac{м}{с^2}$

Пример 2

Задание: Движение материальной точки задано уравнением: $\overline{r}\left(t\right)=A\left(\overline{i}{\cos \left(\omega t\right)+\overline{j}{\sin \left(\omega t\right)\ }\ }\right),$ где $A$ и $\omega $ - постоянные величины. Начертите траекторию движения точки, изобразите на ней вектор ускорения этой точки. Каков модуль центростремительного ускорения ($a_n$) точки в этом случае?

Решение: Рассмотрим уравнение движения нашей точки:

\[\overline{r}\left(t\right)=A\left(\overline{i}{\cos \left(\omega t\right)+\overline{j}{\sin \left(\omega t\right)\ }\ }\right)\ \left(2.1\right).\]

В координатной записи уравнению (2.1) соответствует система уравнений:

\[\left\{ \begin{array}{c} x\left(t\right)=A{\rm cos}\left(\omega t\right), \\ y(t)=A{\sin \left(\omega t\right)\ } \end{array} \left(2.2\right).\right.\]

Возведем в квадрат каждое уравнение системы (2.2) и сложим их:

Мы получили уравнение окружности радиуса $A$ (рис.1).

Величину центростремительного ускорения, учитывая, что радиус траектории равен А, найдем как:

Проекции скорости на оси координат равны:

\[\left\{ \begin{array}{c} v_x=\frac{dx\left(t\right)}{dt}=-A\ \omega \ {\rm sin}\left(\omega t\right), \\ v_y=\frac{dy\left(t\right)}{dt}=A{\omega \ \cos \left(\omega t\right)\ } \end{array} \left(2.5\right).\right.\]

Величина скорости равна:

Подставим результат (2.6) в (2.4), нормальное ускорение равно:

Легко показать, что движение точки в нашем случае является равномерным движением по окружности и полное ускорение точки равно центростремительному ускорению. Для этого можно взять производную от проекций скоростей (2.5) по времени и используя выражение:

получить:

Ответ: $a_n=A{\omega }^2$

Ускорение - физическая векторная величина, которая характеризует насколько быстро тело (материальная точка) изменяет скорость своего движения. Ускорение является важной кинематической характеристикой материальной точки.

Самый простой вид движения - равномерное движение по прямой линии, когда скорость тела постоянна и тело за любые равные промежутки времени проходит одинаковый путь.

Но большинство движений неравномерны. На одних участках скорость тела больше, на других меньше. Машина начиная движение двигается все быстрее. а останавливаясь замедляется.

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 5 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 5 м/с , т. е. в 5 раз быстрее, чем при ускорении 1 м/с 2 .

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным .

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с2 и называют «метр на секунду в квадрате».

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. б).

Среднее и мгновенное ускорение

Среднее ускорение материальной точки на некотором промежутке времени - это отношение изменения его скорости, что произошло за это время, к продолжительности этого промежутка:

\(\lt\vec a\gt = \dfrac {\Delta \vec v} {\Delta t} \)

Мгновенное ускорение материальной точки в некоторый момент времени - это лимит его среднего ускорения при \(\Delta t \to 0 \) . Имея в виду определение производной функции, мгновенное ускорение можно определить как производную от скорости по времени:

\(\vec a = \dfrac {d\vec v} {dt} \)

Тангенциальное и нормальное ускорение

Если записать скорость как \(\vec v = v\hat \tau \) , где \(\hat \tau \) - орт касательной к траектории движения, то (в двухмерной системе координат):

\(\vec a = \dfrac {d(v\hat \tau)} {dt} = \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\hat \tau} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d(\cos\theta\vec i + sin\theta \vec j)} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + (-sin\theta \dfrac {d\theta} {dt} \vec i + cos\theta \dfrac {d\theta} {dt} \vec j)) v \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\theta} {dt} v \hat n \) ,

где \(\theta \) - угол между вектором скорости и осью абсцисс; \(\hat n \) - орт перпендикуляра к скорости.

Таким образом,

\(\vec a = \vec a_{\tau} + \vec a_n \) ,

где \(\vec a_{\tau} = \dfrac {dv} {dt} \hat \tau \) - тангенциальное ускорение, \(\vec a_n = \dfrac {d\theta} {dt} v \hat n \) - нормальное ускорение.

Учитывая, что вектор скорости направлен по касательной к траектории движения, то \(\hat n \) - это орт нормали к траектории движения, который направлен к центру кривизны траектории. Таким образом, нормальное ускорение направлено к центру кривизны траектории, в то время как тангенциальное - по касательной к ней. Тангенциальное ускорение характеризует скорость изменения величины скорости, в то время как нормальное характеризует скорость изменения ее направления.

Движение по криволинейной траектории в каждый момент времени можно представить как вращение вокруг центра кривизны траектории с угловой скоростью \(\omega = \dfrac v r \) , где r - радиус кривизны траектории. В таком случае

\(a_{n} = \omega v = {\omega}^2 r = \dfrac {v^2} r \)

Измерение ускорения

Ускорение измеряется в метрах (разделенных) на секунду во второй степени (м/с 2). Величина ускорения определяет, насколько изменится скорость тела за единицу времени, если оно будет постоянно двигаться с таким ускорением. Например, тело, движущееся с ускорением 1 м/с 2 за каждую секунду изменяет свою скорость на 1 м/с.

Единицы измерения ускорения

  • метр в секунду в квадрате, м/с², производная единица системы СИ
  • сантиметр в секунду в квадрате, см/с², производная единица системы СГС
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

При движении тел их скорости обычно меняются либо по модулю, либо по направлению, либо же одновременно как по модулю, так и по направлению.

Если бросить камень под углом к горизонту, то его скорость будет меняться и по модулю, и по направлению.

Изменение скорости тела может происходить как очень быстро (движение пули в канале ствола при выстреле из винтовки), так и сравнительно медленно (движение поезда при его отправлении). Чтобы уметь находить скорость в любой момент времени, необходимо ввести величину, характеризующую быстроту изменения скорости. Эту величину называют ускорением .

– это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость. Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:


Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.