Julia и движение заряженной частицы в электромагнитном поле. Осаждение частиц в электрическом поле Движение заряженных частиц в поле конденсатора

Закрепляем навыки решения и визуализации дифференциальных уравнений на примере одного из самых распространенных эволюционных уравнений, вспоминаем о старом-добром Scilab и пытаемся понять, а надо ли оно нам… Под катом картинки (килобайт на семьсот)


Удостоверимся в свежести софта

julia>] (v1.0) pkg>update #успеете заварить чаю (v1.0) pkg> status Status `C:\Users\Игорь\.julia\environments\v1.0\Project.toml` AbstractPlotting v0.9.0 Blink v0.8.1 Cairo v0.5.6 Colors v0.9.5 Conda v1.1.1 DifferentialEquations v5.3.1 Electron v0.3.0 FileIO v1.0.2 GMT v0.5.0 GR v0.35.0 Gadfly v1.0.0+ #master (https://github.com/GiovineItalia/Gadfly.jl.git) Gtk v0.16.4 Hexagons v0.2.0 IJulia v1.14.1+ [`C:\Users\Игорь\.julia\dev\IJulia`] ImageMagick v0.7.1 Interact v0.9.0 LaTeXStrings v1.0.3 Makie v0.9.0+ #master (https://github.com/JuliaPlots/Makie.jl.git) MeshIO v0.3.1 ORCA v0.2.0 Plotly v0.2.0 PlotlyJS v0.12.0+ #master (https://github.com/sglyon/PlotlyJS.jl.git) Plots v0.21.0 PyCall v1.18.5 PyPlot v2.6.3 Rsvg v0.2.2 StatPlots v0.8.1 UnicodePlots v0.3.1 WebIO v0.4.2 ZMQ v1.0.0



и приступим к постановке задачи

Движение заряженных частиц в электромагнитном поле

На заряженую частицу с зарядом движущуюся в ЭМП со скоростью действует сила Лоренца: . Данная формула справедлива при ряде упрощений. Пренебрегая поправками на теорию относительности, считаем массу частицы постоянной, так что уравнение движения имеет вид:


Направим ось Y вдоль электрического поля, ось Z - вдоль магнитного поля и предположим для простоты, что начальная скорость частицы лежит в плоскости XY. В этом случае вся траектория частицы также будет лежать в этой плоскости. Уравнения движения примут вид:



Обезразмерим: . Звёздочками обозначены размерные величины, а - характерный размер рассматриваемой физической системы. Получим безразмерную систему уравнений движения заряженной частицы в магнитном поле:



Понизим порядок:



В качестве начальной конфигурации модели выберем: Тл, В/м, м/с. Для численного решения воспользуемся пакетом DifferentialEquations :


Код и графики

using DifferentialEquations, Plots pyplot() M = 9.11e-31 # kg q = 1.6e-19 # C C = 3e8 # m/s λ = 1e-3 # m function modelsolver(Bo = 2., Eo = 5e4, vel = 7e4) B = Bo*q*λ / (M*C) E = Eo*q*λ / (M*C*C) vel /= C A = syst(u,p,t) = A * u + # ODE system u0 = # start cond-ns tspan = (0.0, 6pi) # time period prob = ODEProblem(syst, u0, tspan) # problem to solve sol = solve(prob, Euler(), dt = 1e-4, save_idxs = , timeseries_steps = 1000) end Solut = modelsolver() plot(Solut)


Здесь используется метод Эйлера, для которого задаётся количество шагов. Также сохраняется в матрицу ответов не всё решение системы, а только 1 и 2 индексы, то есть координаты икс и игрек (скорости нам не нужны).


X = for i in eachindex(Solut.u)] Y = for i in eachindex(Solut.u)] plot(X, Y, xaxis=("X"), background_color=RGB(0.1, 0.1, 0.1)) title!("Траектория частицы") yaxis!("Y") savefig("XY1.png")#сохраним график в папку с проектом


Проверим результат. Введем вместо х новую переменную . Таким образом осуществляется переход в новую систему координат, движущуюся относительно исходной со скоростью u в направлении оси Х :



Если выбрать и обозначить , то система упростится:



Электрическое поле исчезло из последних равенств, и они представляют собой уравнения движения частицы, находящейся под действием однородного магнитного поля. Таким образом, частица в новой системе координат (х, у) должна двигаться по окружности. Так как эта новая система координат сама перемещается относительно исходной со скоростью , то результирующее движение частицы будет складываться из равномерного движения по оси X и вращения по окружности в плоскости XY . Как известно, траектория, возникающая при сложении таких двух движений, в общем случае представляет собой трохоиду . В частности, если начальная скорость равна нулю, реализуется простейший случай движения такого рода - по циклоиде .
Удостоверимся, что скорость дрейфа вышла действительно равной Е/В . Для этого:

  • подпортим матрицу ответов, поставив вместо первого элемента (максимального) заведомо меньшее значение
  • найдем номер максимального элемента во втором столбце матрицы ответов, который откладывается по ординате
  • вычислим безразмерную скорость дрейфа, разделив значение абсциссы в максимуме на соответствующее значение времени
Y = -0.1 numax = argmax(Y) X / Solut.t

Out: 8.334546850446588e-5


B = 2*q*λ / (M*C) E = 5e4*q*λ / (M*C*C) E/B

Out: 8.333333333333332e-5
С точностью до седьмого порядка!
Для удобства определим функцию, принимающую параметры модели и подпись графика, которая будет также служить названием файла png , создаваемого в папке с проектом (работает в Juno/Atom и Jupyter). В отличии от Gadfly , где графики создавались в слоях , а потом выводились функцией plot() , в Plots, чтобы в одном фрейме наделать разных графиков, первый из них создается функцией plot() , а последующие добавляются использованием plot!() . Названия функций меняющих принимаемые объекты в Джулии принято оканчивать восклицательным знаком.


function plotter(ttle = "qwerty", Bo = 2, Eo = 4e4, vel = 7e4) Ans = modelsolver(Bo, Eo, vel) X = for i in eachindex(Ans.u)] Y = for i in eachindex(Ans.u)] plot!(X, Y) p = title!(ttle) savefig(p, ttle * ".png") end

При нулевой начальной скорости, как и предполагалось, получаем циклоиду :


plot() plotter("Zero start velocity", 2, 4e4, 7e4)


Получим траекторию частицы при занулении индукции, напряженности и при смене знака заряда. Напомню, что точка значит поочередное выполнение функции со всеми элементами массива


Упрятано

plot() plotter.("B занулено Е варьируется", 0, )


plot() plotter.("E занулено B варьируется", , 0)


q = -1.6e-19 # C plot() plotter.("Отрицательный заряд")


И посмотрим, как влияет на траекторию частицы изменение начальной скорости:

plot() plotter.("Варьирование скорости", 2, 5e4, )

Немного о Scilab

На Хабре уже есть достаточно информации о Сайлабе, например , поэтому ограничимся ссылками на Википедию и на домашнюю страницу .


От себя добавлю, про наличие удобного создания интерфейса с флажками кнопками и выводом графиков и довольно интересного инструмента визуального моделирования Xcos. Последний можно использовать, например, для моделирования сигнала в электротехнике:



Собственно, нашу задачу вполне можно решить и в Scilab:


Код и картинки

clear function du = syst(t, u, A, E) du = A * u + // ODE system endfunction function = modelsolver(Bo, Eo, vel) B = Bo*q*lambda / (M*C) E = Eo*q*lambda / (M*C*C) vel = vel / C u0 = // start cond-ns t0 = 0.0 tspan = t0:0.1:6*%pi // time period A = U = ode("rk", u0, t0, tspan, list(syst, A, E)) endfunction M = 9.11e-31 // kg q = 1.6e-19 // C C = 3e8 // m/s lambda = 1e-3 // m = modelsolver(2, 5e4, 7e4) plot(cron, Ans1) xtitle ("Безразмерные координаты и скорости","t","x, y, dx/dt, dy/dt"); legend ("x", "y", "Ux", "Uy"); scf(1)//создание нового графического окна plot(Ans1(1, :), Ans1(2, :)) xtitle ("Траектория частицы","x","y"); xs2png(0,"graf1");// можно сохранять графики в разных форматах xs2jpg(1,"graf2");// правда, работает через-раз




Информация по функции для решения дифуров ode . В принципе напрашивается вопрос

А зачем нам Julia?

… если и так есть такие замечательные штуки как Scilab, Octave и Numpy, Scipy?
Про последние два не скажу - не пробовал. Да и вообще вопрос сложный, так что прикинем навскидку:


Scilab
На харде займет чуть больше 500 Мб, запускается быстро и сходу доступно и дифуросчитание, и графика и всё остальное. Хорош для начинающих: отличное руководство (по большей части локализованное), есть много книг на русском. Про внутренние ошибки уже было сказано и , и так как продукт очень нишевый, сообщество вялое, и дополнительные модули весьма скудны.


Julia
По мере добавления пакетов (особенно всякой питонщины а-ля Jupyter и Mathplotlib) разрастается от 376 Мб до вполне-таки шести с лишним гигабайт. Оперативку она тоже не щадит: на старте 132 Мб и после того, как в Юпитере намалевать графиков, до 1 ГБ спокойно дойдёт. Если работать в Juno , то всё почти как в Scilab : можно выполнять код сразу в интерпретаторе, можно печатать во встроенном блокноте и сохранять как файл, есть обозреватель переменных, журнал команд и интерактивная справка. Лично у меня вызывает возмущение отсутствие clear() , т. е. запустил я код, потом начал там поправлять и переименовывать, а старые переменные-то остались (в Юпитере нет обозревателя переменных).


Но всё это не критично. Scilab подходит вполне на первых парах, сделать лабу, курсач или посчитать чего промежуточного - очень даже подручный инструмент. Хоть здесь тоже есть поддержка параллельного вычисления и вызов сишных/фортрановских функций, для чего серьезного его использовать не получается. Большие массивы повергают его в ужас, чтоб задать многомерные, приходится заниматься всяким мракобесием , а вычисления за рамками классических задач вполне могут обронить всё вместе с операционкой.


И вот после всех этих болей и разочарований можно смело переходить на Julia , чтоб огрести ещё и здесь. Будем учиться дальше, благо комьюнити очень отзывчивое, проблемы утрясаются быстро, да и у Джулии есть еще много интересных особенностей, которые превратят процесс обучения в увлекательное путешествие!

Электрически заряженная частица - это частица, которая обладает положительным или отрицательным зарядом. Это могут быть как атомы, молекулы, так и элементарные частицы. Когда электрически заряженная частица находится в электрическом поле, на нее действует сила Кулона. Значение этой силы, если известно значение в конкретной точке, вычисляется по следующей формуле: F = qE.

мы определили, что электрически заряженная частица, которая находится в электрическом поле, движется под воздействием кулоновской силы.

Теперь рассмотрим Экспериментально было обнаружено, что магнитное поле воздействует на движение заряженных частиц. равна максимальной силе, которая воздействует на скорость движения такой частицы со стороны магнитного поля. Заряженная частица движется с единичной скоростью. Если электрически заряженная частица влетит в магнитное поле с заданной скоростью, то сила, которая действует со стороны поля, будет перпендикулярна скорости частицы и соответственно вектору магнитной индукции: F = q. Поскольку сила, которая действует на частицу, перпендикулярна скорости движения, то и ускорение, задаваемое этой силой также перпендикулярно движению, является нормальным ускорением. Соответственно, прямолинейная будет искривляться при попадании заряженной частицы в магнитное поле. Если частица влетает параллельно линиям магнитной индукции, то не действует на заряженную частицу. Если она влетает перпендикулярно линиям магнитной индукции, то сила, которая действует на частицу, будет максимальной.

Теперь запишем II qvB = mv 2 /R, или R = mv/qB, где m - это масса заряженной частицы, а R - это радиус траектории. Из этого уравнения следует, что частица двигается в однородном поле по окружности радиуса. Так, период обращения заряженной частицы по окружности не зависит от скорости движения. Необходимо отметить, что у электрически заряженной частицы, попавшей в магнитное поле, кинетическая энергия неизменна. Вследствие того что сила перпендикулярна движению частицы в любой из точек траектории, поля, которая действует на частицу, не совершает работу, связанную с перемещением движения заряженной частицы.

Направление силы, воздействующей на движение заряженной частицы в магнитном поле, можно определить при помощи «правила левой руки». Для этого необходимо расположить левую ладонь таким образом, чтобы четыре пальца указывали направление скорости движения заряженной частицы, ну а линии магнитной индукции были направлены в центр ладони, в таком случае отогнутый под углом в 90 градусов большой палец будет показывать направление силы, которая действует на положительно заряженную частицу. В том случае, если частица имеет отрицательный заряд, то направление силы будет противоположным.

Если же электрически заряженная частица попадет в область совместного воздействия магнитного и электрического полей, то на нее будет действовать сила, называемая силой Лоренца: F = qE + q. Первое слагаемое при этом относиться к электрическому компоненту, а второе - к магнитному.

Пусть частица массой m и с зарядом e влетает со скоростью v в электрическое поле плоского конденсатора. Длина конденсатора x, напряженность поля равна Е. Смещаясь в электрическом поле вверх, электрон пролетит через конденсатор по криволинейной траектории и вылетит из него, отклонившись от первоначального направления на y. Под действием силы поля, F = eE = ma частица движется ускоренно по вертикали, поэтому . Время движения частицы вдоль оси ох с постоянной скоростью . Тогда . А это есть уравнение параболы. Т.о. заряженная частица движется в электрическом поле по параболе.

3. Движение заряженных частиц в магнитном поле .

Рассмотрим движение заряженной частицы в магнитном поле напряженностью Н. Силовые линии поля изображены точками и направлены перпендикулярно к плоскости рисунка (к нам).

Движущаяся заряженная частица представляет собой электрический ток. Поэтому магнитное поле отклоняет частицу вверх от ее первоначального направления движения (направление движения электрона противоположно направлению тока)

Согласно формуле Ампера сила, отклоняющая частицу на любом участке траектории равна , ток , где t - время, за которое заряд e проходит по участку l. Поэтому . Учитывая, что , получим

Сила F называется лоренцевой силой. Направления F, v и H взаимно перпендикулярны. Направление F можно определить по правилу левой руки.

Будучи перпендикулярна скорости , лоренцева сила изменяет только направление скорости движения частицы, не изменяя величины этой скорости. Отсюда следует, что:

1. Работа силы Лоренца равна нулю, т.е. постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей (не изменяет кинетической энергии частицы).

Напомним, что в отличие от магнитного поля электрическое поле изменяет энергию и величину скорости движущейся частицы.

2. Траектория частицы является окружностью, на которой частицу удерживает лоренцева сила, играющая роль центростремительной силы.

Радиус r этой окружности определим, приравнивая между собой лоренцеву и центростремительную силы:

Откуда .

Т.о. радиус окружности, по которой движется частица, пропорционален скорости частицы и обратно пропорционален напряженности магнитного поля.

Период обращения частицы T равен отношению длины окружности S к скорости частицы v: . Учитывая выражение для r, получим . Следовательно, период обращения частицы в магнитном поле не зависит от ее скорости.

Если в пространстве, где движется заряженная частица, создать магнитное поле, направленное под углом к ее скорости , то дальнейшее движение частицы представит собой геометрическую сумму двух одновременных движений: вращения по окружности со скоростью в плоскости, перпендикулярной силовым линиям, и перемещения вдоль поля со скоростью . Очевидно, что результирующая траектория частицы окажется винтовой линией.



4. Электромагнитные счетчики скорости крови.

Принцип действия электромагнитного счетчика основан на движении электрических зарядов в магнитном поле. В крови имеется значительное количество электрических зарядов в виде ионов.

Предположим, что некоторое количество однозарядных ионов движется внутри артерии со скоростью . Если артерию поместить между полюсами магнита, ионы будут двигаться в магнитном поле.

Для направлений и B, показанных на рис.1., магнитная сила , действующая на положительно заряженные ионы направлена вверх, а сила , действующая на отрицательно заряженные ионы, направлена вниз. Под влиянием этих сил ионы движутся к противоположным стенкам артерии. Эта поляризация артериальных ионов создает поле E (рис.2), эквивалентное однородному полю плоского конденсатора. Тогда разность потенциалов в артерии U диаметром d связан с Е формулой . Это электрическое поле, действуя на ионы, создает электрические силы и , направление которых противоположно направлению и , как показано на рис.2.

Концентрация зарядов на противоположных стенках артерии будет продолжаться до тех пор, пока электрическое поле не возрастет настолько, что = .

Для состояния равновесия можно записать ; , откуда .

Таким образом, скорость крови пропорциональна напряжению, возрастающему поперек артерии. Зная напряжение, а также значения B и d, можно определить скорость крови.

Примеры решения задач

  1. Вычислить радиус дуги окружности, которую описывает протон в магнитном поле с индукцией 15 мТ, если скорость протона 2 Мм/с.


Радиус дуги окружности определится по формуле

2. Протон, прошедший ускоряющую разность потенциалов U=600 В, влетел в однородное магнитное поле с индукцией В = 0,3Т и стал двигаться по окружности. Вычислить радиус R окружности.

Работа, совершаемая электрическим полем при прохождении протона ускоряющей разности потенциалов, превращается в кинетическую энергию протона:

Радиус окружности можно найти по формуле

Найдем из (1) v: Подставим это в (2):

3. Какую энергию приобретет электрон, сделав 40 оборотов в магнитном поле циклотрона, используемого в целях радиационной терапии, если максимальное значение переменной разности потенциалов между дуантами U = 60кВ? Какую скорость приобретет протон?

За 1 оборот протон дважды пройдет между дуантами циклотрона и приобретет энергию 2eU. За N оборотов энергия T = 2eUN = 4,8 МэВ.

Скорость протона можно определить из соотношения , откуда

Лекция №7

1. Электромагнитная индукция. Закон Фарадея. Правило Ленца.

2. Взаимная индукция и самоиндукция. Энергия магнитного поля.

3. Переменный ток. Работа и мощность переменного тока.

4. Емкостное и индуктивное сопротивление.

5. Использование переменного тока в медицинской практике, его воздействие на организм.

  1. Электромагнитная индукция. Закон Фарадея. Правило Ленца.

Ток, возбуждаемый магнитным полем в замкнутом контуре, называется индукционным током, а само явление возбуждения тока посредством магнитного поля – электромагнитной индукцией.

Электродвижущая сила, обуславливающая индукционный ток, называется электродвижущей силой индукции.

В замкнутом контуре индуцируется ток во всех случаях, когда происходит изменение потока магнитной индукции через площадь, ограниченную контуром – это закон Фарадея .

Величина ЭДС индукции пропорциональна скорости изменения потока магнитной индукции:

Направление индукционного тока определяется правилом Ленца:

Индукционный ток имеет такое направление, что его собственное магнитное поле компенсирует изменение потока магнитной индукции, вызывающей этот ток:

2. Взаимная индукция и самоиндукция являются частным случаем электромагнитной индукции.

Взаимной индукцией называется возбуждение тока в контуре при изменении тока в другом контуре.

Предположим, что в контуре 1 идет ток I 1 . Магнитный поток Ф 2 , связанный с контуром 2, пропорционален магнитному потоку, связанному с контуром 1.

В свою очередь магнитный поток, связанный с контуром 1, ~ I 1, поэтому

где M - коэффициент взаимной индукции. Предположим, что за время dt ток в контуре 1 изменяется на величину dI 1 . Тогда, согласно формуле (3), магнитный поток, связанный с контуром (2), изменится на величину , в результате чего в этом контуре появится ЭДС взаимной индукции (по закону Фарадея)

Формула (4) показывает, что электродвижущая сила взаимной индукции, возникающая в контуре, пропорциональна скорости изменения тока в соседнем контуре и зависит от взаимной индуктивности этих контуров.

Из формулы (3) следует, что

Т.е. взаимная индуктивность двух контуров равна магнитному потоку, связанному с одним из контуров, когда в другом контуре идет ток, равный единице. M измеряется в Генри [Г = Вб/А].

Взаимная индуктивность зависит от формы, размеров и взаимного расположения контуров и от магнитной проницаемости среды, но не зависит от силы тока в контуре.

Контур, в котором изменяется ток, индуцирует ток не только в других, соседних, контурах, но и в себе самом: это явление называется самоиндукцией .

Магнитный поток Ф, связанный с контуром, пропорционален току I в контуре, поэтому

где L - коэффициент самоиндукции, или индуктивность контура.

Предположим, что за время dt ток в контуре изменяется на величину dI. Тогда из (6) , в результате чего в этом контуре появится ЭДС самоиндукции:

Из (6) следует, что . Т.е. индуктивность контура равна связанному с ним магнитному потоку, если в контуре идет ток, равный единице.

Явление электромагнитной индукции основано на взаимных превращениях энергий электрического тока и магнитного поля.

Пусть в некотором контуре с индуктивностью L включается ток. Возрастая от 0 до I, он создает магнитный поток .

Изменение на малую величину dI сопровождается изменением магнитного потока на малую величину

При этом ток совершает работу dA = IdФ, т.е. . Тогда

. (9)

  1. Переменный ток. Работа и мощность переменного тока.

Синусоидальная ЭДС возникает в рамке, которая вращается с угловой скоростью в однородном магнитном поле индукцией В.

Поскольку магнитный поток

где - угол между нормалью к рамке n и вектором магнитной индукции В, прямо пропорционален времени t.

По закону электромагнитной индукции Фарадея

где - скорость изменения потока электромагнитной индукции. Тогда

где амплитудное значение ЭДС индукции.

Эта ЭДС создает в контуре синусоидальный переменный ток силой:

, (13)

где максимальное значение силы тока, R 0 - омическое сопротивление контура.

Изменение ЭДС и силы тока совершаются в одинаковых фазах.

Эффективная сила переменного тока равна силе такого постоянного тока, который имеет ту же мощность, что и данный переменный ток:

Аналогично рассчитывается эффективное (действующее) значение напряжения:

Работа и мощность переменного тока рассчитываются с помощью следующих выражений:

(16)

(17)

4. Емкостное и индуктивное сопротивление .

Емкостное сопротивление. В цепи постоянного тока конденсатор представляет собой бесконечно большое сопротивление: постоянный ток не проходит через диэлектрик, разделяющий обкладки конденсатора. Цепи переменного тока конденсатор не разрывает: попеременно заряжаясь и разряжаясь, он обеспечивает движение электрических зарядов, т.е. поддерживает переменный ток во внешней цепи. Т.о., для переменного тока конденсатор представляет собой конечное сопротивление, называемое емкостным сопротивлением. Его величина определяется выражением:

где - круговая частота переменного тока, С - емкость конденсатора

Индуктивное сопротивление . Из опыта известно, что сила переменного тока в проводнике, свернутом в виде катушки, значительно меньше, чем в прямом проводнике той же длины. Это означает, что помимо омического сопротивления проводник имеет еще дополнительное сопротивление, зависящее от индуктивности проводника и потому называемое индуктивным сопротивлением. Физический смысл его состоит в возникновении в катушке ЭДС самоиндукции, препятствующей изменениям тока в проводнике, а, следовательно, уменьшающей эффективный ток. Это равносильно появлению дополнительного (индуктивного) сопротивления. Его величина определяется выражением:

где L - индуктивность катушки. Емкостное и индуктивное сопротивления называются реактивными сопротивлениями. На реактивном сопротивлении электроэнергия не расходуется, этим оно существенно отличается от активного сопротивления. Организм человека обладает только емкостными свойствами.

Полное сопротивление цепи, содержащей активное, индуктивное и емкостное сопротивления, равно: .

5. Использование переменного тока в медицинской практике, его воздействие на организм .

Действие переменного тока на организм существенно зависит от его частоты. При низких, звуковых и ультразвуковых частотах переменный ток, как и постоянный, вызывает раздражающее действие на биологические ткани. Это обусловлено смещением ионов растворов электролитов, их разделением, изменением их концентрации в разных частях клетки и межклеточного пространства. Раздражение тканей зависит также и от формы импульсного тока, длительности импульса и его амплитуды.

Так как специфическое физиологическое действие электрического тока зависит от формы импульсов, то в медицине для стимуляции нервной системы (электросон, электронаркоз), нервно-мышечной системы (кардиостимуляторы, дефибрилляторы) и т.д. используют токи с различной временной зависимостью.

Воздействуя на сердце, ток может вызвать фибрилляцию желудочков, которая приводит к гибели человека. Пропускание тока высокой частоты через ткань используют в физиотерапевтических процедурах, называемых диатермией и местной дарсонвализацией.

Токи высокой частоты используются также и для хирургических целей (электрохирургия). Они позволяют прижигать, «сваривать», ткани (диатермокоагуляция) или рассекать их (диатермотомия).

Примеры решения задач

1. В однородном магнитном поле индукцией В = 0,1 Т равномерно вращается рамка, содержащая N=1000 витков. Площадь рамки S=150см 2 . Рамка вращается с частотой . Определить мгновенное значение ЭДС, соответствующее углу поворота рамки в 30º. =-

Подставив в (1) выражение для L из (2), получаем:

Подставляя в (3) объем сердечника как V = Sl, получим:

(4)

Подставим в (4) численные значения.

На заряженную частицу в электростатическом поле действует кулоновская сила, которую можно найти, зная напряженность поля в данной точке

Эта сила сообщает ускорение

где m - масса заряженной частицы. Как видно, направление ускорения будет совпадать с направлением , если заряд частицы положителен (q > 0), и будет противоположно , если заряд отрицателен (q Если электростатическое поле однородное ( = const), то ускорение = const и частица будет совершать равноускоренное движение (разумеется, при отсутствии других сил). Вид траектории частицы зависит от начальных условий. Если вначале заряженная частица покоилась или ее начальная скорость сонаправлена с ускорением , то частица будет совершать равноускоренное прямолинейное движение вдоль поля и ее скорость будет расти. Если , то частица будет тормозиться в этом поле.

Если угол между начальной скоростью и ускорением острый О < < 90° (или тупой), то заряженная частица в таком электростатическом поле будет двигаться по параболе.

Во всех случаях при движении заряженной частицы в электростатическом поле будет изменяться модуль скорости, а следовательно, и кинетическая энергия частицы.

Существенное отличие магнитного поля от электростатического состоит, во-первых, в том, что магнитное поле не действует на покоящуюся заряженную частицу. Магнитное поле действует только на движущиеся в поле заряженные частицы. Во-вторых, сила Лоренца, действующая на заряженные частицы в магнитном поле, всегда перпендикулярна скорости их движения. Поэтому модуль скорости в магнитном поле не изменяется. Не изменяется, следовательно, и кинетическая энергия частицы. Вид траектории заряженной частицы в магнитном поле зависит от угла между скоростью влетающей в поле частицы и магнитной индукцией. Возможны три различных случая.

Если скорость заряженной частицы составляет угол с направлением вектора неоднородного магнитного поля, индукция которого возрастает в направлении движения частицы, то R и h уменьшаются с ростом B. На этом основана фокусировка заряженных частиц в магнитном поле.

Если на движущуюся заряженную частицу помимо магнитного поля с индукцией действует одновременно и электростатическое поле с напряженностью , то равнодействующая сила, приложенная к частице, равна векторной сумме электрической силы и силы Лоренца

Характер движения и вид траектории зависят в данном случае от соотношения этих сил и от направления электростатического и магнитного полей.

Пусть частица массой m и с зарядом e влетает со скоростью v в электрическое поле плоского конденсатора. Длина конденсатора x, напряженность поля равна Е. Смещаясь в электрическом поле вверх, электрон пролетит через конденсатор по криволинейной траектории и вылетит из него, отклонившись от первоначального направления на y. Под действием силы поля, F=eE=ma частица движется ускоренно по вертикали, поэтому

Время движения частицы вдоль оси ох с постоянной скоростью . Тогда . А это есть уравнение параболы. Т.о. заряженная частица движется в электрическом поле по параболе.

3. Частица в магнитном поле Рассмотрим движение заряженной частицы в магнитном поле напряженностью Н. Силовые линии поля изображены точками и направлены перпендикулярно к плоскости рисунка (к нам).

Движущаяся заряженная частица представляет собой электрический ток. Поэтому магнитное поле отклоняет частицу вверх от ее первоначального направления движения (направление движения электрона противоположно направлению тока)

Согласно формуле Ампера сила, отклоняющая частицу на любом участке траектории равна

Ток , где t-время, за которое заряд e проходит по участку l. Поэтому

Учитывая, что , получим

Сила F называется лоренцевой силой. Направления F, v и H взаимно перпендикулярны. Направление F можно определить по правилу левой руки.

Будучи перпендикулярна скорости , лоренцева сила изменяет только направление скорости движения частицы, не изменяя величины этой скорости. Отсюда следует, что:

1. Работа силы Лоренца равна нулю, т.е. постоянное магнитное поле не совершает работы над движущейся в нем заряженной частицей (не изменяет кинетической энергии частицы)

Напомним, что в отличие от магнитного поля электрическое поле изменяет энергию и величину скорости движущейся частицы.

2. Траектория частицы является окружностью, на которой частицу удерживает лоренцева сила, играющая роль центростремительной силы.

Радиус r этой окружности определим, приравнивая между собой лоренцеву и центростремительную силы:

Т.о. радиус окружности, по которой движется частица, пропорционален скорости частицы и обратно пропорционален напряженности магнитного поля.

Период обращения частицы T равен отношению длины окружности S к скорости частицы v:6

Учитывая выражение для r, получим Следовательно, период обращения частицы в магнитном поле не зависит от ее скорости.

Если в пространстве, где движется заряженная частица, создать магнитное поле, направленное под углом к ее скорости , то дальнейшее движение частицы представит собой геометрическую сумму двух одновременных движений: вращения по окружности со скоростью в плоскости, перпендикулярной силовым линиям, и перемещения вдоль поля со скоростью . Очевидно, что результирующая траектория частицы окажется винтовой линией


4. Электромагнитные счетчики скорости крови

Принцип действия электромагнитного счетчика основан на движении электрических зарядов в магнитном поле. В крови имеется значительное количество электрических зарядов в виде ионов.

Предположим, что некоторое количество однозарядных ионов движется внутри артерии со скоростью . Если артерию поместить между полюсами магнита, ионы будут двигаться в магнитном поле.

Для направлений и B, показанных на рис.1., магнитная сила действующая на положительно заряженные ионы направлена вверх, а сила , действующая на отрицательно заряженные ионы, направлена вниз. Под влиянием этих сил ионы движутся к противоположным стенкам артерии. Эта поляризация артериальных ионов создает поле E(рис.2), эквивалентное однородному полю плоского конденсатора. Тогда разность потенциалов в артерии U(диаметр которой d) связан с Е формулой

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.