Парадокс двух близнецов. Мнимые парадоксы СТО

Парадокс близнецов окутан романтикой межзвездных перелетов и туманом неверных толкований. Широкую известность он получил благодаря формулировке Поля Ланжевена (1911 г.), которая в популярном пересказе звучит следующим образом:

Один брат-близнец остаётся на Земле, а второй отправляется в космические странствия с околосветовой скоростью. С точки зрения домоседа, двигающийся относительно него путешественник имеет замедленный ход времени. Поэтому при возвращении он окажется моложе. Однако, с точки зрения космонавта двигалась Земля, поэтому моложе должен оказаться брат-домосед.
Слово "парадокс" имеет несколько значений. Например, парадоксальны многие выводы теории относительности, так как они противоречат привычным представлениям. В такой парадоксальности, конечно, нет ничего плохого. Любая новая теория "непривычна " и требует смены старых представлений. Однако, при описании истории с близнецами "парадокс" является синонимом "логического противоречия ". Проведя рассуждение об одном и том же событии (встреча братьев) двумя различными способами, мы получаем разный результат. Конечно, в непротиворечивой теории подобного происходить не должно.

Парадоксу близнецов посвящена обширнейшая литература. Общепринятое объяснение состоит в следующем. Для того, чтобы братья могли непосредственно сравнить свой возраст, одному из них (путешественнику) необходимо вернуться, а для этого испытать этапы ускоренного движения, перейдя в неинерциальную систему отсчета. Поэтому полной симметрии между братьями нет. Естественно, подобное снятие парадокса не объясняет, почему именно космонавт должен стать моложе. Кроме этого, сразу возникает следующее возражение: "если всё дело в ускорении, то этапы разгона и торможения можно сделать сколь угодно короткими (для каждого наблюдателя!) по сравнению с произвольно длинными и симметричными этапами равномерного движения".

На это отвечают, что расчет, в рамках общей теории относительности, дает одинаковый для каждого брата ответ. Конечно, гравитация к этому расчету не имеет никакого отношения, и используемая при этом дифференциальная геометрия служит математическим аппаратом описания неинерциальных систем отсчёта. Подобные расчёты абсолютно верны, однако физические причины произошедшего с братьями при этом часто оказываются скрытыми.

Наш анализ мы начнем с замечания о том, что возвращаться брату-путешественнику, необязательно. Ему достаточно затормозить, перейдя в систему отсчета, связанную с Землёй. Находясь далеко, но оставаясь относительно друг друга неподвижными, братья без труда могут синхронизировать своё время и выяснить как разошлись их часы (физические и биологические). При желании можно, конечно, рассмотреть новый старт космического корабля и его возвращение на Землю. Однако ни каких новых эффектов при этом не произойдет, и все времена необходимо будет просто умножить на два. По большому счету, нет даже необходимости и в ускоренном старте с Земли. Можно рассмотреть одновременное рождение братьев в двух различных инерциальных системах отсчета, когда они пролетали друг мимо друга. Оставляя в стороне физиологические детали подобного рождения, подчеркнем, что, когда братья находятся в различных системах, но в одной пространственной точке, они легко могут согласовать начальный момент времени (факт их рождения).

Так сформулированную историю мы подробно рассмотрели в разделе "Время ". В результате относительности одновременности части двигающейся системы отсчета, расположенные по ходу её движения, "находятся в прошлом", а части против движения — в будущем. И чем дальше они от точки рождения братьев , тем сильнее эффект:

Космонавт, летящий мимо любых "неподвижных" часов , видит, что они идут медленнее, чем его собственные . Однако на всех таких часах, встречающихся ему на пути , он наблюдает будущее время: в . Аналогично, сотрудники космопортов, мимо которых пролетает космонавт, видят его моложе. Пролетающие в это же время мимо брата-домоседа "племянники-одногодки" (на последних кораблях эскадры) выглядят старше землянина. Эти эффекты абсолютны для наблюдателей разных систем, находящихся в одной пространственной точке, поэтому не изменятся при остановке . Для понимания парадокса близнецов, на самом деле, нет необходимости даже рассматривать неинерциальные системы отсчета! Если остановится космонавт, то он "попадёт в будущее" земной системы отсчета и будет там моложе. Точно так же, если ускорится землянин, то он окажется в будущем системы космонавта и там будет моложе.

"Парадокс" близнецов можно проанализировать и без дорогостоящих инвестиций в строительство космопортов. Предположим, что два брата с момента расставания, начинают транслировать друг другу свои видеоизображения. Путешественник видит брата, сидящего в кресле у камина, на котором стоят часы. Тот, в свою очередь, на мониторе видит кабину космолёта с электронными часами над штурвалом, за которым сидит его мужественный брат-путешественник. Космический корабль должен достичь ближайшей звезды, удалённой на расстояние от Земли, и вернуться обратно. Приведём выписки из бортового журнала космического корабля.

Дневник путешествия . Совершив быстрый разгон, выхожу на околосветовую скорость. Перегрузки колоссальные, но благодаря последним достижениям биокибернетики переношу их сравнительно легко. Время начала путешествия по моим часам совпадает с временем брата-домоседа. Однако частота принимаемого сигнала со стремительно удаляющейся Земли заметно уменьшилась. Движения моего брата выглядят замедленными. Это и понятно, эффект Доплера ещё никто не отменял. Звёзды по курсу сбились в кучу, тогда как сзади, вокруг родной Земли, их заметно поубавилось, и они покраснели. Тут тоже всё понятно — аберрация плюс изменение частоты. Расстояния между автоматическими маяками, расставленными вдоль моей трассы уменьшились , и, следовательно, время полёта к звезде по моим часам составит , а не , как виделось нам с братом с Земли. Поэтому время путешествия должно получиться короче , чем по часам моего брата. Посмотрим, посмотрим. Кстати, о брате — секундная стрелка на его каминных часах еле ползёт, и время, которое они показывают, существенно отстаёт от моего. Этот результат — сумма эффекта Доплера и задержки видеотрансляции из-за конечности скорости света .

Достигнув цели путешествия, резко торможу и делаю памятные фотографии на фоне звезды. После торможения стрелка на каминных часах брата сразу начала свой естественный бег, хотя, конечно, общее время, прошедшее с начала полёта не изменилось, и сильно отстаёт от моего. Больше делать у одинокой звезды нечего, поэтому резко ускоряюсь в обратном направлении. Придя в себя после разгона, вижу, что часы брата заметно ускорились, и их секундная стрелка крутится, как угорелая.

До Земли осталось совсем немного. За время обратного путешествия часы брата успели наверстать отставание и, более того, обогнали мой хронометр. Завтра торможение и наша долгожданная встреча. Однако уже нет никаких сомнений в том, что теперь в семье младший брат — я.

Разберёмся с физикой впечатлений, описанных путешественником. Пусть братья передают друг другу каждую секунду (по своим часам) сигналы точного времени. Будем считать, что ускоренные движения космолёта очень короткие (с точки зрения обоих братьев) по сравнению со временем всего путешествия. Пока космолёт удаляется от Земли, каждый брат, в силу эффекта Доплера , видит уменьшение частоты (увеличение периода) принимаемых сигналов. После торможения у звезды путешественник перестаёт "убегать" от земных сигналов, и их период сразу становится равным его секунде. Развернувшись и разогнавшись, путешественник начинает "наскакивать" на идущие ему навстречу сигналы и их частота увеличивается (период уменьшается).

Время путешествия по его часам в одну сторону равно , и такое же в обратную. Количество принятых "земных секунд" за время путешествия равно их частоте , умноженной на время:

Поэтому при удалении от Земли космонавт получил существенно меньше секунд (первое слагаемое), а при приближении, соответственно, больше (второе слагаемое). Суммарное количество секунд, полученных с Земли, больше, чем переданных на неё, в точном соответствии с формулой замедления времени.

Несколько иная арифметика у землянина. Пока его брат удаляется, он также регистрирует увеличение периодов точного времени передаваемых с космолёта. Однако, в отличие от брата, землянин наблюдает такое замедление дольше . Время полёта к звезде составляет по земным часам . Событие торможения путешественником у звезды землянин увидит спустя дополнительное время , требуемое свету для прохождения расстояния от звезды. Поэтому только через от начала путешествия на мониторе он увидит ускоренную работу часов приближающегося брата:

Учитывая, что времена равны и , имеем:

Таким образом, эффект замедления времени брата, менявшего свою систему отсчета, абсолютен, т.е. одинаков для обоих братьев.

Самое парадоксальное в парадоксе близнецов, то, что иногда его проще объяснить, чем сформулировать. Часто этот парадокс воспринимают поверхностно, поэтому приведём следующее "глубокое" рассуждение:

Ладно, пусть близнецы не равноправны и космонавт менял систему отсчёта. Нет особых возражений и к его описанию на основе эффекта Доплера. Однако, это всё равно не снимает парадокса в следующей формулировке. Космонавт, пролетая мимо всех часов , неподвижных в земной системе отсчёта, видит, что они идут медленнее его часов. Он "бывший землянин" и знает, что все эти часы одинаковые. Поэтому он должен сделать вывод, что и время его брата течёт медленнее. Интервалы времени, в отличии от длин линеек, накапливаются, и поэтому при остановке показания часов не могут сравняться. Более того, если остановка очень быстрая по сравнению с временем равномерного движения, она ни как не может привести к тому, что отставшие часы земного брата скачком обгонят часы космического корабля. Поэтому время на Земле должно (с точки зрения космонавта) отстать, и земной брат оказаться младше. Однако это противоречит аналогичному рассуждению с точки зрения землянина, относительно которого все процессы у двигающихся объектов замедляются. А раз так, то при возвращении путешественника (когда часы можно сравнить непосредственно), произойдёт непонятно что...

В этом неверном рассуждении забывают, что, кроме замедления времени, есть ещё один эффект — относительность одновременности. В классической механике для всех наблюдателей, независимо от их движения, существует единое настоящее. В теории относительности ситуация иная. Такое "единое настоящее" существует только для неподвижных относительно друг друга наблюдателей. Однако, для наблюдателей, двигающихся мимо такой системы, она представляет собой непрерывное объединение прошлого, настоящего и будущего. Находящиеся далеко впереди по движению наблюдатели видят отдалённое будущее неподвижной системы отсчёта, а двигающиеся сзади — прошлое.

Все часы, мимо которых пролетают космонавты, идут медленнее, чем их собственные. Однако из этого не следует, что они должны показывать меньше "накопленного" времени! Имея более медленный ход, такие часы находятся в будущем земной системы отсчёта, и, когда космонавт до них добирается, они "не успевают" отстать настолько, чтобы скомпенсировать это будущее.

В заключение истории о парадоксе близнецов расскажем сказку .

Релятивистский мир - лекции по теории относительности, гравитации и космологии

На этом удивительном феномене замедления времени основан следующий знаменитый мысленный эксперимент, так называемый парадокс близнецов. Представим себе, что один из двух близнецов отправляется в длительное путешествие на космическом корабле и уносится от Земли на чрезвычайно высокой скорости. Через пять лет он поворачивает и направляется обратно. Таким образом общее время в пути составляет 10 лет. Дома обнаруживается, что оставшийся на Земле близнец успел постареть, скажем, на 50 лет. На сколько лет путешественник будет моложе, чем оставшийся дома, - зависит от скорости полета. На Земле фактически прошло 50 лет, а значит, близнец-путешественник находился в дороге 50 лет, но для него путешествие уложилось всего в 10 лет.

Возможно, этот мысленный эксперимент кажется абсурдным, однако было проведено бесчисленное множество подобных экспериментов, и все они подтверждают предсказание теории относительности. Пример: сверхточные атомные часы несколько раз облетают Землю на пассажирском самолете. После приземления выясняется, что на атомных часах в самолете действительно прошло меньше времени, чем на других атомных часах, для сравнения оставленных на земле. Поскольку скорость пассажирского самолета значительно меньше, чем скорость света, замедление времени совсем невелико - однако точности атомных часов вполне хватает, чтобы его зарегистрировать. Самые современные атомные часы настолько точны, что ошибка в одну секунду достигается лишь через 100 миллионов лет.

Еще один пример, намного лучше иллюстрирующий эффект замедления времени, заключается в 15-кратном увеличении продолжительности жизни определенных элементарных частиц - мюонов. Мюоны можно представить как тяжелые электроны. Они в 207 раз тяжелее электронов, несут отрицательный заряд и возникают в верхних слоях земной атмосферы под действием космических лучей. Мюоны летят по направлению к Земле со скоростью, составляющей 99.8% скорости света. Но поскольку продолжительность их жизни равна всего 2 микросекундам, даже при такой высокой скорости они должны были бы распасться через 600 метров, не достигнув поверхности.


Для нас, в покоящейся системе отсчета (Земля), мюоны представляют собой чрезвычайно быстро движущиеся "часы распада", время жизни которых увеличивается в 15 раз. Благодаря этому они существуют 30 микросекунд и достигают поверхности Земли.

Для самих мюонов время не растягивается, однако они добираются до Земли. Как такое может быть? Разгадка кроется в еще одном удивительном феномене, "релятивистском сокращении расстояний", которое называют также лоренцевым. Сокращение расстояний означает, что быстро движущиеся объекты укорачиваются по направлению движения.

В покоящейся системе отсчета мюонов ситуация выглядит совсем иначе: гора и вместе с ней Земля приближаются к мюонам со скоростью, равной 99.8% световой. Гора высотой 9000 метров из-за сокращения расстояний кажется в 15 раз ниже, а это всего 600 метров. Поэтому даже при такой короткой продолжительности жизни - 2 микросекунды - мюоны попадают на Землю.

Как мы видим, главное - из какой точки рассматривать физическое явление. В покоящейся системе отсчета "Земля" время растягивается, течет медленнее. Наоборот, в покоящейся системе отсчета "мюоны" пространство сокращается по направлению движения, иначе говоря, сжимается. Расстояние до земной поверхности уменьшается от 9000 до 600 метров.

Итак, постоянство скорости света ведет к двум явлениям, совершенно невероятным с точки зрения здравого смысла: замедлению времени и сокращению расстояний. Но если считать скорость света постоянной величиной и взглянуть на формулу "скорость равна расстоянию, деленному на время", можно сделать следующий вывод: два наблюдателя в двух различных инерциальных системах отсчета, получившие в результате измерений одинаковую скорость света c, обязательно получат разные значения расстояния и времени.

Конечно, нам трудно принять, что не существует ни абсолютного времени, ни абсолютного пространства, только относительное время и относительные расстояния. Однако это объясняется тем, что ни один человек никогда еще не двигался со скоростью, при которой релятивистские эффекты стали бы заметны.

Еще одно странное явление - так называемое релятивистское увеличение масс. Когда мы имеем дело со скоростями, близкими к скорости света, масса тела возрастает, подобно тому, как замедляется время или сокращается расстояние. Если скорость равна 10% световой или больше, "релятивистские эффекты" становятся такими очевидными, что пренебречь ими уже нельзя. Когда скорость равна 99.8% световой, масса тела в 15 раз больше его массы покоя, а когда она равна 99.99% световой, масса превосходит массу покоя в 700 раз. Если скорость составляет 99.9999% от скорости света, масса возрастает в 700 раз. Итак, с ростом скорости тело становится все тяжелее, а чем оно тяжелее, тем больше требуется энергии, чтобы разогнать его еще сильнее. Вследствие этого скорость света представляет собой верхнюю границу, через которую нельзя перешагнуть, сколько бы ни подводилось энергии.


Разумеется, царица физических формул, а может, и самая известная формула вообще, также выведена Альбертом Эйнштейном. Она гласит: E = m * c 2 .

Сам Эйнштейн считал это уравнение важнейшим выводом теории относительности.

Но каков смысл этой формулы? Слева стоит E, энергия, справа - масса, помноженная на возведенную в квадрат скорость света c. Отсюда следует, что энергия и масса, по сути, есть одно и то же - и это действительно так.

Собственно говоря, об этом можно догадаться уже по релятивистскому увеличению масс. Если тело быстро движется, его масса возрастает. Чтобы разогнать тело, естественно, необходима дополнительная энергия.

Однако подвод энергии ведет не только к росту скорости: одновременно увеличивается и масса. Конечно, нам трудно такое представить, но этот факт на 100% подтвержден экспериментами.


Это имеет такое важное применение, как получение энергии за счет расщепления ядер: тяжелое ядро урана распадается на две части, например, криптон и барий. Но сумма из масс несколько меньше, чем масса урана до распада. Разность масс "дельта (Δ)м", называемая также дефектом массы, при распаде полностью переходит в энергию. Таким путем получают электроэнергию на АЭС.

Парадокс близнецов

Затем, в 1921 году простое объяснение, основанное на инвариантности собственного времени, предложил Вольфганг Паули .

Некоторое время «парадокс близнецов» почти не привлекал к себе внимания. В 1956-1959 годах Герберт Дингл выступил с рядом статей , в которых утверждалось, что известные объяснения «парадокса» неверны. Несмотря на ошибочность аргументации Дингла , его работы вызвали многочисленные дискуссии в научных и научно-популярных журналах . В результате появился ряд книг, посвящённых этой теме. Из русскоязычных источников стоит отметить книги , а также статью .

Большинство исследователей не считают «парадокс близнецов» демонстрацией противоречия теории относительности, хотя история появления тех или иных объяснений «парадокса» и придания ему новых форм не прекращается до настоящего времени .

Классификация объяснений парадокса

Объяснить парадокс, подобный «парадоксу близнецов», можно при помощи двух подходов:

1) Выявить происхождение логической ошибки в рассуждениях, которые привели к противоречию; 2) Провести детальные вычисления величины эффекта замедления времени с позиции каждого из братьев.

Первый подход зависит от деталей формулировки парадокса. В разделах «Простейшие объяснения » и «Физическая причина парадокса » будут приведены различные версии «парадокса» и даны объяснения того, почему противоречия на самом деле не возникает.

В рамках второго подхода расчёты показаний часов каждого из братьев проводятся как с точки зрения домоседа (что обычно не представляет труда), так и с точки зрения путешественника. Так как последний менял свою систему отсчёта , возможны различные варианты учёта этого факта. Их условно можно разделить на две большие группы.

К первой группе относятся вычисления на основе специальной теории относительности в рамках инерциальных систем отсчёта. В этом случае этапы ускоренного движения считаются пренебрежимо малыми по сравнению с общим временем полёта. Иногда вводится третья инерциальная система отсчёта, движущаяся навстречу путешественнику, при помощи которой показания его часов «передаются» брату-домоседу. В разделе «Обмен сигналами » будет приведен простейший расчёт, основанный на эффекте Доплера .

Ко второй группе относятся вычисления, учитывающие детали ускоренного движения . В свою очередь, они делятся по признаку использования или неиспользования в них теории гравитации Эйнштейна (ОТО). Расчёты с использованием ОТО основаны на введении эффективного гравитационного поля , эквивалентного ускорению системы, и учёте изменения в нём темпа хода времени. Во втором способе неинерциальные системы отсчёта описываются в плоском пространстве-времени и понятие гравитационного поля не привлекается. Основные идеи этой группы расчётов будут представлены в разделе «Неинерциальные системы отсчёта ».

Кинематические эффекты СТО

При этом, чем короче момент ускорения, тем оно больше, и как следствие больше разница в скорости часов на Земле и космического корабля, если он удалён от Земли в момент изменения скорости. Поэтому ускорением никогда нельзя пренебречь.

Конечно, сама по себе констатация несимметричности братьев не объясняет, почему замедлиться должны часы именно у путешественника, а не у домоседа. Кроме этого, часто возникает непонимание:

«Почему нарушение равноправия братьев в течение столь короткого времени (остановка путешественника) приводит к такому разительному нарушению симметрии?»

Чтобы глубже понять причины несимметричности и следствия, к которым они приводят, необходимо ещё раз выделить ключевые посылки, явно или неявно присутствующие в любой формулировке парадокса. Для этого будем считать, что вдоль траектории движения путешественника в «неподвижной» системе отсчёта, связанной с домоседом, расположены синхронно идущие (в этой системе) часы. Тогда возможна следующая цепочка рассуждений, как бы «доказывающих» противоречивость выводов СТО:

  1. Путешественник, пролетая мимо любых часов, неподвижных в системе домоседа, наблюдает их замедленный ход.
  2. Более медленный темп хода часов означает, что их накопленные показания отстанут от показаний часов путешественника, и при длительном полёте - сколь угодно сильно.
  3. Быстро остановившись, путешественник по-прежнему должен наблюдать отставание часов, расположенных в «точке остановки».
  4. Все часы в «неподвижной» системе идут синхронно, поэтому отстанут и часы брата на Земле, что противоречит выводу СТО.

Итак, почему путешественник на самом деле будет наблюдать отставание своих часов от часов «неподвижной» системы, несмотря на то, что все такие часы с его точки зрения идут медленнее? Наиболее простым объяснением в рамках СТО является то, что синхронизовать все часы в двух инерциальных системах отсчёта невозможно. Рассмотрим это объяснение подробнее.

Физическая причина парадокса

Во время полёта путешественник и домосед находятся в различных точках пространства и не могут сравнивать свои часы непосредственно. Поэтому, как и выше, будем считать, что вдоль траектории движения путешественника в «неподвижной» системе, связанной с домоседом, расставлены одинаковые, синхронно идущие часы, которые может наблюдать путешественник во время полёта. Благодаря процедуре синхронизации в «неподвижной» системе отсчёта введено единое время, определяющее в данный момент «настоящее» этой системы.

После старта путешественник «переходит» в инерциальную систему отсчёта , движущуюся относительно «неподвижной» со скоростью . Этот момент времени принимается братьями за начальный . Каждый из них будет наблюдать замедленный ход часов другого брата.

Однако, единое «настоящее» системы для путешественника перестаёт существовать. В системе отсчёта есть своё «настоящее» (множество синхронизированных часов). Для системы , чем дальше по ходу движения путешественника находятся части системы , тем в более отдалённом «будущем» (с точки зрения «настоящего» системы ) они находятся.

Непосредственно это будущее наблюдать путешественник не может. Это могли бы сделать другие наблюдатели системы , расположенные впереди по движению и имеющие синхронизированное с путешественником время.

Поэтому, хотя все часы в неподвижной системе отсчёта, мимо которых пролетает путешественник, идут с его точки зрения медленнее, из этого не следует , что они отстанут от его часов.

В момент времени , чем дальше впереди по курсу находятся «неподвижные» часы, тем больше их показания с точки зрения путешественника. Когда он достигает этих часов, они не успеют отстать настолько, чтобы скомпенсировать начальное расхождение времени.

Действительно, положим координату путешественника в преобразованиях Лоренца равной . Закон его движения относительно системы имеет вид . Время, прошедшее после начала полёта, по часам в системе меньше, чем в :

Другими словами, время на часах путешественника отстаёт от показаний часов системы . В то же время часы, мимо которых пролетает путешественник, неподвижны в : . Поэтому их темп хода для путешественника выглядит замедленным:

Таким образом:

несмотря на то, что все конкретные часы в системе идут медленнее с точки зрения наблюдателя в , разные часы вдоль его траектории будут показывать время, ушедшее вперед.

Разность темпа хода часов и - эффект относительный, тогда как значения текущих показаний и в одной пространственной точке - носят абсолютный характер. Наблюдатели, находящиеся в различных инерциальных системах отсчёта, но «в одной» пространственной точке, всегда могут сравнить текущие показания своих часов. Путешественник, пролетая мимо часов системы видит, что они ушли вперёд . Поэтому, если путешественник решит остановиться (быстро затормозив), ничего не изменится, и он попадёт в «будущее» системы . Естественно, после остановки темп хода его часов и часов в станет одинаковым. Однако, часы путешественника будут показывать меньшее время чем часы системы , находящиеся в точке остановки. В силу единого времени в системе часы путешественника отстанут от всех часов , в том числе и от часов его брата. После остановки путешественник может вернуться домой. В этом случае весь анализ повторяется. В результате, как в точке остановки и разворота, так и в исходной точке при возвращении путешественник оказывается моложе своего брата-домоседа.

Если же вместо остановки путешественника до его скорости ускорится домосед, то последний «попадёт» в «будущее» системы путешественника. В результате «домосед» окажется моложе «путешественника». Таким образом:

кто изменяет свою систему отсчёта, тот и оказывается моложе.

Обмен сигналами

Вычисление замедления времени с позиции каждого брата можно провести при помощи анализа обмена сигналами между ними. Хотя братья, находясь в различных точках пространства, не могут непосредственно сравнивать показания своих часов, они могут передавать сигналы «точного времени» при помощи световых импульсов или видеотрансляции изображения часов. Понятно, что при этом они наблюдают не «текущее» время на часах брата, а «прошлое», так как сигналу требуется время для распространения от источника к приёмнику.

При обмене сигналами необходимо учитывать эффект Доплера . Если источник удаляется от приёмника, то частота сигнала уменьшается, а когда он приближается - увеличивается:

где - собственная частота излучения, а - частота принимаемого наблюдателем сигнала. Эффект Доплера имеет классическую составляющую и составляющую релятивистскую, непосредственно связанную с замедлением времени. Скорость , входящая в соотношения изменения частоты, является относительной скоростью источника и приёмника.

Рассмотрим ситуацию, в которой братья передают друг другу каждую секунду (по своим часам) сигналы точного времени. Проведём сначала расчёт с позиции путешественника.

Расчёт путешественника

Пока путешественник удаляется от Земли, он, в силу эффекта Доплера , регистрирует уменьшение частоты принимаемых сигналов. Видеотрансляция с Земли выглядит более медленной. После быстрого торможения и остановки путешественник перестаёт удаляться от земных сигналов, и их период сразу оказывается равным его секунде. Темп видеотрансляции становится «естественным», хотя, в силу конечности скорости света, путешественник по-прежнему наблюдает «прошлое» своего брата. Развернувшись и разогнавшись, путешественник начинает «набегать» на идущие ему навстречу сигналы и их частота увеличивается. «Движения брата» на видеотрансляции с этого момента начинают выглядеть для путешественника ускоренными .

Время полёта по часам путешественника в одну сторону равно , и такое же в обратную. Количество принятых «земных секунд» в течение путешествия равно их частоте , умноженной на время. Поэтому при удалении от Земли путешественник получит существенно меньше «секунд»:

а при приближении, наоборот, больше:

Суммарное количество «секунд», полученных с Земли за время , больше, чем переданных на неё:

в точном соответствии с формулой замедления времени.

Расчёт домоседа

Несколько иная арифметика у домоседа. Пока его брат удаляется, он также регистрирует увеличенный период точного времени, передаваемый путешественником. Однако, в отличие от брата, домосед наблюдает такое замедление дольше . Время полёта на расстояние в одну сторону составляет по земным часам . Торможение и разворот путешественника домосед увидит спустя дополнительное время , требуемое свету для прохождения расстояния от точки разворота. Поэтому, только через время от начала путешествия домосед зарегистрирует ускоренную работу часов приближающегося брата:

Время движения света от точки разворота выражается через время полёта к ней путешественника следующим образом (см. рисунок):

Поэтому количество «секунд», полученных от путешественника, до момента его разворота (по наблюдениям домоседа) равно:

Сигналы с повышенной частотой домосед принимает в течение времени (см. рисунок выше), и получает «секунд» путешественника:

Суммарное число полученных «секунд» за время равно:

Таким образом, соотношение для показания часов в момент встречи путешественника () и брата-домоседа () не зависит от того, с чьей точки зрения оно рассчитывается.

Геометрическая интерпретация

, где - гиперболический арксинус

Рассмотрим гипотетический полёт к звёздной системе Альфа Центавра , удалённой от Земли на расстояние в 4,3 световых года . Если время измеряется в годах, а расстояния в световых годах, то скорость света равна единице, а единичное ускорение св.год/год² близко к ускорению свободного падения и примерно равно 9,5 м/c².

Пусть половину пути космический корабль двигается с единичным ускорением, а вторую половину - с таким же ускорением тормозит (). Затем корабль разворачивается и повторяет этапы разгона и торможения. В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

За 64 года собственного времени космический корабль с единичным ускорением потенциально может совершить путешествие (вернувшись на Землю) к галактике Андромеды , удалённой на 2,5 млн св. лет . На Земле за время такого полёта пройдёт около 5 млн лет. Развивая вдвое большее ускорение (к которому тренированный человек вполне может привыкнуть при соблюдении ряда условий и использования ряда приспособлений, например, анабиоза), можно подумать даже об экспедиции к видимому краю Вселенной (около 14 млрд. св. лет), которая займёт у космонавтов порядка 50 лет; правда, возвратившись из такой экспедиции (через 28 млрд. лет по земным часам), её участники рискуют не застать в живых не то что Землю и Солнце, но даже нашу Галактику. Исходя из этих расчётов, разумный радиус доступности для межзвёздных экспедиций с возвратом не превышает нескольких десятков световых лет, если, конечно, не будут открыты какие-либо принципиально новые физические принципы перемещения в пространстве-времени. Впрочем, обнаружение многочисленных экзопланет даёт основания полагать, что планетные системы встречаются у достаточно большой доли звёзд, поэтому космонавтам будет что исследовать и в этом радиусе (например, планетные системы ε Эридана и Глизе 581).

Расчёт путешественника

Для проведения того же расчёта с позиции путешественника, необходимо задать метрический тензор , соответствующий его неинерциальной системе отсчёта . Относительно этой системы скорость путешественника нулевая, поэтому время на его часах равно

Заметим, что является координатным временем и в системе путешественника отличается от времени системы отсчёта домоседа.

Земные часы свободны, поэтому они движутся вдоль геодезической , определяемой уравнением :

где - символы Кристоффеля , выражающиеся через метрический тензор . При заданном метрическом тензоре неинерциальной системы отсчёта эти уравнения позволяют найти траекторию часов домоседа в системе отсчёта путешественника. Её подстановка в формулу для собственного времени даёт интервал времени, прошедший по «неподвижным» часам:

где - координатная скорость земных часов.

Подобное описание неинерциальных систем отсчёта возможно либо при помощи теории гравитации Эйнштейна , либо без ссылки на последнюю. Детали расчёта в рамках первого способа можно найти, например, в книге Фока или Мёллера . Второй способ рассмотрен в книге Логунова .

Результат всех этих вычислений показывает, что и с точки зрения путешественника его часы отстанут от часов неподвижного наблюдателя. В итоге разница времени путешествия с обеих точек зрения будет одинаковая, и путешественник окажется моложе домоседа. Если длительность этапов ускоренного движения много меньше длительности равномерного полёта, то результат более общих вычислений совпадает с формулой, полученной в рамках инерциальных систем отсчёта.

Выводы

Рассуждения, проводимые в истории с близнецами, приводят только к кажущемуся логическому противоречию. При любой формулировке «парадокса» полной симметричности между братьями нет. Кроме этого, важную роль для понимания того, почему время замедляется именно у путешественника, менявшего свою систему отсчёта, играет относительность одновременности событий.

Расчёт величины замедления времени с позиции каждого брата может быть выполнен как в рамках элементарных вычислений в СТО, так и при помощи анализа неинерциальных систем отсчёта. Все эти вычисления согласуются друг с другом и показывают, что путешественник окажется моложе своего брата-домоседа.

Парадоксом близнецов часто также называют сам вывод теории относительности о том, что один из близнецов состарится сильнее другого. Хотя такая ситуация и необычна, в ней нет внутреннего противоречия. Многочисленные эксперименты по удлинению времени жизни элементарных частиц и замедлению хода макроскопических часов при их движении подтверждают теорию относительности. Это даёт основание утверждать, что замедление времени, описанное в истории с близнецами, произойдёт и при реальном осуществлении этого мысленного эксперимента.

См. также

Примечания

Источники

  1. Эйнштейн А. «К электродинамике движущихся тел », Ann. d. Phys.,1905 b. 17, s. 89, русский перевод в «Эйнштейн А. Собрание научных трудов в четырёх томах. Том 1. Работы по теории относительности 1905-1920.» М.: Наука, 1965.
  2. Langevin P. «L’evolution de l’espace et du temps ». Scientia 10: 31-54. (1911)
  3. Laue M. (1913) "Das Relativit\"atsprinzip ". Wissenschaft (No. 38) (2 ed.). (1913)
  4. Эйнштейн А. «Диалог по поводу возражений против теории относительности », Naturwiss., 6, с.697-702. (1918). русский перевод «А. Эйнштейн, Собрание научных трудов», т. I, М., «Наука» (1965)
  5. Паули В. - «Теория Относительности » М.: Наука, 1991.
  6. Dingle Н. «Relativity and Space travel », Nature 177, 4513 (1956).
  7. Dingle H. «A possible experimental test of Einstein’s Second postulate », Nature 183, 4677 (1959).
  8. Coawford F. «Experimental verification of the clock-paradox in relativity », Nature 179, 4549 (1957).
  9. Darvin S. , «The clock paradox in relativity », Nature 180, 4593 (1957).
  10. Бойер Р. , «Парадокс часов и общая теория относительности », Эйнштейновский сборник, «Наука», (1968).
  11. Campbell W. , «The clock paradox », Canad. Aeronaut. J.4, 9, (1958)
  12. Frey R., Brigham V., «Paradox of the twins », Amer. J. Phys. 25, 8 (1957)
  13. Leffert С. , Donahue T., «Clock paradox and the physics of discontinuous gravitational fields », Amer. J. Phys. 26, 8 (1958)
  14. McMillan E., «The „clock-paradox“ and Space travel », Science, 126, 3270 (1957)
  15. Romer R. , «Twin paradox in special relativity ». Amer. J. Phys. 27, 3 (1957)
  16. Schild, A. «The clock paradox in relativity theory », Amer. Math. Mouthly 66, 1, 1-8 (1959).
  17. Singer S., «Relativity and space travel », Nature 179,4567 (1957)
  18. Скобельцын Д. В. , «Парадокс близнецов в теории относительности », «Наука», (1966).
  19. Гольденблат И. И., «Парадоксы времени в релятивистской механике », М. «Наука», (1972).
  20. Терлецкий Я. П. «Парадоксы теории относительности », М.: Наука (1965)
  21. Угаров В. А. - «Специальная теория относительности » М.: «Наука», (1977)

Так называемый "парадокс часов" был сформулирован (1912 г., Поль Ланжевен) через 7 лет после создания специальной теории относительности и указывает на некоторые "противоречия" в использовании релятивистксго эффекта замедления времени.. Для удобства речи и для "большей наглядности" парадокс часов формулируют также как "парадокс близнецов". Я также использую эту формулировку. Первоначально парадокс активно обсуждался в научной литературе и особенно много — в популярной. В настоящее время парадокс близнецов считается полностью разрешенным, не содержит никаких необъясненных проблем, и практически исчез со страниц научной и даже популярной литературы.

Я привлекаю ваше внимание к парадоксу близнецов потому, что он, вопреки сказанному выше, "все еще содержит" необъясненные проблемы и не только "не разрешен", но и в принципе не может быть разрешен в рамках теории относительности Эйнштейна, т.е. это парадокс не столько "парадокс близнецов в теории относительности", сколько "парадокс самой теории относительности Эйнштейна".

Суть парадокса близнецов состоит в следующем. Пусть П (путешественник) и Д (домосед) — братья-близнецы. П отправляется в длительное космическое путешествие, а Д остается дома. Через некоторое время П возвращается. Основную часть пути П движется по инерции, с постоянной скоростью (время на разгон, торможение, остановки пренебрежимо мало по сравнению с общим временем путешествия и им пренебрегаем). Движение с постоянной скоростью относительно, т.е. если П удаляется (приближается, покоится) относительно Д , то и Д также удаляется (приближается, покоится) относительно П — назовем это симметрией близнецов. Далее, в соответствии с СТО, время для П , с точки зрения Д , течет медленнее, чем собственное время Д , т.е. собственное время путешествия П меньше, времени ожидания Д . В этом случае говорят, что по возвращению П моложе Д . Это утверждение, само по себе, не является парадоксом, это следствие релятивистского замедления времени. Парадокс же состоит в том, что Д , в силу симметрии, может, с таким же правом , считать себя путешественником, а П домоседом, и тогда Д моложе П .

Общепринятое сегодня (каноническое) разрешение парадокса сводится к тому, что ускорениями П нельзя пренебрегать, т.е. его система отсчета не является инерциальной, в его системе отсчета временами возникают силы инерции, и следовательно — никакой симметрии нет. Кроме того, в системе отсчета П ускорение эквивалентно появлению гравитационного поля, в котором время также замедляется (это уже на основании общей теории относительности). Таким образом, время П замедляется как в системе отсчета Д (по СТО, когда П движется по инерции), так и в системе отсчета П (по ОТО, когда он ускоряется), т.е. замедление времени П становится абсолютным. Окончательный вывод : П , по возвращению, моложе Д , и это не является парадоксом!

Таково, повторяем, каноническое разрешение парадокса близнецов. Однако, во всех известных нам подобных рассуждениях не учитывается один "маленький" нюанс — релятивистский эффект замедления времени это КИНЕМАТИЧЕСКИЙ ЭФФЕКТ (в статье Эйнштейна первая часть, где выводится эффект замедления времени, так и называется "Кинематическая часть"). Применительно к нашим близнецам это означает, что, во-первых, есть только двое близнецов и НЕТ НИЧЕГО БОЛЕЕ, в частности, нет абсолютного пространства, и во-вторых — близнецы (читай — эйнштейновские часы) не имеют массы. Это необходимые и достаточные условия формулировки парадокса близнецов. Любые дополнительные условия приводят к "другому парадоксу близнецов". Разумеется, можно формулировать и затем разрешать "другие парадоксы близнецов", но тогда надо, соответственно, использовать "другие релятивистские эффекты замедления времени", например, сформулировать и доказать , что релятивистский эффект замедления времени имеет место только в абсолютном пространстве, или только при условии, что часы имеют массу и т.п. Как известно, ничего подобного в эйнштейновской теории нет.

Пройдемся снова по каноническим доказательствам. П время от времени ускоряется... Ускоряется относительно чего? Только относительно другого близнеца (ничего другого просто нет. Однако, во всех канонических рассуждениях по умолчанию предполагается существование еще одного "действующего лица", которого нет ни в формулировке парадокса, ни в теории Эйнштейна, — абсолютного пространства, и тогда П ускоряется относительно этого абсолютного пространства, тогда как Д покоится относительно этого же абсолютного пространства — налицо нарушение симметрии). Но кинематически ускорение относительно так же, как и скорость, т.е. если близнец-путешественник ускоряется (удаляется, приближается или покоится) относительно своего брата, то и брат-домосед, точно так же, ускоряется (удаляется, приближается или покоится) относительно своего брата-путешественника, — симметрия и в этом случае не нарушается (!) . Никакие силы инерции или гравитационные поля в системе отсчета ускоренного брата не возникают также и по причине отсутствия массы у близнецов. По этой же причине неприменима здесь и общая теория относительности. Таким образом симметрия близнецов не нарушается, и парадокс близнецов остается неразрешенным . в рамках эйнштейновской теории относительности. В защиту такого вывода можно привести и чисто философский довод: кинематический парадокс должен разрешаться кинематически , и негоже привлекать для его разрешения другие, динамические теории, как это делаетcя в канонических доказательствах. Замечу в заключение, что парадокс близнецов — это не физический парадокс, но парадокс нашей логики (апория типа апорий Зенона), применяемой к анализу конкретной псевдофизической ситуации. Это, в свою очередь, означает, что любые аргументы типа возможности или невозможности технической реализации такого путешествия, возможной связи между близнецами посредством обмена световыми сигналами с учетом эффекта Доплера и т.п., также не должны привлекаться для разрешения парадокса (в частности, не греша против логики , можем считать время разгона П от нуля до крейсерской скорости, время разворота, время торможения при подлете к Земле сколь угодно малыми, даже "мгновенными").

С другой стороны, сама теория относительности Эйнштейна указывает на еще один, совершенно иной аспект парадокса близнецов. В той же первой статье по теории относительности (СНТ, т.1, с.8) Эйнштейн пишет: "Мы должны обратить внимание на то, что все наши суждения, в которых время играет какую-либо роль, всегда являются суждениями об одновременных событиях (курсив Эйнштейна)". (Мы, в определенном смысле, идем дальше Эйнштейна, полагая одновременность событий необходимым условием реальности событий .) Применительно к нашим близнецам это означает следующее: относительно каждого из них его брат всегда одновременен с ним (т.е. реально существует), что бы с ним ни происходило. Это не означает, что время, прошедшее от начала путешествия, для них одинаково, когда они находятся в разных точках пространства, но абсолютно необходимо должно быть одинаковым, когда они находятся в одной точке пространства. Последнее означает, что их возраст был одинаков в момент начала путешествия (они же близнецы), когда они находились в одной точке пространства, далее их возраст взаимно менялся во время путешествия одного из них в зависимости от его скорости (теорию относительности никто не отменил), когда они находились в разных точках пространства, и снова стал одинаков в конце путешествия, когда они снова оказались в одной точке пространства.. Разумеется, они оба постарели, но процесс старения мог проходить у них по разному, с точки зрения одного или другого, но в конечном счете, они состарились одинаково. Заметим, что эта новая ситуация для близнецов попрежнему симметрична.. Теперь, с учетом последних замечаний, парадокс близнецов становится качественно иным — принципиально неразрешимым в рамках специальной теории относительности Эйнштейна.

Последнее (совместно с целым рядом подобных "претензий" к СТО Эйнштейна, см. главу XI нашей книги или аннотацию к ней в статье "Математические начала современной натуральной философии" на этом сайте) неизбежно приводит к необходимости пересмотра специальной теории относительности. Я не рассматриваю свою работу как опровержение СТО и, тем более, не призываю от неё отказаться вообще, но я предлагаю её дальнейшее развитие, предлагаю новую "Специальную теорию относительности (СТО* — новая редакция)", в которой, в частности, "парадокса близнецов" просто нет как такового (для тех, кто еще не познакомился со статьей "«Специальные» теории относительности", сообщаю, что в новой специальной теории относительности время замедляется , только когда подвижная инерциальная система приближается к неподвижной, и время ускоряется , когда подвижная система отсчета удаляется от неподвижной, и в итоге — ускорение времени в первой половине пути (удаление от Земли) компенсируется замедлением времени во второй половине (приближение к Земле), и нет никаких замедленных старений близнеца-путешественника, никаких парадоксов. Путешественники будущего могут не опасаться, по возвращению, попасть в отдаленное будущее Земли! ). Построены также две принципиально новые теории относительности, не имеющие аналогов, — "«Специальная общая» теория относительноси (СОТО)" и "Кватерная Вселенная" (модель Вселенной как "самостоятельная теория относительности"). Статья "«Специальные» теории относительности" опубликована на этом сайте. Я посвятил эту статью предстоящему 100-летию теории относительности . Приглашаю вас высказаться по поводу моих идей, а также по поводу теории относительности в связи с её 100-летием.

Мясников Владимир Макарович [email protected]
Сентябрь 2004 г.

Дополнение (Добавлено октябрь 2007)

"Парадокс" близнецов в СТО*. Никаких парадоксов!

Итак, симметрия близнецов является неустранимой в задаче о близнецах, что в эйнштейновской СТО приводит к неразрешимому парадоксу: то становится очевидным, что модифицированная СТО без парадокса близнецов должна давать результат Т (П ) = Т (Д ) что, кстати, полностью соответствует нашему здравому смыслу. Именно такие выводы получаются в СТО* - новая редакция.

Напомню, что в СТО*, в отличие от эйнштейновской СТО, время замедляется, только когда подвижная система отсчета приближается к неподвижной, и ускоряется, когда подвижная система отсчета удаляется от неподвижной. Формулируется это так (см. , формулы (7) и (8)):

где V - абсолютная величина скорости

Уточним, далее, понятие инерциальной системы отсчета, которое учитывает неразрывное единство пространства и времени в СТО*. Я определяю инерциальную систему отсчета (см. Теория относительности, новые подходы, новые идеи. или Пространство и эфир в математике и физике.) как точку отсчета и её окрестность, все точки которой определены из точки отсчета и пространство которой однородно и изотропно. Но неразрывное единство пространства и времени с необходимостью требует, чтобы точка отсчета, зафиксированная в пространстве, была также зафиксирована и во времени, иначе говоря - точка отсчета в пространстве должна быть и точкой отсчета времени.

Так, я рассматриваю две неподвижные системы отсчета, связанные с Д : неподвижную систему отсчета в момент старта (система отсчета провожающего Д ) и неподвижную систему отсчета в момент финиша (система отсчета встречающего Д ). Отличительной особенностью этих систем отсчета является то, что в системе отсчета провожающего Д время течет от точки отсчета в будущее, а путь, пройденный ракетой с П растет, независимо от того куда и как она движется, т.е. в этой системе отсчета П удаляется от Д и в пространстве и во времени. В системе отсчета встречающего Д - время течет из прошлого к точке отсчета и момент встречи приближается, а путь ракеты с П до точки отсчета уменьшается, т.е. в этой системе отсчета П приближается к Д и в пространстве, и во времени.

Вернемся к нашим близнецам. Напоминаю, что я рассматриваю задачу о близнецах как логическую задачу (апорию типа апорий Зенона) в псевдофизических условиях кинематики, т.е. считаю, что П движется все время с постоянной скоростью, полагая время на ускорение при разгоне, торможении и т.п. пренебрежимо малым (нулевым).

Два близнеца П (путешественник) и Д (домосед) обсуждают на Земле предстоящий полет П к звезде Z , находящейся на расстоянии L от Земли, и обратно, с постоянной скоростью V . Расчетное время полета, от старта на Земле до финиша на Земле, для П в его системе отсчета равно T = 2L / V . Но в системе отсчета провожающего Д П удаляется и, следовательно, его время полета (время ожидания его на Земле), равно (см. (!!)), и это время значительно меньше T , т.е. время ожидания меньше времени полета! Парадокс? Разумеется, нет, поскольку этот совершенно справедливый вывод "остался" в системе отсчета провожающего Д . Теперь Д встречает П уже в другой системе отсчета встречающего Д , а в этой системе отсчета П приближается, и время его ожидания равно, в соответствии с (!!!), , т.е. собственное время полета П и собственное время ожидания Д совпадают. Никаких противоречий!

Предлагаю рассмотреть конкретный (разумеется, мысленный) "эксперимент", расписанный по времени для каждого близнеца, и в любой системе отсчета. Для определенности, пусть звезда Z удалена от Земли на расстояние L = 6 световых лет. И пусть П на ракете летит туда и обратно с постоянной скоростью V = 0,6 c . Тогда его собственное время полета T = 2L / V = 20 лет. Вычислим также и (см. (!!) и (!!!)). Договоримся также, что с интервалом в 2 года, в контрольные моменты времени, П будет посылать сигнал (со скоростью света) на Землю. "Эксперимент" состоит в регистрации времени приема сигналов на Земле, их анализе и сравнения с теорией.

Все данные измерений моментов времени приведены в таблице:

1 2 3 4 5 6 7
0
2
4
6
8
10
12
14
16
18
20
0
1
2
3
4
5
6
7
8
9
10
0
1,2
2,4
3,6
4,8
6,0
4,8
3,6
2,4
1,2
0
0
2,2
4,4
6,6
8,8
11,0
10,8
10,6
10,4
10,2
10,0
-20
-18
-16
-14
-12
-10
-8
-6
-4
-2
0
-20,0
-16,8
-13,6
-10,4
-7,2
-4,0
-3,2
-2,4
-1,6
-0,8
0
0
3,2
6,4
9,6
12,8
16,0
16,8
17,6
18,4
19,2
20,0

В столбцах с номерами 1 - 7 приводятся: 1. Контрольные моменты времени (в годах) в системе отсчета ракеты . Эти моменты фиксируют интервалы времени от момента старта, или показания часов на ракете, на которых установлен "ноль" в момент старта. Контрольные моменты времени определяют на ракете моменты посылки сигнала на Землю. 2. Те же контрольные моменты времени, но в системе отсчета провожающего близнеца (где "ноль" также установлен на момент старта ракеты). Они определяются по (!!) с учетом . 3. Расстояния от ракеты до Земли в световых годах в контрольные моменты времени или время распространения соответствующего сигнала (в годах) от ракеты до Земли 4. в системе отсчета провожающего близнеца . Определяется как контрольный момент времени в системе отсчета провожающего близнеца (столбец 2 3 ). 5. Те же контрольные моменты времени, но теперь в системе отсчета встречающего близнеца . Особенность этой системы отсчета в том, что теперь "ноль" времени определяется в момент финиша ракеты, и все контрольные моменты времени оказываются в прошлом. Приписываем им знак "минус", и с учетом неизменности направления времени (от прошлого к будущему) меняем их последовательность в столбце на противоположный. Абсолютные значения этих моментов времени находятся по соответствующим значениям в системе отсчета провожающего близнеца (столбец 2 ) умножением на (см. (!!!)). 6. Момент приема на Земле соответствующего сигнала в системе отсчета встречающего близнеца . Определяется как контрольный момент времени в системе отсчета встречающего близнеца (столбец 5 ) плюс соответствующее время распространения сигнала от ракеты до Земли (столбец 3 ). 7. Реальные моменты времени приема сигнала на Земле. Дело в том, что Д неподвижен в пространстве (на Земле), но движется в реальном времени, и в момент приема сигнала он уже находится не в системе отсчета провожающего близнеца , но в системе отсчета момента времени приема сигнала . Как определить этот момент реального времени? Сигнал, по условию, распространяется со скоростью света, а это значит, что два события А = {Земля в момент приема сигнала} и В = {точка пространства, в которой находится ракета в момент отправки сигнала} (напоминаю, что событием в пространстве-время называется точка в определенный момент времени) являются одновременными , т.к. Δx = c Δt , где Δx - пространственное расстояние между событиями, а Δt - временнОе, т.е. время распространения сигнала от ракеты до Земли (см. определение одновременности в "Специальные" теории относительности , формула (5)). А это, в свою очередь, означает, что Д , с равным правом, может считать себя как в системе отсчета события А, так и в системе отсчета события В. В последнем случае ракета приближается, и в соответствии с (!!!), все интервалы времени (до этого контрольного момента) в системе отсчета провожающего близнеца (столбец 2 ) следует умножить на и затем прибавить соответствующее время распространения сигнала (столбец 3 ). Сказанное справедливо для любого контрольного момента времени, включая финальный, т.е. момент финиша путешествия П . Так вычисляется столбец 7 . Естественно, реальные моменты приема сигнала не зависят от способа их вычисления, именно об этом говорит фактическое совпадение столбцов 6 и 7 .

Рассмотренный "эксперимент" только подтверждает основной вывод о том, что собственное время полета близнеца-путешественника (его возраст) и собственное время ожидания близнеца-домоседа (его возраст) совпадают и при этом нет никаких противоречий! "Противоречия" возникают лишь в некоторых системах отсчета, например, в системе отсчета провожающего близнеца , но это никак не влияет на окончательный результат, поскольку в этой системе отсчета близнецы в принципе не могут встретиться, тогда как в системе отсчета встречающего близнеца , где близнецы реально встречаются, уже никаких противоречий нет. Повторяю еще раз: Путешественники будущего могут не опасаться, по возвращению на Землю, попасть в её отдаленное будущее!

Октябрь 2007 г.

Сначала давайте разберемся, кто такие двойняшки, а кто такие близнецы. И те, и другие рождаются у одной матери практически одновременно. Но если у двойняшек может быть разный рост, вес, черты лица и характер, то близнецы практически неотличимы. И этому есть строгое научное объяснение.

Дело в том, что при рождении двойни процесс оплодотворения мог пойти двумя путями: либо яйцеклетку оплодотворили одновременно два сперматозоида, либо уже оплодотворенная яйцеклетка разделилась надвое, и каждая ее половинка стала развиваться в самостоятельный плод. В первом случае, о чем не трудно догадаться, рождаются отличные друг от друга двойняшки, во втором - абсолютно похожие один на другого монозиготные близнецы. И хотя эти факты ученым известны давно, причины, провоцирующие появление близнецов, пока до конца не выяснены.

Правда, замечено, что любое стрессовое воздействие может привести к спонтанному делению яйцеклетки и появлению двух одинаковых эмбрионов. Именно этим объясняется увеличение числа рождений близнецов в периоды войн или эпидемий, когда организм женщины испытывает постоянную тревогу. Кроме того, геологические особенности местности тоже влияют на статистику близнецов. Они, например, рождаются чаще в местах с повышенной биопатогенной активностью или в районах рудных месторождений...

Многие люди описывают неопределенное, но постоянное ощущение, будто когда-то у них был близнец, который исчез. Исследователи считают это утверждение не столь странным, как может показаться на первый взгляд. Сейчас уже доказано, что при зачатии развивается гораздо больше близнецов - и однояйцевых, и просто двойняшек, - чем рождается на свет. Исследователи считают, что от 25 до 85% беременностей начинаются с образования двух эмбрионов, но заканчивается рождением одного ребенка.

Вот всего два из тех сотен и тысяч, известных медикам, примеров, которые подтверждают этот вывод...

Тридцатилетнему Морису Томкинсу, жаловавшемуся на частые головные боли, поставили неутешительный диагноз: опухоль мозга. Было решено проводить операцию. Когда же опухоль вскрыли, хирурги остолбенели: это оказалась не злокачественная опухоль, как предполагалось ранее, а не рассосавшиеся остатки тела брата-близнеца. Об этом свидетельствовали обнаруженные в мозгу волосы, кости, мышечная ткань...

Аналогичное образование, только уже в печени, обнаружили у девятилетней школьницы из Украины. Когда опухоль, разросшуюся до размеров футбольного мяча, разрезали, то перед глазами удивленных медиков предстала ужасная картина: изнутри торчали кости, длинные волосы, зубы, хрящи, жировые ткани, куски кожи...

То, что значительная часть оплодотворенных яйцеклеток, действительно, начинают свое развитие с двух зародышей, подтвердили и ультразвуковые исследования протекания беременности у десятков и сотен женщин. Так, в 1973 году американский врач Льюис Хелман сообщил, что из 140 обследованных им рискованных беременностей 22 начинались с двух зародышевых сумок - на 25% больше, чем ожидалось. В 1976 году доктор Сальватор Леви из Брюссельского университета опубликовал свои поразительные статистические данные об ультразвуковых исследованиях 7000 беременных женщин. Наблюдения, проводившиеся в первые 10 недель беременности показали, что в 71% случаев было два зародыша, но при этом рождался только один ребенок. По мнению Леви, второй зародыш обычно без следа исчезал к третьему месяцу беременности. В большинстве случаев, считает ученый, он поглощается материнским организмом. Некоторые ученые высказывают предположение, что, возможно, это естественный путь удаления поврежденного зародыша, благодаря чему сохраняется здоровый.

Приверженцы другой гипотезы объясняют этот феномен тем, что многоплодная беременность заложена в природе всех млекопитающих. Но у крупных представителей класса, в связи с тем, что они рожают более крупных детенышей, на стадии формирования эмбриона она переходит в одноплодную. Еще дальше пошли в своих теоретических построениях ученые, которые утверждают следующее: «да, действительно, оплодотворенная яйцеклетка всегда формирует два зародыша, из числа которых только один, наиболее сильный, выживает. Но другой зародыш вовсе не рассасываются, а поглощаются их выжившим собратом». То есть, на первых этапах беременности в чреве женщины совершается самый настоящий эмбриональный каннибализм. В качестве главного аргументам пользу этой гипотезы при водится тот факт, что на ранних стадиях беременности эмбрионы-близнецы фиксируется гораздо чаще, чем в более поздние периоды. Прежде считалось, что это ошибки ранней диагностики. Теперь же, судя по выше приведенным фактам, это расхождение в статистических данных полностью нашло объяснение.

Иногда исчезнувший близнец дает о себе знать совсем уж оригинальным способом. Когда Патриция Мак-Донелл из Англии забеременела, то узнала, что у нее не один тип крови, а два: 7% крови группы А и 93% - группы 0. Кровь группы А была ее. Но большая часть крови, циркулировавшей по телу Патриции, принадлежала не рожденному брату-близнецу, поглощенному ею в утробе матери. Тем не менее, спустя десятилетия, его останки продолжали вырабатывать свою кровь.

Массу любопытных особенностей демонстрируют близнецы и во взрослом состоянии. Убедиться в этом можно на следующем примере.

«Близнецы Джимы» были разделены сразу после рождения, выросли отдельно и стали сенсацией, когда нашли друг друга. Обоих звали одинаково, оба были женаты на женщинах с именем Линда, с которыми развелись. Когда оба женились во второй раз, у их жен были тоже одинаковое имя - Бетти. У каждого была собака по кличке Той. Оба работали представителями шерифа, а также в «Макдональдсе» и на бензоколонках. Отпуска они проводили на пляже Санкт-Петербурга (Флорида) и ездили на «шевроле». Оба грызли ногти и пили пиво «Miller», а также поставили белые скамейки около дерева в своих садах.

Психолог Томас Дж. Бохард-младший сходству и различию в поведении близнецов посвятил всю свою жизнь. На основании наблюдений за близнецами, с самого раннего детства воспитывавшихся в разных семьях и в различной обстановке, он пришел к выводу, что наследственность играет гораздо большую роль, чем предполагалось ранее, в формировании особенностей личности, ее интеллекта и психики, в восприимчивости к определенным заболеваниям. У многих из обследованных им близнецов, несмотря на существенную разницу в воспитании, обнаружились очень похожие черты поведения.

Например, Джека Юфа и Оскара Сторха, родившихся в 1933 году на Тринидаде, разлучили сразу же после их появления на свет. Они встречались только раз в возрасте чуть старше 20 лет. Им было по 45, когда они вновь увиделись у Бохарда в 1979 году. Оба оказались с усами, в одинаковых по стилю очках в тонкой металлической оправе и голубых рубашках с двойными карманами и погонами. Оскар, воспитанный матерью-немкой и ее семьей в католической вере, во времена фашизма вступил в Гитлерюгенд. Джека вырастил на Тринидаде отец-еврей, и позже он жил в Израиле, где работал в киббуце и служил в израильском флоте. Джек и Оскар обнаружили, что, несмотря на разные условия жизни, у них одинаковые привычки. Например, обоим нравилось громко читать в лифте просто для того, чтобы посмотреть на реакцию окружающих. Оба читали журналы от конца к началу, отличались суровым нравом, носили на запястье резиновую ленту и спускали воду в туалете перед тем, как воспользоваться им. Поразительно похожее поведение продемонстрировали и другие изучаемые пары близнецов. Бриджит Харрисон и Дороти Лоу, родившиеся в 1945 году и разделенные, когда им была неделя от роду, к Бохарду пришли с часами и браслетами на одной руке, двумя браслетами и с семью кольцами - на другой. Позже выяснилось, что у каждой из сестер есть кошка по кличке Тигр, что сына Дороти зовут Ричард Эндрю, а сына Бриджит - Эндрю Ричард. Но более впечатляющим оказался тот факт, что обе, когда им было по пятнадцать лет, вели дневник, а потом, почти одновременно, бросили это занятие. Дневники их были одного типа и цвета. Причем, хотя содержание записей различалось, они велись или пропускались в одни и те же дни. Отвечая на вопросы психологов, многие пары заканчивали ответы в одно и то же время и при ответах часто делали одинаковые ошибки. В ходе исследований выяснилось сходство близнецов в манере говорить, жестикулировать, двигаться. Было установлено также, что однояйцевые близнецы даже спят одинаково, и фазы сна у них совпадают. Предполагается, что у них могут развиваться и одинаковые болезни.

Завершить же этот этюд о близнецах можно словами Луиджи Гелда, который сказал: «Если у одного есть дырка в зубе, то и у другого она в том же зубе или скоро появится».

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.