Как быстро решать логарифмические уравнения. Логарифмическое уравнение: решение на примерах

Логарифмические уравнения. От простого - к сложному.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифмическое уравнение?

Это уравнение с логарифмами. Вот удивил, да?) Тогда уточню. Это уравнение, в котором неизвестные (иксы) и выражения с ними находятся внутри логарифмов. И только там! Это важно.

Вот вам примеры логарифмических уравнений :

log 3 х = log 3 9

log 3 (х 2 -3) = log 3 (2х)

log х+1 (х 2 +3х-7) = 2

lg 2 (x+1)+10 = 11lg(x+1)

Ну, вы поняли... )

Обратите внимание! Самые разнообразные выражения с иксами располагаются исключительно внутри логарифмов. Если, вдруг, в уравнении обнаружится икс где-нибудь снаружи , например:

log 2 х = 3+х,

это будет уже уравнение смешанного типа. Такие уравнения не имеют чётких правил решения. Мы их пока рассматривать не будем. Кстати, попадаются уравнения, где внутри логарифмов только числа . Например:

Что тут сказать? Повезло вам, если попалось такое! Логарифм с числами - это какое-то число. И всё. Достаточно знать свойства логарифмов, чтобы решить такое уравнение. Знания специальных правил, приёмов, приспособленных именно для решения логарифмических уравнений, здесь не требуется.

Итак, что такое логарифмическое уравнение - разобрались.

Как решать логарифмические уравнения?

Решение логарифмических уравнений - штука, вообще-то, не очень простая. Так и раздел у нас - на четвёрку... Требуется приличный запас знаний по всяким смежным темам. Кроме того, существует в этих уравнениях особая фишка. И фишка это настолько важная, что её смело можно назвать главной проблемой в решении логарифмических уравнений. Мы с этой проблемой в следующем уроке детально разберёмся.

А сейчас - не волнуйтесь. Мы пойдём правильным путём, от простого к сложному. На конкретных примерах. Главное, вникайте в простые вещи и не ленитесь ходить по ссылкам, я их не просто так поставил... И всё у вас получится. Обязательно.

Начнём с самых элементарных, простейших уравнений. Для их решения желательно иметь представление о логарифме, но не более того. Просто без понятия логарифма, браться за решение логарифмических уравнений - как-то и неловко даже... Очень смело, я бы сказал).

Простейшие логарифмические уравнения.

Это уравнения вида:

1. log 3 х = log 3 9

2. log 7 (2х-3) = log 7 х

3. log 7 (50х-1) = 2

Процесс решения любого логарифмического уравнения заключается в переходе от уравнения с логарифмами к уравнению без них. В простейших уравнениях этот переход осуществляется в один шаг. Потому и простейшие.)

И решаются такие логарифмические уравнения на удивление просто. Смотрите сами.

Решаем первый пример:

log 3 х = log 3 9

Для решения этого примера почти ничего знать и не надо, да... Чисто интуиция!) Что нам особо не нравится в этом примере? Что-что... Логарифмы не нравятся! Правильно. Вот и избавимся от них. Пристально смотрим на пример, и у нас возникает естественное желание... Прямо-таки непреодолимое! Взять и выкинуть логарифмы вообще. И, что радует, это можно сделать! Математика позволяет. Логарифмы исчезают, получается ответ:

Здорово, правда? Так можно (и нужно) делать всегда. Ликвидация логарифмов подобным образом - один из основных способов решения логарифмических уравнений и неравенств. В математике эта операция называется потенцирование. Есть, конечно, свои правила на такую ликвидацию, но их мало. Запоминаем:

Ликвидировать логарифмы безо всяких опасений можно, если у них:

а) одинаковые числовые основания

в) логарифмы слева-справа чистые (безо всяких коэффициентов) и находятся в гордом одиночестве.

Поясню последний пункт. В уравнении, скажем,

log 3 х = 2log 3 (3х-1)

убирать логарифмы нельзя. Двойка справа не позволяет. Коэффициент, понимаешь... В примере

log 3 х+log 3 (х+1) = log 3 (3+х)

тоже нельзя потенцировать уравнение. В левой части нет одинокого логарифма. Их там два.

Короче, убирать логарифмы можно, если уравнение выглядит так и только так:

log а (.....) = log а (.....)

В скобках, где многоточие, могут быть какие угодно выражения. Простые, суперсложные, всякие. Какие угодно. Важно то, что после ликвидации логарифмов у нас остаётся более простое уравнение. Предполагается, конечно, что решать линейные, квадратные, дробные, показательные и прочие уравнения без логарифмов вы уже умеете.)

Теперь легко можно решить второй пример:

log 7 (2х-3) = log 7 х

Собственно, в уме решается. Потенцируем, получаем:

Ну что, очень сложно?) Как видите, логарифмическая часть решения уравнения заключается только в ликвидации логарифмов... А дальше идёт решение оставшегося уравнения уже без них. Пустяшное дело.

Решаем третий пример:

log 7 (50х-1) = 2

Видим, что слева стоит логарифм:

Вспоминаем, что этот логарифм - какое-то число, в которое надо возвести основание (т.е. семь), чтобы получить подлогарифменное выражение, т.е. (50х-1).

Но это число равно двум! По уравнению. Стало быть:

Вот, в сущности, и всё. Логарифм исчез, осталось безобидное уравнение:

Мы решили это логарифмическое уравнение исходя только из смысла логарифма. Что, ликвидировать логарифмы всё-таки проще?) Согласен. Между прочим, если из двойки логарифм сделать, можно этот пример и через ликвидацию решить. Из любого числа можно логарифм сделать. Причём, такой, какой нам надо. Очень полезный приём в решении логарифмических уравнений и (особо!) неравенств.

Не умеете из числа логарифм делать!? Ничего страшного. В разделе 555 этот приём подробно описан. Можете освоить и применять его на полную катушку! Он здорово уменьшает количество ошибок.

Совершенно аналогично (по определению) решается и четвёртое уравнение:

Вот и все дела.

Подведём итоги этого урока. Мы рассмотрели на примерах решение простейших логарифмических уравнений. Это очень важно. И не только потому, что такие уравнения бывают на контрольных-экзаменах. Дело в том, что даже самые злые и замороченные уравнения обязательно сводятся к простейшим!

Собственно, простейшие уравнения - это финишная часть решения любых уравнений. И эту финишную часть надо понимать железно! И ещё. Обязательно дочитайте эту страничку до конца. Есть там сюрприз...)

Решаем теперь самостоятельно. Набиваем руку, так сказать...)

Найти корень (или сумму корней, если их несколько) уравнений:

ln(7х+2) = ln(5х+20)

log 2 (х 2 +32) = log 2 (12x)

log 16 (0,5х-1,5) = 0,25

log 0,2 (3х-1) = -3

ln(е 2 +2х-3) = 2

log 2 (14х) = log 2 7 + 2

Ответы (в беспорядке, разумеется): 42; 12; 9; 25; 7; 1,5; 2; 16.

Что, не всё получается? Бывает. Не горюйте! В разделе 555 решение всех этих примеров расписано понятно и подробно. Там уж точно разберётесь. Да ещё и полезные практические приёмы освоите.

Всё получилось!? Все примеры "одной левой"?) Поздравляю!

Пришло время открыть вам горькую правду. Успешное решение этих примеров вовсе не гарантирует успех в решении всех остальных логарифмических уравнений. Даже простейших, подобных этим. Увы.

Дело в том, что решение любого логарифмического уравнения (даже самого элементарного!) состоит из двух равноценных частей. Решение уравнения, и работа с ОДЗ. Одну часть - решение самого уравнения - мы освоили. Не так уж и трудно, верно?

Для этого урока я специально подобрал такие примеры, в которых ОДЗ никак на ответе не сказывается. Но не все такие добрые, как я, правда?...)

Посему надо обязательно освоить и другую часть. ОДЗ. Это и есть главная проблема в решении логарифмических уравнений. И не потому, что трудная - эта часть ещё проще первой. А потому, что про ОДЗ просто забывают. Или не знают. Или и то, и другое). И падают на ровном месте...

В следующем уроке мы расправимся с этой проблемой. Вот тогда можно будет уверенно решать любые несложные логарифмические уравнения и подбираться к вполне солидным заданиям.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Прежде чем решать логарифмические уравнения, повторим еще раз определение логарифма и основные формулы.

Логарифм положительного числа b по основанию a - это показатель степени, в которую надо возвести a , чтобы получить b .

При этом class="tex" alt="b> 0,\;a> 0,\;a\neq 1">.

Обратим внимание на область допустимых значений логарифма:

class="tex" alt="b> 0,\;a> 0,\;a\neq 1">.

Основное логарифмическое тождество:

Основные формулы для логарифмов:

(Логарифм произведения равен сумме логарифмов)

(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)

Формула перехода к новому основанию:

Мы знаем, как выглядит график логарифмической функции. Эта функция монотонна. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает. Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. И в любом случае каждое свое значение она принимает только один раз. Это значит, что если логарифмы двух чисел по какому-либо основанию равны, то равны и сами числа.

Все это пригодится нам в решении логарифмических уравнений.

Простейшие логарифмические уравнения

1.Решите уравнение:

Основания логарифмов равны, сами логарифмы тоже равны – значит, равны и числа, от которых они берутся.
Обычно ученики запоминают это правило в краткой жаргонной формулировке: «Отбросим логарифмы!» Конечно, мы «отбрасываем» их не просто так, а пользуясь свойством монотонности логарифмической функции.

Получаем:

Решая логарифмические уравнения, не забываем про область допустимых значений логарифма. Помним, что выражение определено при class="tex" alt="b> 0,\;a> 0,\;a\neq 1">.

Очень хорошо, если вы, найдя корень уравнения, просто подставите его в уравнение. Если после такой подстановки левая или правая часть уравнения не имеют смысла – значит, найденное число не является корнем уравнения и не может быть ответом задачи. Это хороший способ проверки на ЕГЭ.

2. Решите уравнение:

В левой части уравнения – логарифм, в правой – число 7. Применив основное логарифмическое тождество, представим число 7 в виде . Дальше все просто.

Ответ: -124

3. Решите уравнение:

Видите число 2 перед логарифмом в правой части уравнения? Сейчас оно мешает вам «отбросить логарифмы». Что с ним сделать, чтобы в левой и правой частях были просто логарифмы по основанию 5? Конечно же, поможет формула для логарифма степени.

4. Решите уравнение:

Область допустимых значений: class="tex" alt="4-x> 0."> Значит, class="tex" alt="x> -4.">

Представим 2 в правой части уравнения как - чтобы слева и справа в уравнении были логарифмы по основанию 5.

Функция монотонно возрастает и каждое свое значение принимает ровно один раз. Логарифмы равны, их основания равны. «Отбросим» логарифмы! Конечно, при этом class="tex" alt="x> -4">.

5. Решите уравнение:

Запишем решение как цепочку равносильных переходов. Записываем ОДЗ и «убираем» логарифмы:

Class="tex" alt="\log _{8}\left (x^{2}+x \right)=\log _{8}\left (x^{2}-4 \right)\Leftrightarrow \left\{\begin{matrix} x^{2}+x> 0\\ x^{2}-4> 0\\ x^{2}+x=x^{2}-4 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x^{2}+x> 0\\ x^{2}-4> 0\\ x=-4 \end{matrix}\right.\Leftrightarrow x=-4">
Ответ: –4.

Заметим, что решения логарифмических уравнений лучше всего записывать в виде цепочки равносильных переходов. Это поможет нам не забыть про область допустимых значений.

6.Решите уравнение: .

Перейдем от логарифма по основанию 4 (в показателе) к логарифму по основанию 2. Мы делаем это по формуле перехода к другому основанию:

Запишем решение как цепочку равносильных переходов.

Class="tex" alt="2^{\log _{4}\left (4x+5 \right)}=9\Leftrightarrow \left\{\begin{matrix} 2^\frac{{\log _{2}\left (4x+5 \right)}}{2}=9\\ 4x+5> 0 \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \left (2^{\log _{2}\left (4x+5 \right)} \right)^{\frac{1}{2}}=9\\ x> -1\frac{1}{4} \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \left (4x+5 \right)^{\frac{1}{2}}=9\\ x> -1\frac{1}{4} \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} \sqrt{4x+5}=9\\ x> -1\frac{1}{4} \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4x+5=81\\ x> -1\frac{1}{4} \end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=19\\ x> -1\frac{1}{4} \end{matrix}\right.">

7.Решите уравнение: .

Обратите внимание: переменная х и под логарифмом, и в основании логарифма. Мы помним, что основание логарифма должно быть положительно и не равно 1.

ОДЗ:
class="tex" alt="\left\{\begin{matrix} 12-x> 0\\ x> 0\\ x\neq 1 \end{matrix}\right.">

Теперь можно «убрать» логарифмы.

Посторонний корень, поскольку должно выполняться условие class="tex" alt="x> 0">.

8. Решите уравнение .

ОДЗ уравнения: class="tex" alt="x> 0">

Сделаем замену . Как и в алгебраических уравнениях, мы делаем замену переменной всегда, когда только возможно.

Вернемся к переменной х :

9.Решите уравнение:

Выражение под логарифмом всегда положительно – поскольку к неотрицательной величине прибавляем 25. Выражение под корнем в правой части также положительно. Значит, х может быть любым действительным числом.

Представим сумму логарифмов в левой части как логарифм произведения. В правой части – перейдем к логарифму по основанию 3. И используем формулу логарифма степени.

«Отбрасываем» логарифмы.

Такое уравнение называется биквадратным. В него входят выражения и . Сделаем замену

Вернемся к переменной х . Получим:

Мы нашли все корни исходного уравнения.

Логарифмические уравнения могут встретиться вам и в задании №5 Профильного ЕГЭ по математике, и в задании №13. И если в задании №5 нужно решить простейшее уравнение, то в задаче 13 решение состоит из двух пунктов. Второй пункт – отбор корней на заданном отрезке или интервале.

Подготовка к итоговому тестированию по математике включает в себя важный раздел - «Логарифмы». Задания из этой темы обязательно содержатся в ЕГЭ. Опыт прошлых лет показывает, что логарифмические уравнения вызвали затруднения у многих школьников. Поэтому понимать, как найти правильный ответ, и оперативно справляться с ними должны учащиеся с различным уровнем подготовки.

Сдайте аттестационное испытание успешно с помощью образовательного портала «Школково»!

При подготовке к единому государственному экзамену выпускникам старших классов требуется достоверный источник, предоставляющий максимально полную и точную информацию для успешного решения тестовых задач. Однако учебник не всегда оказывается под рукой, а поиск необходимых правил и формул в Интернете зачастую требует времени.

Образовательный портал «Школково» позволяет заниматься подготовкой к ЕГЭ в любом месте в любое время. На нашем сайте предлагается наиболее удобный подход к повторению и усвоению большого количества информации по логарифмам, а также по с одним и несколькими неизвестными. Начните с легких уравнений. Если вы справились с ними без труда, переходите к более сложным. Если у вас возникли проблемы с решением определенного неравенства, вы можете добавить его в «Избранное», чтобы вернуться к нему позже.

Найти необходимые формулы для выполнения задачи, повторить частные случаи и способы вычисления корня стандартного логарифмического уравнения вы можете, заглянув в раздел «Теоретическая справка». Преподаватели «Школково» собрали, систематизировали и изложили все необходимые для успешной сдачи материалы в максимально простой и понятной форме.

Чтобы без затруднений справляться с заданиями любой сложности, на нашем портале вы можете ознакомиться с решением некоторых типовых логарифмических уравнений. Для этого перейдите в раздел «Каталоги». У нас представлено большое количество примеров, в том числе с уравнениями профильного уровня ЕГЭ по математике.

Воспользоваться нашим порталом могут учащиеся из школ по всей России. Для начала занятий просто зарегистрируйтесь в системе и приступайте к решению уравнений. Для закрепления результатов советуем возвращаться на сайт «Школково» ежедневно.

Математика – это больше чем наука , это язык науки.

Датский физик, общественный деятель Нильс Бор

Логарифмические уравнения

К числу типовых задач , предлагаемых на вступительных (конкурсных) испытаниях , являются задачи , связанные с решением логарифмических уравнений. Для успешного решения таких задач необходимо хорошо знать свойства логарифмов и иметь навыки их применения.

В настоящей статье сначала приводятся основные понятия и свойства логарифмов , а затем рассматриваются примеры решения логарифмических уравнений.

Основные понятия и свойства

Первоначально приведем основные свойства логарифмов , использование которых позволяет успешно решать относительно сложные логарифмические уравнения.

Основное логарифмическое тождество записывается в виде

, (1)

К числу наиболее известных свойств логарифмов относятся следующие равенства:

1. Если , , и , то , ,

2. Если , , , и , то .

3. Если , , и , то .

4. Если , , и натуральное число , то

5. Если , , и натуральное число , то

6. Если , , и , то .

7. Если , , и , то .

Более сложные свойства логарифмов формулируются посредством следующих утверждений:

8. Если , , , и , то

9. Если , , и , то

10. Если , , , и , то

Доказательство последних двух свойств логарифмов приведено в учебном пособии автора «Математика для старшеклассников: дополнительные разделы школьной математики» (М.: Ленанд / URSS , 2014).

Также следует отметить , что функция является возрастающей , если , и убывающей , если .

Рассмотрим примеры задач на решение логарифмических уравнений , расположенных в порядке возрастания их сложности.

Примеры решения задач

Пример 1 . Решить уравнение

. (2)

Решение. Из уравнения (2) имеем . Преобразуем уравнение следующим образом: , или .

Так как , то корнем уравнения (2) является .

Ответ: .

Пример 2 . Решить уравнение

Решение. Уравнение (3) равносильно уравнениям

Или .

Отсюда получаем .

Ответ: .

Пример 3 . Решить уравнение

Решение. Из уравнения (4) следует , что . Используя основное логарифмическое тождество (1) , можно записать

или .

Если положить , то отсюда получаем квадратное уравнение , которое имеет два корня и . Однако , поэтому и подходящим корнем уравнения является лишь . Так как , то или .

Ответ: .

Пример 4 . Решить уравнение

Решение. Областью допустимых значений переменной в уравнении (5) являются .

Пусть и . Так как функция на области определения является убывающей , а функция возрастает на всей числовой оси , то уравнение не может иметь более одного корня.

Подбором находим единственный корень .

Ответ: .

Пример 5 . Решить уравнение .

Решение. Если обе части уравнения прологарифмировать по основанию 10, то

Или .

Решая квадратное уравнение относительно , получаем и . Следовательно, здесь имеем и .

Ответ: , .

Пример 6 . Решить уравнение

. (6)

Решение. Воспользуется тождеством (1) и преобразуем уравнение (6) следующим образом:

Или .

Ответ: , .

Пример 7 . Решить уравнение

. (7)

Решение. Принимая во внимание свойство 9, имеем . В этой связи уравнение (7) принимает вид

Отсюда получаем или .

Ответ: .

Пример 8 . Решить уравнение

. (8)

Решение. Воспользуемся свойством 9 и перепишем уравнение (8) в равносильном виде .

Если затем обозначить , то получим квадратное уравнение , где . Так как уравнение имеет только один положительный корень , то или . Отсюда следует .

Ответ: .

Пример 9 . Решить уравнение

. (9)

Решение. Так как из уравнения (9) следует , то здесь . Согласно свойству 10 , можно записать .

В этой связи уравнение (9) будет равносильно уравнениям

Или .

Отсюда получаем корень уравнения (9).

Пример 10 . Решить уравнение

. (10)

Решение. Областью допустимых значений переменной в уравнении (10) являются . Согласно свойству 4 здесь имеем

. (11)

Так как , то и уравнение (11) принимает вид квадратного уравнения , где . Корнями квадратного уравнения являются и .

Поскольку , то и . Отсюда получаем и .

Ответ: , .

Пример 11 . Решить уравнение

. (12)

Решение. Обозначим , тогда и уравнение (12) принимает вид

Или

. (13)

Нетрудно видеть, что корнем уравнения (13) является . Покажем, что данное уравнение других корней не имеет. Для этого разделим обе его части на и получим равносильное уравнение

. (14)

Так как функция является убывающей, а функция возрастающей на всей числовой оси , то уравнение (14) не может иметь более одного корня. Так как уравнения (13) и (14) равносильные, то уравнение (13) имеет единственный корень .

Поскольку , то и .

Ответ: .

Пример 12 . Решить уравнение

. (15)

Решение. Обозначим и . Так как функция убывает на области определения , а функция является возрастающей для любых значений , то уравнение не может иметь боде одного корня. Непосредственным подбором устанавливаем, что искомым корнем уравнения (15) является .

Ответ: .

Пример 13 . Решить уравнение

. (16)

Решение. Используя свойства логарифмов, получаем

Так как , то и имеем неравенство

Полученное неравенство совпадает с уравнением (16) только в том случае, когда или .

Подстановкой значения в уравнение (16) убеждаемся в том , что является его корнем.

Ответ: .

Пример 14 . Решить уравнение

. (17)

Решение. Так как здесь , то и уравнение (17) принимает вид .

Если положить , то отсюда получаем уравнение

, (18)

где . Из уравнения (18) следует: или . Так как , то уравнение имеет один подходящий корень . Однако , поэтому и .

Пример 15 . Решить уравнение

. (19)

Решение. Обозначим , тогда и уравнение (19) принимает вид . Если данное уравнение прологарифмировать по основанию 3, то получим

Или

Отсюда следует, что и . Поскольку , то и . В этой связи и .

Ответ: , .

Пример 16 . Решить уравнение

. (20)

Решение . Введем параметр и перепишем уравнение (20) в виде квадратного уравнения относительно параметра , т.е.

. (21)

Корнями уравнения (21) являются

или , . Так как , то имеем уравнения и . Отсюда получаем и .

Ответ: , .

Пример 17 . Решить уравнение

. (22)

Решение. Для установления области определения переменной в уравнении (22) необходимо рассмотреть совокупность трех неравенств: , и .

Применяя свойство 2 , из уравнения (22) получаем

Или

. (23)

Если в уравнении (23) положить , то получим уравнение

. (24)

Уравнение (24) будем решать следующим образом:

Или

Отсюда следует, что и , т.е. уравнение (24) имеет два корня: и .

Так как , то , или , .

Ответ: , .

Пример 18 . Решить уравнение

. (25)

Решение. Используя свойства логарифмов, преобразуем уравнение (25) следующим образом:

, , .

Отсюда получаем .

Пример 19 . Решить уравнение

. (26)

Решение. Так как , то .

Далее , имеем . Следовательно , равенство (26) выполняется только в том случае , когда обе части уравнения одновременно равны 2.

Таким образом , уравнение (26) равносильно системе уравнений

Из второго уравнения системы получаем

Или .

Нетрудно убедиться , что значение удовлетворяет также и первому уравнению системы.

Ответ: .

Для более глубокого изучения методов решения логарифмических уравнений можно обратиться к учебным пособиям из списка рекомендуемой литературы.

1. Кушнир А.И. Шедевры школьной математики (задачи и решения в двух книгах). – Киев: Астарта , книга 1 , 1995. – 576 с.

2. Сборник задач по математике для поступающих во втузы / Под ред. М.И. Сканави. – М.: Мир и Образование , 2013. – 608 с.

3. Супрун В.П. Математика для старшеклассников: дополнительные разделы школьной программы. – М.: Ленанд / URSS , 2014. – 216 с.

4. Супрун В.П. Математика для старшеклассников: задачи повышенной сложности. – М.: КД «Либроком» / URSS , 2017. – 200 с.

5. Супрун В.П. Математика для старшеклассников: нестандартные методы решения задач. – М.: КД «Либроком» / URSS , 2017. – 296 с.

Остались вопросы?

Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Логарифмическим уравнением называется уравнение, в котором неизвестное (х) и выражения с ним находятся под знаком логарифмической функции. Решение логарифмических уравнений подразумевает, что вы уже знакомы с и .
Как решать логарифмические уравнения?

Самое простое уравнение имеет вид log a x = b , где a и b -некоторые числа,x - неизвестное.
Решением логарифмическое уравнения является x = a b при условии: a > 0, a 1.

Следует отметить, что если х будет находиться где-нибудь вне логарифма, например log 2 х = х-2, то такое уравнение уже называется смешанным и для его решения нужен особый подход.

Идеальным случаем является ситуация, когда Вам попадется уравнение, в котором под знаком логарифма находятся только числа, например х+2 = log 2 2. Здесь достаточно знать свойства логарифмов для его решения. Но такая удача случается не часто, поэтому приготовьтесь к более сложным вещам.

Но сначала, все-таки, начнём с простых уравнений. Для их решения желательно иметь самое общее представление о логарифме.

Решение простейших логарифмических уравнений

К таковым относятся уравнения типа log 2 х = log 2 16. Невооруженным глазом видно, что опустив знак логарифма получим х = 16.

Для того, чтобы решить более сложное логарифмическое уравнение, его обычно приводят к решению обычного алгебраического уравнения или к решению простейшего логарифмического уравнения log a x = b. В простейших уравнениях это происходит в одно движение, поэтому они и носят название простейших.

Вышеиспользованный метод опускания логарифмов является одним из основных способов решения логарифмических уравнений и неравенств. В математике эта операция носит название потенцирования. Существуют определенные правила или ограничения для подобного рода операций:

  • одинаковые числовые основания у логарифмов
  • логарифмы в обоих частях уравнения находятся свободно, т.е. без каких бы то ни было коэффициентов и других разного рода выражений.

Скажем в уравнении log 2 х = 2log 2 (1- х) потенцирование неприменимо - коэффициент 2 справа не позволяет. В следующем примере log 2 х+log 2 (1 - х) = log 2 (1+х) также не выполняется одно из ограничений - слева логарифма два. Вот был бы один – совсем другое дело!

Вообщем, убирать логарифмы можно только при условии, что уравнение имеет вид:

log a (...) = log a (...)

В скобках могут находится совершенно любые выражения, на операцию потенцирования это абсолютно никак не влияет. И уже после ликвидации логарифмов останется более простое уравнение – линейное, квадратное, показательное и т.п., которое Вы уже, надеюсь, умеете решать.

Возьмем другой пример:

log 3 (2х-5) = log 3 х

Применяем потенцирование, получаем:

log 3 (2х-1) = 2

Исходя из определения логарифма, а именно, что логарифм - это число, в которое надо возвести основание, чтобы получить выражение, которое находится под знаком логарифма, т.е. (4х-1), получаем:

Опять получили красивый ответ. Здесь мы обошлись без ликвидации логарифмов, но потенцирование применимо и здесь, потому как логарифм можно сделать из любого числа, причем именно такой, который нам надо. Этот способ очень помогает при решении логарифмических уравнений и особенно неравенств.

Решим наше логарифмическое уравнение log 3 (2х-1) = 2 с помощью потенцирования:

Представим число 2 в виде логарифма, например, такого log 3 9, ведь 3 2 =9.

Тогда log 3 (2х-1) = log 3 9 и опять получаем все то же уравнение 2х-1 = 9. Надеюсь, все понятно.

Вот мы и рассмотрели как решать простейшие логарифмические уравнения, которые на самом деле очень важны, ведь решение логарифмических уравнений , даже самых страшных и закрученных, в итоге всегда сводится к решению простейших уравнений.

Во всем, что мы делали выше, мы упускали из виду один очень важный момент, который в последующем будет иметь решающую роль. Дело в том, что решение любого логарифмического уравнения, даже самого элементарного, состоит из двух равноценных частей. Первая – это само решение уравнения, вторая - работа с областью допустимых значений (ОДЗ). Вот как раз первую часть мы и освоили. В вышеприведенных примерах ОДЗ на ответ никак не влияет, поэтому мы ее и не рассматривали.

А вот возьмем другой пример:

log 3 (х 2 -3) = log 3 (2х)

Внешне это уравнение ничем не отличается от элементарного, которое весьма успешно решается. Но это не совсем так. Нет, мы конечно же его решим, но скорее всего неправильно, потому что в нем кроется небольшая засада, в которую сходу попадаются и троечники, и отличники. Давайте рассмотрим его поближе.

Допустим необходимо найти корень уравнения или сумму корней, если их несколько:

log 3 (х 2 -3) = log 3 (2х)

Применяем потенцирование, здесь оно допустимо. В итоге получаем обычное квадратное уравнение.

Находим корни уравнения:

Получилось два корня.

Ответ: 3 и -1

С первого взгляда все правильно. Но давайте проверим результат и подставим его в исходное уравнение.

Начнем с х 1 = 3:

log 3 6 = log 3 6

Проверка прошла успешно, теперь очередь х 2 = -1:

log 3 (-2) = log 3 (-2)

Так, стоп! Внешне всё идеально. Один момент - логарифмов от отрицательных чисел не бывает! А это значит, что корень х = -1 не подходит для решения нашего уравнения. И поэтому правильный ответ будет 3, а не 2, как мы написали.

Вот тут-то и сыграла свою роковую роль ОДЗ, о которой мы позабыли.

Напомню, что под областью допустимых значений принимаются такие значения х, которые разрешены или имеют смысл для исходного примера.

Без ОДЗ любое решение, даже абсолютно правильное, любого уравнения превращается в лотерею - 50/50.

Как же мы смогли попасться при решении, казалось бы, элементарного примера? А вот именно в момент потенцирования. Логарифмы пропали, а с ними и все ограничения.

Что же в таком случае делать? Отказываться от ликвидации логарифмов? И напрочь отказаться от решения этого уравнения?

Нет, мы просто, как настоящие герои из одной известной песни, пойдем в обход!

Перед тем, как приступать к решению любого логарифмического уравнения, будем записывать ОДЗ. А вот уж после этого можно делать с нашим уравнением все, что душа пожелает. Получив ответ, мы просто выбрасываем те корни, которые не входят в нашу ОДЗ, и записываем окончательный вариант.

Теперь определимся, как же записывать ОДЗ. Для этого внимательно осматриваем исходное уравнение и ищем в нем подозрительные места, вроде деления на х, корня четной степени и т.п. Пока мы не решили уравнение, мы не знаем – чему равно х, но твердо знаем, что такие х, которые при подстановке дадут деление на 0 или извлечение квадратного корня из отрицательного числа, заведомо в ответ не годятся. Поэтому такие х неприемлемы, остальные же и будут составлять ОДЗ.

Воспользуемся опять тем же уравнением:

log 3 (х 2 -3) = log 3 (2х)

log 3 (х 2 -3) = log 3 (2х)

Как видим, деления на 0 нет, квадратных корней также нет, но есть выражения с х в теле логарифма. Тут же вспоминаем, что выражение, находящееся внутри логарифма, всегда должно быть >0. Это условие и записываем в виде ОДЗ:

Т.е. мы еще ничего не решали, но уже записали обязательное условие на всё подлогарифменное выражение. Фигурная скобка означает, что эти условия должны выполняться одновременно.

ОДЗ записано, но необходимо еще и решить полученную систему неравенств, чем и займемся. Получаем ответ х > v3. Теперь точно известно – какие х нам не подойдут. А дальше уже приступаем к решению самого логарифмического уравнения, что мы и сделали выше.

Получив ответы х 1 = 3 и х 2 = -1, легко увидеть, что нам подходит лишь х1= 3, его и записываем, как окончательный ответ.

На будущее очень важно запомнить следующее: решение любого логарифмического уравнения делаем в 2 этапа. Первый - решаем само уравнение, второй – решаем условие ОДЗ. Оба этапа выполняются независимо друг от друга и только лишь при написании ответа сопоставляются, т.е. отбрасываем все лишнее и записываем правильный ответ.

Для закрепления материала настоятельно рекомендуем посмотреть видео:

На видео другие примеры решения лог. уравнений и отработка метода интервалов на практике.

На это по вопросу, как решать логарифмические уравнения , пока всё. Если что то по решению лог. уравнений осталось не ясным или непонятным, пишите свои вопросы в комментариях.

Заметка: Академия социального образования (КСЮИ) - готова принять новых учащихся.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.