Interesting chemistry experiments for kids. Science show or chemistry experiments at home

Entertaining experiences and experiments for schoolchildren
How to curb the seething energy and indefatigable curiosity of the baby? How to make the most of the inquisitiveness of the child's mind and push the child to explore the world? How to promote the development of a child's creativity? These and other questions certainly arise before parents and educators. This paper contains a large number of various experiences and experiments that can be carried out together with children to expand their understanding of the world, for the intellectual and creative development of the child. The described experiments do not require any special preparation and almost no material costs.How to pierce a balloon without harm to it?
The child knows that if the balloon is pierced, it will burst. Stick on the ball on both sides of a piece of adhesive tape. And now you can safely pierce the ball through the tape without any harm to it.
"Submarine" No. 1. Submarine from grapes
Grab a glass of fresh sparkling water or lemonade and toss a grape into it. It is slightly heavier than water and will sink to the bottom. But gas bubbles, similar to small balloons, will immediately begin to sit on it. Soon there will be so many of them that the grape will pop up.

But on the surface, the bubbles will burst and the gas will escape. The heavy grape will again sink to the bottom. Here it will again be covered with gas bubbles and rise again. This will continue several times until the water "exhales". According to this principle, a real boat floats up and rises. And the fish have a swim bladder. When she needs to dive, the muscles contract, squeezing the bladder. Its volume decreases, the fish goes down. And you need to get up - the muscles relax, dissolve the bubble. It increases and the fish floats up.

"Submarine" №2. Egg submarine
Take 3 jars: two half-liter and one liter. Fill one jar with clean water and dip a raw egg into it. It will drown.

Pour a strong solution of table salt into the second jar (2 tablespoons per 0.5 l of water). Dip the second egg there - it will float. This is because salt water is heavier, so it is easier to swim in the sea than in a river.

Now put an egg on the bottom of a liter jar. Gradually adding water from both small jars in turn, you can get a solution in which the egg will neither float nor sink. It will be held, as if suspended, in the middle of the solution.

When the experiment is done, you can show the trick. By adding salt water, you will ensure that the egg will float. Adding fresh water - that the egg will sink. Outwardly, salt and fresh water do not differ from each other, and it will look amazing.

How to get a coin out of the water without getting your hands wet? How to get out of the water dry?
Put the coin on the bottom of the plate and fill it with water. How to take it out without getting your hands wet? The plate must not be tilted. Fold a small piece of newspaper into a ball, set fire to it, throw it into a half-liter jar and immediately put it down with the hole in the water next to the coin. The fire will go out. The heated air will come out of the can, and due to the atmospheric pressure difference inside the can, the water will be drawn into the can. Now you can take the coin without getting your hands wet.
lotus flowers
Cut flowers with long petals from colored paper. Using a pencil, twist the petals towards the center. And now lower the multi-colored lotuses into the water poured into the basin. Literally before your eyes, the flower petals will begin to bloom. This is because the paper gets wet, becomes gradually heavier and the petals open.
natural magnifier
If you need to make out any small creature, such as a spider, a mosquito or a fly, it is very easy to do this.

Plant the insect in a three-liter jar. From above, tighten the neck with cling film, but do not pull it, but, on the contrary, push it so that a small container forms. Now tie the film with a rope or elastic band, and pour water into the recess. You will get a wonderful magnifying glass through which you can perfectly see the smallest details.

The same effect will be obtained if you look at an object through a jar of water, fixing it on the back of the jar with transparent tape.

water candlestick
Take a short stearin candle and a glass of water. Weight the lower end of the candle with a heated nail (if the nail is cold, the candle will crumble) so that only the wick and the very edge of the candle remain above the surface.

The glass of water in which this candle floats will be the candlestick. Light the wick and the candle will burn for quite some time. It seems that it is about to burn down to water and go out. But that won't happen. The candle will burn out almost to the very end. And besides, a candle in such a candlestick will never cause a fire. The wick will be extinguished with water.

How to get drinking water?
Dig a hole in the ground about 25 cm deep and 50 cm in diameter. Place an empty plastic container or wide bowl in the center of the hole, put fresh green grass and leaves around it. Cover the hole with clean plastic wrap and cover the edges with earth to prevent air from escaping from the hole. Place a stone in the center of the film and lightly press the film over the empty container. The device for collecting water is ready.

Leave your design until the evening. And now carefully shake the earth off the film so that it does not fall into the container (bowl), and look: there is clean water in the bowl.

Where did she come from? Explain to the child that under the influence of the sun's heat, the grass and leaves began to decompose, releasing heat. Warm air always rises. It settles in the form of evaporation on a cold film and condenses on it in the form of water droplets. This water flowed into your container; remember, you pushed the film a little and put a stone there.

Now you just have to come up with an interesting story about travelers who went to distant lands and forgot to take water with them, and start an exciting journey.

Miraculous matches
You will need 5 matches.
Break them in the middle, bend them at a right angle and put them on a saucer.
Put a few drops of water on the folds of the matches. Watch. Gradually, the matches will begin to straighten out and form a star.
The reason for this phenomenon, which is called capillarity, is that wood fibers absorb moisture. She crawls further and further along the capillaries. The tree swells, and its surviving fibers "get fat", and they can no longer bend much and begin to straighten out.


Washbasin chief. Making a washbasin is easy
Toddlers have one feature: they always get dirty when there is even the slightest opportunity for that. And the whole day to take a child home to wash is quite troublesome, besides, children do not always want to leave the street. Solving this issue is very simple. Make a simple washbasin with your child.

To do this, you need to take a plastic bottle, on its side surface about 5 cm from the bottom, make a hole with an awl or nail. The work is finished, the washbasin is ready. Plug the hole made with your finger, pour water to the top and close the lid. Slightly unscrewing it, you will get a trickle of water, screwing it up, you will "turn off the faucet" of your washbasin.

Where did the ink go? transformations
Drop ink or ink into a bottle of water to make the solution a pale blue. Put a tablet of crushed activated charcoal there. Close the mouth with your finger and shake the mixture.

She brightens up before her eyes. The fact is that coal absorbs dye molecules with its surface and it is no longer visible.


Making a cloud
Pour hot water into a three-liter jar (about 2.5 cm). Place a few ice cubes on a baking sheet and place it on top of the jar. The air inside the jar, rising up, will cool. The water vapor it contains will condense to form a cloud.

This experiment simulates the formation of clouds when warm air cools. And where does the rain come from? It turns out that the drops, heated up on the ground, rise up. It gets cold there, and they huddle together, forming clouds. When they meet together, they increase, become heavy and fall to the ground in the form of rain.


I don't believe my hands
Prepare three bowls of water: one with cold water, another with room water, and a third with hot water. Have the child dip one hand into a bowl of cold water and the other hand into a bowl of hot water. After a few minutes, have him submerge both hands in water at room temperature. Ask if she seems hot or cold to him. Why is there a difference in hand feel? Can you always trust your hands?
water suction
Put the flower in water, tinted with any paint. Watch how the color of the flower changes. Explain that the stem has ducts that carry water up to the flower and color it. This phenomenon of water absorption is called osmosis.
Vaults and tunnels
Glue a thin paper tube slightly larger in diameter than a pencil. Insert a pencil into it. Then carefully fill the tube with the pencil with sand so that the ends of the tube come out. Pull out the pencil - and you will see that the tube is not crumpled. Sand grains form protective vaults. Insects caught in the sand come out from under the thick layer unharmed.
All equally
Take an ordinary coat hanger, two identical containers (these can also be large or medium disposable cups and even aluminum cans for drinks, however, you need to cut off the top of the cans). In the upper part of the container on the side, opposite each other, make two holes, insert into them
any rope and attach to a hanger, which you hang, for example, on the back of a chair. Balance containers. And now, pour either berries, or sweets, or cookies into such impromptu scales, and then the children will not argue who got more goodies.
"Good boy and roly-poly". Obedient and naughty egg
First, try placing a whole raw egg on the blunt or pointed end. Then start experimenting.

Poke two holes the size of a match head at the ends of the egg and blow out the contents. Rinse the inside thoroughly. Let the shell dry well from the inside for one to two days. After that, close up the hole with plaster, glue with chalk or whitewash so that it becomes invisible.

Fill the shell with clean and dry sand about one quarter. Seal the second hole in the same way as the first. Obedient egg is ready. Now, in order to put it in any position, just shake the egg slightly, holding it in the position that it should take. The grains of sand will move and the placed egg will keep its balance.

To make a "roly-poly" (tumbler), you need to throw 30-40 pieces of the smallest pellets and pieces of stearin from a candle into the egg instead of sand. Then put the egg on one end and heat it up. The stearin will melt, and when it hardens, it will stick the pellets together and stick them to the shell. Cover the holes in the shell.

The tumbler will be impossible to put down. An obedient egg will stand on the table, and on the edge of the glass, and on the knife handle.
If your child wants to, have them paint both eggs or make funny faces on them.

Boiled or raw?
If there are two eggs on the table, one of which is raw and the other is boiled, how can you determine this? Of course, every housewife will do it with ease, but show this experience to a child - he will be interested.
Of course, he is unlikely to connect this phenomenon with the center of gravity. Explain to him that in a boiled egg the center of gravity is constant, so it spins. And in a raw egg, the internal liquid mass is like a brake, so a raw egg cannot spin.
"Stop, hands up!"
Take a small plastic jar for medicines, vitamins, etc. Pour some water into it, put any effervescent tablet and close it with a lid (non-screw).

Put it on the table, turning it upside down, and wait. The gas released during the chemical reaction of the tablet and water will push the bottle out, there will be a "roar" and the bottle will be thrown up.

" Magic mirrors" or 1? 3? 5?
Place two mirrors at an angle greater than 90°. Put one apple in the corner.
This is where it begins, but only begins, a real miracle. There are three apples. And if you gradually reduce the angle between the mirrors, then the number of apples begins to increase.
In other words, the smaller the angle of approach of the mirrors, the more objects will be reflected.

Ask your child if it is possible to make 3, 5, 7 from one apple without using cutting objects. What will he answer you? Now put the above experience.

How to wipe the knee green from the grass?
Take fresh leaves of any green plant, be sure to put them in a thin-walled glass and pour a small amount of vodka. Place the glass in a saucepan of hot water (in a water bath), but not directly on the bottom, but on some kind of wooden circle. When the water in the saucepan has cooled, remove the leaves from the glass with tweezers. They will discolor, and the vodka will turn emerald green, as chlorophyll, the green dye of plants, has been released from the leaves. It helps plants "eat" solar energy.

This experience will be useful in life. For example, if a child accidentally stains his knees or hands with grass, then you can wipe them off with alcohol or cologne.

Where did the smell go?
Take corn sticks, put them in a jar that has been dripped with cologne, and close it with a tight lid. After 10 minutes, when you open the lid, you will not feel the smell: it was absorbed by the porous substance of the corn sticks. This absorption of color or odor is called adsorption.
What is elasticity?
Take a small rubber ball in one hand, and a plasticine ball of the same size in the other. Drop them to the floor from the same height.

How did the ball and the ball behave, what changes happened to them after the fall? Why does the plasticine not bounce, but the ball bounces, perhaps because it is round, or because it is red, or because it is rubber?

Invite your child to be the ball. Touch the baby's head with your hand, and let him sit down a little, bending his knees, and when you remove your hand, let the child straighten his legs and jump. Let the baby jump like a ball. Then explain to the child that the same thing happens with the ball as with him: he bends his knees, and the ball is pressed a little when it hits the floor, he straightens his knees and bounces, and what is pressed in the ball straightens. The ball is elastic.

A plasticine or wooden ball is not elastic. Tell the child: "I will touch your head with my hand, but don't bend your knees, don't be elastic."

Touch the child's head, and let him not bounce like a wooden ball. If you do not bend your knees, then it is impossible to jump. You can't straighten your knees that haven't been bent. A wooden ball, when it hits the floor, is not pressed in, which means it does not straighten out, so it does not bounce. He's not resilient.

The concept of electric charges
Blow up a small balloon. Rub the ball on wool or fur, and even better on your hair, and you will see how the ball will begin to stick to literally all objects in the room: to the closet, to the wall, and most importantly, to the child.

This is because all objects have a certain electrical charge. As a result of contact between two different materials, electrical discharges are separated.

dancing foil
Cut aluminum foil (shiny chocolate or candy wrappers) into very narrow, long strips. Run the comb through your hair, and then bring it close to the sections.

The stripes will begin to dance. This attracts to each other positive and negative electric charges.

Hanging on the head, or is it possible to hang on the head?
Make a light top out of cardboard by putting it on a thin stick. Sharpen the lower end of the stick, and stick a tailor's pin (with a metal, not a plastic head) deeper into the upper end so that only the head is visible.

Let the top "dance" on the table, and bring a magnet to it from above. The spinning top will jump and the pin head will stick to the magnet, but, interestingly, it will not stop, but will rotate, "hanging on the head."


Secret letter
Let the child make a drawing or inscription on a blank sheet of white paper with milk, lemon juice or table vinegar. Then heat up a sheet of paper (preferably over a device without open flame) and you will see how the invisible turns into the visible. The impromptu ink will boil, the letters will darken, and the secret letter will be readable.

Descendants of Sherlock Holmes, or In the Footsteps of Sherlock Holmes
Mix the soot from the stove with talc. Let the child breathe on a finger and press it against a piece of white paper. Sprinkle this place with the prepared black mixture. Shake the sheet of paper so that the mixture covers well the area where the finger was applied. Pour the rest of the powder back into the jar. There will be a clear fingerprint on the sheet.

This is explained by the fact that we always have a little fat from the subcutaneous glands on our skin. Everything we touch leaves an indelible mark. And the mixture we made sticks well to fat. Thanks to the black soot, it makes the print visible.

Together is more fun
Cut out a circle from thick cardboard, circling the rim of the teacup. On one side, in the left half of the circle, draw a boy figure, and on the other side, a girl figure, which should be located upside down in relation to the boy. Make a small hole on the left and right of the cardboard, insert the elastic bands with loops.

Now stretch the elastic bands in different directions. The cardboard circle will spin quickly, the pictures from different sides will be combined, and you will see two figures standing side by side.



The secret thief of jam. Or maybe it's Carlson?
Grind the pencil lead with a knife. Let the child rub his finger with the prepared powder. Now you need to press your finger to a piece of adhesive tape, and stick the adhesive tape to a white sheet of paper - your baby's fingerprint pattern will be visible on it. Now we will find out whose prints were left on the jar of jam. Or maybe it was Carloson who flew in?
Unusual drawing
Give your child a piece of clean, light-colored cloth (white, blue, pink, light green).

Pick petals from different colors: yellow, orange, red, blue, light blue, and also green leaves of different shades. Just remember that some plants are poisonous, such as aconite.

Spread this mixture onto a cloth placed on a cutting board. You can both involuntarily pour petals and leaves, and build a conceived composition. Cover it with plastic wrap, fasten it on the sides with buttons and roll it all out with a rolling pin or tap on the fabric with a hammer. Shake off the used "paints", stretch the fabric over thin plywood and insert it into the frame. The masterpiece of young talent is ready!

It made a great gift for mom and grandma.


Educational experiences for children

Does your kid love everything mysterious, mysterious and unusual? Then be sure to conduct with him the simple, but very interesting experiments described in this article. Most of them will surprise and even puzzle the child, give him the opportunity to see for himself in practice the unusual properties of ordinary objects, phenomena, their interaction with each other, understand the cause of what is happening and thereby gain practical experience.

Your son or daughter will certainly earn the respect of their peers by showing them experiences as tricks. For example, they can make cold water "boil" or use a lemon to launch a homemade rocket. Such entertainment can be included in the birthday program for children of preschool and primary school age.

invisible ink

half a lemon, cotton wool, a match, a cup of water, a piece of paper.

1. Squeeze the juice from the lemon into a cup, add the same amount of water.

2. Let's dip a match or a toothpick with wound cotton wool in a solution of lemon juice and water and write something on paper with this match.

3. When the "ink" is dry, heat the paper over the included desk lamp. Previously invisible words will appear on paper.

Lemon inflates a balloon

For the experience you will need:1 tsp baking soda, lemon juice, 3 tbsp. vinegar, balloon, electrical tape, glass and bottle, funnel.

1. Pour water into a bottle and dissolve a teaspoon of baking soda in it.

2. In a separate bowl, mix lemon juice and 3 tablespoons of vinegar and pour into a bottle through a funnel.

3. Quickly put the ball on the neck of the bottle and secure it tightly with electrical tape.

See what's happening! The baking soda and lemon juice mixed with vinegar react chemically, releasing carbon dioxide and creating pressure that inflates the balloon.

Lemon launches a rocket into space

For the experience you will need:bottle (glass), wine bottle cork, colored paper, glue, 3 tbsp lemon juice, 1 tsp. baking soda, a piece of toilet paper.

1. Cut out from colored paper and glue strips of paper on both sides of the wine cork so that you get a rocket model. We try on the "rocket" on the bottle so that the cork enters the neck of the bottle without effort.

2. Pour and mix water and lemon juice in a bottle.

3. Wrap baking soda in a piece of toilet paper so that you can stick it into the neck of the bottle and wrap it with thread.

4. We lower the bag of soda into the bottle and plug it with a rocket cork, but not too tight.

5. We put the bottle on a plane and move to a safe distance. Our rocket with a loud bang will fly up. Just don't put it under a chandelier!

Scattering toothpicks

For the experience you will need:a bowl of water, 8 wooden toothpicks, a pipette, a piece of refined sugar (not instant), dishwashing liquid.

1. We have toothpicks with rays in a bowl of water.

2. Gently lower a piece of sugar into the center of the bowl - the toothpicks will begin to gather towards the center.

3. Remove the sugar with a teaspoon and drop a few drops of dishwashing liquid into the center of the bowl with a pipette - the toothpicks will “scatter”!

What is going on? The sugar sucks up the water, creating a movement that moves the toothpicks toward the center. Soap, spreading over the water, drags particles of water with it, and they cause the toothpicks to scatter. Explain to the children that you showed them a trick, and all tricks are based on certain natural physical phenomena that they will study in school.

mighty shell

For the experience you will need:4 eggshell halves, scissors, narrow sticky tape, several full cans.

1. Wrap duct tape around the middle of each eggshell half.

2. Cut off the excess shell with scissors so that the edges are even.

3. Put the four halves of the shell with the dome up so that they make a square.

4. Carefully put a jar on top, then another and another ... until the shell bursts.

The weight of how many jars could withstand the fragile shells? Add up the weights indicated on the labels and find out how many cans you can put in order to complete the trick. The secret of strength is in the domed shape of the shell.

teach an egg to swim

For the experience you will need:raw egg, a glass of water, a few tablespoons of salt.

1. Put a raw egg in a glass of clean tap water - the egg will sink to the bottom of the glass.

2. Take the egg out of the glass and dissolve a few tablespoons of salt in the water.

3. Dip the egg into a glass of salt water - the egg will remain floating on the surface of the water.

Salt increases the density of water. The more salt in the water, the more difficult it is to drown in it. In the famous Dead Sea, the water is so salty that a person without any effort can lie on its surface without fear of drowning.

"Bait" for ice

For the experience you will need:thread, ice cube, a glass of water, a pinch of salt.

Bet a friend that you can use a string to pull an ice cube out of a glass of water without getting your hands wet.

1. Dip the ice into the water.

2. Put the thread on the edge of the glass so that it lies at one end on an ice cube floating on the surface of the water.

3. Pour some salt on the ice and wait 5-10 minutes.

4. Take the free end of the thread and pull the ice cube out of the glass.

Salt, hitting the ice, slightly melts a small area of ​​it. Within 5-10 minutes, the salt dissolves in water, and pure water on the surface of the ice freezes along with the thread.

Can cold water "boil"?

For the experience you will need:a thick handkerchief, a glass of water, pharmaceutical gum.

1. Wet and wring out a handkerchief.

2. Pour a full glass of cold water.

3. Cover the glass with a handkerchief and fix it on the glass with a rubber band.

4. Push the middle of the scarf with your finger so that it is 2-3 cm immersed in water.

5. Turn the glass over the sink upside down.

6. With one hand we hold a glass, with the other we lightly hit its bottom. The water in the glass starts bubbling ("boiling").

A wet handkerchief does not let water through. When we hit the glass, a vacuum is formed in it, and air through the handkerchief begins to flow into the water, sucked in by the vacuum. It is these air bubbles that give the impression that the water is "boiling".

Straw pipette

For the experience you will need:straw for a cocktail, 2 glasses.

1. Put 2 glasses side by side: one with water, the other empty.

2. Dip the straw into the water.

3. Hold the straw on top with your index finger and transfer it to an empty glass.

4. Remove your finger from the straw - water will flow into an empty glass. By doing the same several times, we can transfer all the water from one glass to another.

The pipette, which is probably in your home first aid kit, works on the same principle.

straw flute

For the experience you will need:wide straw for a cocktail and scissors.

1. Flatten the end of a straw about 15 mm long and cut its edges with scissors.

2. From the other end of the straw, cut 3 small holes at the same distance from each other.

This is how the "flute" came about. If you lightly blow into the straw, slightly squeezing it with your teeth, the "flute" will start to sound. If you close one or the other hole of the "flute" with your fingers, the sound will change. And now let's try to pick up some melody.

Rapier Straw

For the experience you will need:raw potato and 2 thin straws for a cocktail.

1. Put the potatoes on the table. Clamp the straw in your fist and with a sharp movement try to stick the straw into the potato. The straw will bend, but it will not pierce the potato.

2. Take the second straw. Close the hole at the top with your thumb.

3. Drop the straw sharply. She will easily enter the potato and pierce it.

The air that we squeezed with our thumb inside the straw makes it elastic and does not allow it to bend, so it easily pierces the potato.

bird in a cage

For the experience you will need:a piece of thick cardboard, compasses, scissors, colored pencils or felt-tip pens, thick threads, a needle and a ruler.

1. Cut out a circle of any diameter from cardboard.

2. We pierce two holes on the circle with a needle.

3. Through the holes on each side we will draw a thread about 50 cm long.

4. Draw a bird cage on the front side of the circle, and a small bird on the back side.

5. We rotate the cardboard circle, holding it by the ends of the threads. The threads will twist. Now let's pull their ends in different directions. The threads will unwind and rotate the circle in the opposite direction. It looks like the bird is in a cage. An animation effect is created, the rotation of the circle becomes invisible, and the bird "turns out" in a cage.

How does a square turn into a circle?

For the experience you will need:rectangular cardboard, pencil, felt-tip pen and ruler.

1. Put the ruler on the cardboard so that with one end it touches its corner, and with the other - the middle of the opposite side.

2. We put 25-30 dots on a cardboard with a felt-tip pen at a distance of 0.5 mm from each other.

3. Pierce the middle of the cardboard with a sharp pencil (the middle will be the intersection of the diagonal lines).

4. Rest the pencil vertically on the table, holding it with your hand. The cardboard should rotate freely on the tip of the pencil.

5. Unroll the cardboard.

A circle appears on a rotating cardboard. This is just a visual effect. Each dot on the cardboard rotates in a circle, as if creating a continuous line. The point closest to the tip moves the slowest, and we perceive its trace as a circle.

strong newspaper

For the experience you will need:long ruler and newspaper.

1. Put the ruler on the table so that it hangs halfway.

2. Fold the newspaper several times, put it on the ruler, hit hard on the hanging end of the ruler. The newspaper will fly off the table.

3. And now let's unfold the newspaper and cover the ruler with it, hit the ruler. The newspaper will only rise slightly, but will not fly away anywhere.

What is the focus? All objects experience air pressure. The larger the area of ​​the object, the stronger this pressure. Now it is clear why the newspaper has become so strong?

Mighty Breath

For the experience you will need:clothes hanger, strong threads, a book.

1. Tie a book with thread to a clothes hanger.

2. Hang the hanger on a clothesline.

3. We will stand near the book at a distance of approximately 30 cm. We will blow on the book with all our might. It will deviate slightly from its original position.

4. Now let's blow on the book again, but lightly. As soon as the book deviates a little, we blow after it. And so several times.

It turns out that such repeated light blows can move the book much further than once strongly blowing on it.

Record weight

For the experience you will need:2 tins of coffee or canned food, a sheet of paper, an empty glass jar.

1. Place two tin cans at a distance of 30 cm from each other.

2. Put a sheet of paper on top to make a "bridge".

3. Put an empty glass jar on the sheet. The paper will not support the weight of the can and will bend down.

4. Now fold a sheet of paper with an accordion.

5. Put this "harmonica" on two tin cans and put a glass jar on it. The accordion does not bend!

Science tricks for kids

snow flowers

Prepare for experience:

- a straw
- soap solution

When a cloud forms at a very low temperature, instead of raindrops, water vapor condenses into tiny needles of ice; needles stick together, and snow falls to the ground. Snow flakes consist of small crystals arranged in the form of stars of amazing regularity and variety. Each asterisk is divided into three, six, twelve parts, symmetrically arranged around one axis or point.

We don't need to climb into the clouds to see these snow stars form.

It is only necessary to go out of the house in severe frost and blow a soap bubble. Immediately, ice needles will appear in a thin film of water; they will gather before our eyes into wonderful snow stars and flowers.

living shadow

Prepare for experience:

- mirror,
- candle (lamp)
- paper,
- scissors

If you stand between a light source and a wall, your shadow will appear on the wall - a black silhouette, without eyes, without a nose, without a mouth. And you can make it so that the shadow also has eyes, and not simple, but huge, like a monster, and a nose of any shape, and a mouth that will either open or close.

To do this, it is enough to stand in the corner of the room near the wall on which the mirror hangs. A lamp or a candle must be placed so that the "bunny" from the mirror falls on the wall, which serves as a screen, exactly in the place where the shadow from your head falls; an illuminated rectangle or oval will appear in this place, depending on the shape of the mirror.

But the mirror can be covered with a sheet of paper, and eyes, nose, and mouth can be cut through that sheet; they immediately appear as bright spots on the shadow that your head casts on the wall.

If you prepare two sheets with different cutouts, fasten one firmly to the mirror, and then put the other on top of the first one, then remove it, the eyes will begin to move on the shadows, and the mouth will either open or close. This is a very simple and fun trick.

Hanging without rope

Prepare for experience:

- wire ring
- threads,
- matches,
- salt solution

Soak the thread in a strong salt solution and dry it; repeat this operation several times.

Now that your secret preparations are over, show your friends the thread, it looks no different from any other.

Hang a light wire ring on this thread. Set fire to the thread, the fire will pass from top to bottom, and to the surprise of the audience, the ring will hang calmly on a thin cord of ash!

Your thread has really burned out, leaving only a thin tube of salt, strong enough to support a ringlet if the air is calm and there is no draft in the room.

Note: when you do this trick, both the doors and windows in the room should be closed so that there is not the slightest draft. The slightest movement of air is enough for the fragile threads to break and the ring to fall to the floor.

Source: Tom Tit "Science Fun".

"Liquid" tricks

live fish

Cut out a fish from thick paper. The fish has a round hole in the middle. A , which is connected to the tail by a narrow channelAB . You can also use our template Print the fish on the printer, stick it on cardboard and cut it out with scissors.

Pour water into a basin and place the fish on the water so that the bottom side of it is completely moistened, and the top remains completely dry. It is convenient to do this with a fork: putting the fish on the fork, carefully lower it into the water, and sink the fork deeper and pull it out.

Now you need to drop a large drop of oil into hole A. It is best to use an oil can from a bicycle or a sewing machine for this. If there is no oiler, you can draw machine or vegetable oil into a pipette or a cocktail tube: lower the tube with one end into the oil by 2-3 mm. Then cover the upper end with your finger and transfer the straw to the fish. Holding the lower end exactly over the hole, release your finger. The oil will flow straight into the hole.

In an effort to spill over the surface of the water, the oil will flow through channel AB. The fish will not let him spread in other directions. What do you think the fish will do under the action of the oil flowing back? It is clear: she will swim forward!

Restless grains

It's easier than ever to make an object move by pushing it with your hand. Is it possible to make rice grains move without touching them? Do this experiment and you will learn at least one way.

Props:
- chilled can of beer
- cup
- 6 grains of rice

Preparation:
1. Lay out the necessary items on the table.
2. Open the can and pour the beer into a glass.

Let's start the science magic:
1. Announce to the audience: "I have a few grains of rice that just don't want to go to bed. They're always on the move and can't stop."
2. Pour the grains into a glass of beer.
3. Wait a few seconds and see what happens.

Note: Instead of rice, you can take finely chopped spaghetti. Break them into 1.25 cm pieces and dip them into the beer.

Result:
After a while, the grains of rice in the glass will begin to float up and down.

Explanation:

This is because a can of beer contains a gas called carbon dioxide. The carbon dioxide in the can is dissolved in the liquid and is under pressure. When you open a can and pour the beer into a glass, you release this gas. The density of carbon dioxide is lower than that of the liquid in the jar, so its bubbles rise to the surface.

When you pour rice grains into a glass, gas bubbles "stick" to them from the surface. The density of grains combined with bubbles becomes lower than that of beer. The grains covered with bubbles rise to the surface of the liquid. There, the carbon dioxide bubbles burst, and the density of the grains again becomes higher than the density of the beer. Freed from gas bubbles, they again go to the bottom. There, the gas bubbles again "stick" to the surface of the grains, and everything repeats from the beginning. This continues until the beer no longer releases gas. Pretty soon, carbon dioxide ceases to be released, and the grains calmly sink to the bottom.

density tower

In this experiment, objects will hang in the thickness of the liquid.

Props:
- a tall, narrow glass vessel, such as an empty, clean, half-liter jar of canned olives or mushrooms
- 1/4 cup (65 ml) corn syrup or honey
- food coloring of any color
- 1/4 cup tap water
- 1/4 cup vegetable oil
- 1/4 cup medical alcohol
- various small objects, e.g. a cork, a grape, a nut, a piece of dry pasta, a rubber ball, a cherry tomato, a small plastic toy, a metal screw

Preparation:
1. Carefully pour honey into the vessel, so that it occupies 1/4 of the volume.
2. Dissolve a few drops of food coloring in water. Pour water halfway into the vessel. Please note: when adding each liquid, pour it very carefully so that it does not mix with the bottom layer.
3. Slowly pour the same amount of vegetable oil into the vessel.
4. Fill the vessel to the top with alcohol.

Let's start the science magic:
1. Announce to the audience that you will now make various objects float. You may be told that it is easy. Then explain to them that you will make different objects float in liquids at different levels.
2. Gently drop small objects into the vessel one at a time.
3. Let the audience see for themselves what happened.

Result:
Different objects will float in the thickness of the liquid at different levels. Some will "hang" right in the middle of the vessel.

Explanation:
This trick is based on the ability of various substances to sink or float depending on their density. Substances with a lower density float on the surface of denser substances.

The alcohol remains on the surface of the vegetable oil because the density of the alcohol is less than the density of the oil. Vegetable oil remains on the surface of the water because the density of the oil is less than the density of water. Water, on the other hand, is less dense than honey or corn syrup, so it stays on the surface of these liquids.

When you drop objects into a vessel, they float or sink depending on their density and the density of the liquid layers. The screw has a higher density than any of the liquids in the vessel, so it will fall to the very bottom. The density of pasta is higher than the density of alcohol, vegetable oil and water, but lower than the density of honey, so it will float on the surface of the honey layer. The rubber ball has the smallest density, lower than any of the liquids, so it will float on the surface of the topmost, alcohol layer.

hard as stone

Sometimes what you expect doesn't happen. Do this experience to confuse your friends.
Please note: This experiment requires adult assistance.

Props:
- 2 plastic cups with water (total 250 ml of water)
- microwave
- tacks
- adult assistant

Preparation:
1. Put one cup of water in the freezer for at least 2 days to make sure the water is completely frozen.
2. Place both cups on the table.

Let's start the science magic:
1. Invite an adult to be your assistant.
2. Ask the audience: "What do you think will happen if you put a cup of water and a cup with the same amount of ice in the microwave for 2 minutes?" They will probably answer that the ice will melt and the water will heat up.
3. Place both cups in the microwave.
4. Turn on the oven at maximum power for 2 minutes.
5. When they pass, have your adult assistant use oven mitts to remove both cups from the microwave.

Tips for a learned wizard:
For the trick to work better, the ice must be very well frozen. If you have a freezer at home, it is better to use it, because it is usually a lower temperature than in the freezer compartment of a conventional refrigerator.

Result:
The ice will remain frozen, and the water in the second cup will almost boil.

Explanation:
In solid water - ice - the water molecules are very densely packed. They can only wobble slightly in place. In liquid water, the molecules not only vibrate in place, but can also rotate around their axis and each other. When water is heated, the molecules become even more mobile and begin to collide with each other.

In a microwave oven, food is heated due to an increase in the speed of rotation and movement of molecules. However, those molecules that can only slightly vibrate are weakly affected by microwaves. Therefore, when ice and water are together in a microwave oven, the microwaves increase the temperature of the water, but have almost no effect on the ice.

If you put ice in the microwave for a longer time, it will melt. The ice begins to melt and turn into water not due to microwaves, but due to an increase in air temperature in the oven chamber. Since microwaves act on water, the small amount of it that manages to get out of the ice warms up and melts the ice that is nearby. This process continues and eventually all the ice melts.

This is how a microwave oven is used to defrost food. This occurs at a lower power output, and, accordingly, temperature. The temperature in the chamber causes some of the food to thaw and the water it contains becomes liquid. This water is heated by microwaves and heats up the frozen food. This gradual process continues until all food is thawed. Usually, its outer parts get very hot and begin to cook before it is completely thawed inside.

broken pencil

This experience is based on the properties of water and light.

Props:
- cup
- tap water
- pencil

Preparation:
1. Fill a glass approximately 2/3 full with tap water.
2. Place a glass of water and a pencil on the table.

Let's start the science magic:
1. Hold a pencil in front of you. Announce to the audience: "Now I will break a pencil just by putting it in a glass of water."
2. Dip the pencil vertically into the water so that its tip is approximately halfway between the bottom of the glass and the surface of the water.
3. Hold the pencil at the back of the glass, away from the audience.
4. Move the pencil back and forth in the water, holding it vertically. Ask the audience what they see.
5. Get the pencil out of the water.

Result:
Viewers will think that the pencil is broken. From their point of view, the part of the pencil that is under water is slightly offset from the part that is under water.

Explanation:
This effect is due to refraction. Light travels in a straight line, but when a beam of light passes from one transparent substance to another, its direction changes. This is refraction. When light passes from a denser substance, such as water, to a less dense one, such as air, refraction occurs, or a visible change in the angle of incidence of the beam. Light in substances of different densities propagates at different speeds.

The light reflected from the pencil, passing through the air, seems to the audience to be in one place, and through the water - in another.

vanishing coin

Here is another experiment in which water and light produce a mysterious effect.

Props:
- 1 liter glass jar with lid
- tap water
- coin
- assistant

Preparation:
1. Pour water into the jar and close the lid.
2. Give your assistant a coin so that he can make sure that this is really the most common coin and there is no catch in it.
3. Have him put the coin on the table. Ask him: "Do you see the coin?" (Of course, he will answer yes.)
4. Put a jar of water on the coin.
5. Say magic words, for example: "Here is a magic coin, here it was, but not there."
6. Have your helper look through the water
side cans and say if he sees the coin now? What will he answer?

Tips for a learned wizard:
You can make this trick even more effective. After your helper can't see the coin, you can make it reappear. Say other magic words, for example: "As the coin fell, so it appeared." Now remove the jar and the coin will be back in place.

Result:
When you place a jar of water on a coin, the coin seems to have disappeared. Your assistant will not see it.

Explanation:
This focus is achieved due to the reflection of light from the wall of the jar. Reflection is the bouncing of light from a surface back.

Entertaining experiences in the kitchen

We make cottage cheese

Grandmothers, who are over 50 years old, remember well how they themselves made cottage cheese for their children. You can show this process to a child.

Warm the milk by pouring a little lemon juice into it (calcium chloride can also be used). Show the children how the milk immediately curdled into large flakes with whey on top.

Drain the resulting mass through several layers of gauze and leave for 2-3 hours.

You've made a wonderful curd.

Pour syrup over it and offer the child for dinner. We are sure that even those children who do not like this dairy product will not be able to refuse a delicacy prepared with their own participation.

How to make ice cream?

For ice cream you will need: cocoa, sugar, milk, sour cream. You can add grated chocolate, waffle crumbs or small pieces of cookies to it.

Mix two tablespoons of cocoa, one tablespoon of sugar, four tablespoons of milk and two tablespoons of sour cream in a bowl. Add cookie crumbs and chocolate. Ice cream is ready. Now it needs to be cooled down.

Take a larger bowl, put ice in it, sprinkle it with salt, mix. Place a bowl of ice cream on top of ice and cover with a towel to keep heat out. Stir ice cream every 3-5 minutes. If you have enough patience, then after about 30 minutes the ice cream will thicken and you can try it. Tasty?

How does our homemade refrigerator work? It is known that ice melts at a temperature of zero degrees. Salt also delays the cold, does not allow the ice to melt quickly. Therefore, salt ice keeps cold longer. Moreover, the towel does not allow warm air to penetrate to the ice cream. And the result? Ice cream is beyond praise!

Let's beat down the butter

If you live in the summer in the country, then you probably take natural milk from a thrush. Do experiments with milk with the children.

Prepare a liter jar. Fill it with milk and refrigerate for 2-3 days. Show the children how the milk has separated into lighter cream and heavy skimmed milk.

Collect the cream in a jar with an airtight lid. And if you have patience and free time, then shake the jar for half an hour in turn with the children until the balls of fat merge together and form oil lumps.

Believe me, children have never eaten such delicious butter.

Homemade lollipops

Cooking is a fun activity. Now let's make homemade lollipops.

To do this, you need to prepare a glass of warm water, in which to dissolve as much granulated sugar as it can dissolve. Then take a straw for a cocktail, tie a clean thread to it, attaching a small piece of pasta to the end of it (it is best to use small pasta). Now it remains to put the straw on top of the glass, across, and lower the end of the thread with pasta into the sugar solution. And be patient.

When the water from the glass begins to evaporate, the sugar molecules will begin to approach and sweet crystals will begin to settle on the thread and on the pasta, taking on bizarre shapes.

Let your little one taste the lollipop. Tasty?

The same lollipops will be much tastier if jam syrup is added to the sugar solution. Then you get lollipops with different tastes: cherry, blackcurrant and others that he wants.

"Roasted" sugar

Take two pieces of refined sugar. Moisten them with a few drops of water to make it moist, put in a stainless steel spoon and heat it for a few minutes over gas until the sugar melts and turns yellow. Don't let it burn.

As soon as the sugar turns into a yellowish liquid, pour the contents of the spoon onto the saucer in small drops.

Taste your candies with your children. Liked? Then open a candy factory!

Changing the color of cabbage

Together with your child, prepare a salad of finely chopped red cabbage, grated with salt, and pour it with vinegar and sugar. Watch the cabbage turn from purple to bright red. This is the effect of acetic acid.

However, as the salad is stored, it may again turn purple or even turn blue. This happens because acetic acid is gradually diluted with cabbage juice, its concentration decreases and the color of the red cabbage dye changes. These are the transformations.

Why are unripe apples sour?

Unripe apples are high in starch and contain no sugar.

Starch is an unsweetened substance. Let the child lick the starch, and he will be convinced of this. How do you know if a product contains starch?

Make a weak solution of iodine. Drop them in a handful of flour, starch, on a piece of raw potato, on a slice of an unripe apple. The blue color that appears proves that all these products contain starch.

Repeat the experiment with the apple when it is fully ripe. And you will probably be surprised that you will no longer find starch in an apple. But now it has sugar in it. So, fruit ripening is a chemical process of converting starch into sugar.

edible glue

Your child needed glue for crafts, but the jar of glue was empty? Don't rush to the store to buy. Weld it yourself. What is familiar to you is unusual for a child.

Cook him a small portion of thick jelly, showing him each of the steps of the process. For those who do not know: in boiling juice (or in water with jam), you need to pour, mixing thoroughly, a solution of starch diluted in a small amount of cold water, and bring to a boil.

I think the child will be surprised that this glue-jelly can be eaten with a spoon, or you can glue crafts with it.

Homemade sparkling water

Remind your child that he is breathing air. Air is made up of various gases, but many of them are invisible and odorless, making them difficult to detect. Carbon dioxide is one of the gases that make up the air and ... carbonated water. But it can be isolated at home.

Take two straws for a cocktail, but of different diameters, so that a few millimeters narrow fits snugly into a wider one. It turned out a long straw, made up of two. Make a vertical hole in the cork of a plastic bottle with a sharp object and insert either end of the straw there.

If there are no straws of different diameters, then you can make a small vertical incision in one and stick it into another straw. The main thing is to get a tight connection.

Pour water diluted with any jam into a glass, and pour half a tablespoon of soda into a bottle through a funnel. Then pour vinegar into the bottle - about one hundred milliliters.

Now you need to act very quickly: stick the cork with a straw into the bottle, and dip the other end of the straw into a glass of sweet water.

What's going on in the glass?

Explain to your child that the vinegar and baking soda have begun to actively interact with each other, releasing carbon dioxide bubbles. It rises up and passes through a straw into a glass with a drink, where bubbles come to the surface of the water. Here is sparkling water and ready.

Drown and eat

Wash two oranges well. Put one of them in a bowl of water. He will swim. And even if you try hard, you won't be able to drown him.

Peel the second orange and put it in the water. Well? Do you believe your eyes? The orange has sunk.

How so? Two identical oranges, but one drowned and the other floated?

Explain to the child: "There are many air bubbles in the orange peel. They push the orange to the surface of the water. Without the peel, the orange sinks because it is heavier than the water it displaces."

About the benefits of milk

Oddly enough, the best way to learn why you need to drink milk is to do an experiment with bones.

Take the eaten chicken bones, wash them properly, let them dry. Then pour vinegar in a bowl so that it covers the bones completely, close the lid and leave for a week.

After seven days, drain the vinegar, carefully examine and touch the bones. They have become flexible. Why?

It turns out that calcium gives strength to bones. Calcium dissolves in acetic acid, and the bones lose their hardness.

You want to ask: "What does milk have to do with it?"

Milk is known to be rich in calcium. Milk is useful because it replenishes our body with calcium, which means it makes our bones hard and strong.

How to get drinking water from salt water?

Pour water with your child into a deep basin, add two tablespoons of salt there, stir until the salt dissolves. Place washed pebbles on the bottom of an empty plastic cup so that it does not float up, but its edges should be above the water level in the basin. Stretch the film from above, tying it around the pelvis. Squeeze the film in the center over the glass and put another pebble in the recess. Place your basin in the sun.

After a few hours, unsalted, clean drinking water will accumulate in the glass.

This is explained simply: the water begins to evaporate in the sun, the condensate settles on the film and flows into an empty glass. Salt does not evaporate and remains in the pelvis.

Now that you know how to get fresh water, you can safely go to the sea and not be afraid of thirst. There is a lot of water in the sea, and you can always get the purest drinking water from it.

live yeast

A well-known Russian proverb says: "The hut is red not with corners, but with pies." We don't bake pies, though. Although, why not? Moreover, we always have yeast in our kitchen. But first we will show the experience, and then we can take on the pies.

Tell the children that yeast is made up of tiny living organisms called microbes (meaning that microbes can be good as well as bad). When they feed, they emit carbon dioxide, which, mixed with flour, sugar and water, “raises” the dough, making it lush and tasty.

Dry yeast is like little lifeless balls. But this is only until the millions of tiny microbes that dormant in a cold and dry form come to life.

Let's revive them. Pour two tablespoons of warm water into a pitcher, add two teaspoons of yeast to it, then one teaspoon of sugar and stir.

Pour the yeast mixture into the bottle, pulling a balloon over its neck. Place the bottle in a bowl of warm water.

Ask the guys what will happen?

That's right, when the yeast comes to life and starts eating sugar, the mixture will fill with bubbles of carbon dioxide already familiar to children, which they begin to release. The bubbles burst and the gas inflates the balloon.

Is the coat warm?

This experience should be very popular with children.

Buy two cups of paper-wrapped ice cream. Unfold one of them and put on a saucer. And wrap the second one right in the wrapper in a clean towel and wrap it well with a fur coat.

After 30 minutes, unwrap the wrapped ice cream and place it unwrapped on a saucer. Expand and the second ice cream. Compare both portions. Surprised? What about your children?

It turns out that ice cream under a fur coat, in contrast to what is on a silver platter, almost did not melt. So what? Maybe a fur coat is not a fur coat at all, but a refrigerator? Why, then, do we wear it in winter, if it does not warm, but cools?

Everything is explained simply. The fur coat stopped letting the room heat in to the ice cream. And from this, the ice cream in a fur coat became cold, so the ice cream did not melt.

Now the question is also natural: "Why does a person put on a fur coat in the cold?"
Answer: To keep warm.

When a person puts on a fur coat at home, he is warm, but the fur coat does not let heat out into the street, so the person does not freeze.

Ask the child if he knows that there are "fur coats" made of glass?

This is a thermos. It has double walls, and between them - emptiness. Heat does not pass through the void. Therefore, when we pour hot tea into a thermos, it stays hot for a long time. And if you pour cold water into it, what will happen to it? The child can now answer this question himself.

If he still finds it difficult to answer, let him do one more experiment: pour cold water into a thermos and check it in 30 minutes.

Thrust funnel
Can a funnel "refuse" to let water into a bottle? Let's check!

We will need:
- 2 funnels
- two identical clean dry plastic bottles of 1 liter
- plasticine
- jug of water

Preparation:
1. Insert a funnel into each bottle.

2. Coat the neck of one of the bottles around the funnel with plasticine so that there is no gap left.

Let's start the science magic!

1. Announce to the audience: "I have a magic funnel that keeps water out of the bottle."

2. Take a bottle without plasticine and pour some water into it through a funnel. Explain to the audience, "This is how most funnels behave."

3. Put a bottle of plasticine on the table.

4. Fill the funnel with water up to the top. See what will happen.
Result:
A little water will flow from the funnel into the bottle, and then it will stop flowing altogether.

Explanation:
Water flows freely into the first bottle. Water flowing through the funnel into the bottle replaces the air in it, which escapes through the gaps between the neck and the funnel. In a bottle sealed with plasticine, there is also air, which has its own pressure. The water in the funnel also has pressure, which is due to the force of gravity pulling the water down. However, the force of air pressure in the bottle exceeds the force of gravity acting on the water. Therefore, water cannot enter the bottle.

If there is at least a small hole in the bottle or plasticine, air can escape through it. Because of this, its pressure inside the bottle will drop, and water will be able to flow into it.

dancing flakes

Some cereals are capable of making a lot of noise. Now we will find out if it is possible to teach rice flakes to jump and dance.

We will need:
- paper towel
- 1 teaspoon (5 ml) crispy rice flakes
- balloon
- wool sweater

Preparation:

2. Sprinkle cereal on a towel.

Let's start the science magic!
1. Address the audience like this: "All of you, of course, know how rice flakes can crackle, crunch and rustle. And now I'll show you how they can jump and dance."

2. Inflate the balloon and tie it up.
3. Rub the ball on the wool sweater.
4. Bring the ball to the cereal and see what happens.

Result:
The flakes will bounce and be attracted to the ball.

Explanation:
Static electricity helps you in this experiment. Electricity is called static when there is no current, that is, the movement of charge. It is formed by the friction of objects, in this case a ball and a sweater. All objects are made up of atoms, and each atom contains an equal number of protons and electrons. Protons have a positive charge, while electrons have a negative charge. When these charges are equal, the object is called neutral or uncharged. But there are objects, such as hair or wool, that lose their electrons very easily. If you rub the ball on a woolen thing, some of the electrons will pass from the wool to the ball, and it will acquire a negative static charge.

When you bring a negatively charged ball close to the flakes, the electrons in them begin to repel from it and move to the opposite side. Thus, the top side of the flakes facing the ball becomes positively charged, and the ball attracts them to itself.

If you wait longer, the electrons will begin to move from the ball to the flakes. Gradually, the ball will become neutral again, and will no longer attract flakes. They will fall back onto the table.

Sorting
Do you think it is possible to separate the mixed pepper and salt? If you master this experiment, then you will definitely cope with this difficult task!

We will need:
- paper towel
- 1 teaspoon (5 ml) salt
- 1 teaspoon (5 ml) ground pepper
- spoon
- balloon
- wool sweater
- assistant

Preparation:
1. Spread a paper towel on the table.
2. Sprinkle salt and pepper on it.

Let's start the science magic!

1. Invite someone from the audience to become your assistant.
2. Mix salt and pepper thoroughly with a spoon. Have a helper try to separate the salt from the pepper.
3. When your assistant is desperate to share them, invite him to sit and watch now.
4. Inflate the balloon, tie it off and rub it against the wool sweater.
5. Bring the ball closer to the salt and pepper mixture. What will you see?

Result:
Pepper will stick to the ball, and salt will remain on the table.

Explanation:
This is another example of the effect of static electricity. When you rub the ball with a woolen cloth, it acquires a negative charge. If you bring the ball to a mixture of pepper and salt, the pepper will begin to be attracted to it. This is because the electrons in the pepper grains tend to move as far away from the ball as possible. Consequently, the part of the peppercorns closest to the ball acquires a positive charge, and is attracted by the negative charge of the ball. The pepper sticks to the ball.

Salt is not attracted to the ball, since electrons move poorly in this substance. When you bring a charged ball to salt, its electrons still remain in their places. Salt from the side of the ball does not acquire a charge - it remains uncharged or neutral. Therefore, salt does not stick to a negatively charged ball.

flexible water

In previous experiments, you used static electricity to teach cereal to dance and separate pepper from salt. From this experience you will learn how static electricity affects ordinary water.

We will need:
- faucet and sink
- balloon
- wool sweater

Preparation:
To conduct the experiment, choose a place where you will have access to running water. The kitchen is perfect.

Let's start the science magic!
1. Announce to the audience: "Now you will see how my magic will control the water."
2. Open the faucet so that the water flows in a thin stream.
3. Say the magic words to make the water jet move. Nothing will change; then apologize and explain to the audience that you will have to use the help of your magic balloon and magic sweater.
4. Inflate the balloon and tie it up. Rub the ball on the sweater.
5. Say the magic words again, and then bring the ball to a trickle of water. What will happen?

Result:
The jet of water will deflect towards the ball.

Explanation:
The electrons from the sweater during friction pass to the ball and give it a negative charge. This charge repels the electrons that are in the water, and they move to the part of the jet that is farthest from the ball. Closer to the ball, a positive charge arises in the water stream, and the negatively charged ball pulls it towards itself.

For the jet movement to be visible, it must be small. The static electricity that accumulates on the ball is relatively small, and it cannot move a large amount of water. If a trickle of water touches the balloon, it will lose its charge. The extra electrons will go into the water; both the balloon and the water will become electrically neutral, so the trickle will flow smoothly again.

Entertaining experiments for preschoolers, experiments for children at home, tricks for children, entertaining science ... How to curb the seething energy and indefatigable curiosity of the baby? How to make the most of the inquisitiveness of the child's mind and push the child to explore the world? How to promote the development of a child's creativity? These and other questions certainly arise before parents and educators. This paper contains a large number of various experiences and experiments that can be carried out together with children to expand their understanding of the world, for the intellectual and creative development of the child. The described experiments do not require any special preparation and almost no material costs.

How to pierce a balloon without harm to it?

The child knows that if the balloon is pierced, it will burst. Stick on the ball on both sides of a piece of adhesive tape. And now you can safely pierce the ball through the tape without any harm to it.

"Submarine" No. 1. Submarine from grapes

Grab a glass of fresh sparkling water or lemonade and toss a grape into it. It is slightly heavier than water and will sink to the bottom. But gas bubbles, similar to small balloons, will immediately begin to sit on it. Soon there will be so many of them that the grape will pop up.

But on the surface, the bubbles will burst and the gas will escape. The heavy grape will again sink to the bottom. Here it will again be covered with gas bubbles and rise again. This will continue several times until the water "exhales". According to this principle, a real boat floats up and rises. And the fish have a swim bladder. When she needs to dive, the muscles contract, squeezing the bladder. Its volume decreases, the fish goes down. And you have to get up - the muscles relax, dissolve the bubble. It increases and the fish floats up.

"Submarine" No. 2. Egg submarine

Take 3 jars: two half-liter and one liter. Fill one jar with clean water and dip a raw egg into it. It will drown.

Pour a strong solution of table salt into the second jar (2 tablespoons per 0.5 l of water). Dip the second egg there - it will float. This is because salt water is heavier, so it is easier to swim in the sea than in a river.

Now put an egg on the bottom of a liter jar. Gradually adding water from both small jars in turn, you can get a solution in which the egg will neither float nor sink. It will be held, as if suspended, in the middle of the solution.

When the experiment is done, you can show the trick. By adding salt water, you will ensure that the egg will float. Adding fresh water - that the egg will sink. Outwardly, salt and fresh water do not differ from each other, and it will look amazing.

How to get a coin out of the water without getting your hands wet? How to get out of the water dry?

Put the coin on the bottom of the plate and fill it with water. How to take it out without getting your hands wet? The plate must not be tilted. Fold a small piece of newspaper into a ball, set fire to it, throw it into a half-liter jar and immediately put it down with the hole in the water next to the coin. The fire will go out. The heated air will come out of the can, and due to the atmospheric pressure difference inside the can, the water will be drawn into the can. Now you can take the coin without getting your hands wet.

lotus flowers

Cut flowers with long petals from colored paper. Using a pencil, twist the petals towards the center. And now lower the multi-colored lotuses into the water poured into the basin. Literally before your eyes, the flower petals will begin to bloom. This is because the paper gets wet, becomes gradually heavier and the petals open.

natural magnifier

If you need to make out any small creature, such as a spider, a mosquito or a fly, it is very easy to do this.

Plant the insect in a three-liter jar. From above, tighten the neck with cling film, but do not pull it, but, on the contrary, push it so that a small container forms. Now tie the film with a rope or elastic band, and pour water into the recess. You will get a wonderful magnifying glass through which you can perfectly see the smallest details.

The same effect will be obtained if you look at an object through a jar of water, fixing it on the back of the jar with transparent tape.

water candlestick

Take a short stearin candle and a glass of water. Weight the lower end of the candle with a heated nail (if the nail is cold, the candle will crumble) so that only the wick and the very edge of the candle remain above the surface.

The glass of water in which this candle floats will be the candlestick. Light the wick and the candle will burn for quite some time. It seems that it is about to burn down to water and go out. But that won't happen. The candle will burn out almost to the very end. And besides, a candle in such a candlestick will never cause a fire. The wick will be extinguished with water.

How to get drinking water?

Dig a hole in the ground about 25 cm deep and 50 cm in diameter. Place an empty plastic container or wide bowl in the center of the hole, put fresh green grass and leaves around it. Cover the hole with clean plastic wrap and cover the edges with earth to prevent air from escaping from the hole. Place a stone in the center of the film and lightly press the film over the empty container. The device for collecting water is ready.

Leave your design until the evening. And now carefully shake the earth off the film so that it does not fall into the container (bowl), and look: there is clean water in the bowl.

Where did she come from? Explain to the child that under the influence of the sun's heat, the grass and leaves began to decompose, releasing heat. Warm air always rises. It settles in the form of evaporation on a cold film and condenses on it in the form of water droplets. This water flowed into your container; remember, you pushed the film a little and put a stone there.

Now you just have to come up with an interesting story about travelers who went to distant lands and forgot to take water with them, and start an exciting journey.

Miraculous matches

You will need 5 matches.

Break them in the middle, bend them at a right angle and put them on a saucer.

Put a few drops of water on the folds of the matches. Watch. Gradually, the matches will begin to straighten out and form a star.

The reason for this phenomenon, which is called capillarity, is that wood fibers absorb moisture. She crawls further and further along the capillaries. The tree swells, and its surviving fibers "get fat", and they can no longer bend much and begin to straighten out.

Washbasin chief. Making a washbasin is easy

Toddlers have one feature: they always get dirty when there is even the slightest opportunity for that. And the whole day to take a child home to wash is quite troublesome, besides, children do not always want to leave the street. Solving this issue is very simple. Make a simple washbasin with your child.

To do this, you need to take a plastic bottle, on its side surface about 5 cm from the bottom, make a hole with an awl or nail. The work is finished, the washbasin is ready. Plug the hole made with your finger, pour water to the top and close the lid. Slightly unscrewing it, you get a trickle of water by screwing it - you will "close the tap" of your washbasin.

Where did the ink go? transformations

Drop ink or ink into a bottle of water to make the solution a pale blue. Put a tablet of crushed activated charcoal there. Close the mouth with your finger and shake the mixture.

She brightens up before her eyes. The fact is that coal absorbs dye molecules with its surface and it is no longer visible.

Making a cloud

Pour hot water into a three-liter jar (about 2.5 cm). Place a few ice cubes on a baking sheet and place it on top of the jar. The air inside the jar, rising up, will cool. The water vapor it contains will condense to form a cloud.

This experiment simulates the formation of clouds when warm air cools. And where does the rain come from? It turns out that the drops, heated up on the ground, rise up. It gets cold there, and they huddle together, forming clouds. When they meet together, they increase, become heavy and fall to the ground in the form of rain.

I don't believe my hands

Prepare three bowls of water: one with cold water, another with room water, and a third with hot water. Have the child dip one hand into a bowl of cold water and the other hand into a bowl of hot water. After a few minutes, have him submerge both hands in water at room temperature. Ask if she seems hot or cold to him. Why is there a difference in hand feel? Can you always trust your hands?

water suction

Put the flower in water, tinted with any paint. Watch how the color of the flower changes. Explain that the stem has ducts that carry water up to the flower and color it. This phenomenon of water absorption is called osmosis.

Vaults and tunnels

Glue a thin paper tube slightly larger in diameter than a pencil. Insert a pencil into it. Then carefully fill the tube with the pencil with sand so that the ends of the tube come out. Pull out the pencil and you will see that the tube is not crumpled. Sand grains form protective vaults. Insects caught in the sand come out from under the thick layer unharmed.

All equally

Take an ordinary coat hanger, two identical containers (these can also be large or medium disposable cups and even aluminum cans for drinks, however, you need to cut off the top of the cans). In the upper part of the container on the side, opposite each other, make two holes, insert any rope into them and attach it to a hanger, which you hang, for example, on the back of a chair. Balance containers. And now, pour either berries, or sweets, or cookies into such impromptu scales, and then the children will not argue who got more goodies.

"Good boy and roly-poly". Obedient and naughty egg

First, try placing a whole raw egg on the blunt or pointed end. Then start experimenting.

Poke two holes the size of a match head at the ends of the egg and blow out the contents. Rinse the inside thoroughly. Let the shell dry well from the inside for one to two days. After that, close up the hole with plaster, glue with chalk or whitewash so that it becomes invisible.

Fill the shell with clean and dry sand about one quarter. Seal the second hole in the same way as the first. Obedient egg is ready. Now, in order to put it in any position, just shake the egg slightly, holding it in the position that it should take. The grains of sand will move and the placed egg will keep its balance.

To make a “roly-poly” (roly-poly), you need to throw 30-40 pieces of the smallest pellets and pieces of stearin from a candle into the egg instead of sand. Then put the egg on one end and heat it up. The stearin will melt, and when it hardens, it will stick the pellets together and stick them to the shell. Cover the holes in the shell.

The tumbler will be impossible to put down. An obedient egg will stand on the table, and on the edge of the glass, and on the knife handle.

If your child wants to, have them paint both eggs or make funny faces on them.

Boiled or raw?

If there are two eggs on the table, one of which is raw and the other is boiled, how can you determine this? Of course, every housewife will do this with ease, but show this experience to a child - he will be interested.

Of course, he is unlikely to connect this phenomenon with the center of gravity. Explain to him that in a boiled egg the center of gravity is constant, so it spins. And in a raw egg, the internal liquid mass is like a brake, so a raw egg cannot spin.

"Stop, hands up!"

Take a small plastic jar for medicines, vitamins, etc. Pour some water into it, put any effervescent tablet and close it with a lid (non-screw).

Put it on the table, turning it upside down, and wait. The gas released during the chemical reaction of the tablet and water will push the bottle out, there will be a “roar” and the bottle will be thrown up.

"Magic Mirrors" or 1? 3? 5?

Place two mirrors at an angle greater than 90°. Put one apple in the corner.

This is where it begins, but only begins, a real miracle. There are three apples. And if you gradually reduce the angle between the mirrors, then the number of apples begins to increase.

In other words, the smaller the angle of approach of the mirrors, the more objects will be reflected.

Ask your child if it is possible to make 3, 5, 7 from one apple without using cutting objects. What will he answer you? Now put the above experience.

How to wipe the knee green from the grass?

Take fresh leaves of any green plant, be sure to put them in a thin-walled glass and pour a small amount of vodka. Place the glass in a saucepan of hot water (in a water bath), but not directly on the bottom, but on some kind of wooden circle. When the water in the saucepan has cooled, remove the leaves from the glass with tweezers. They will discolor, and the vodka will turn emerald green, as chlorophyll, the green dye of plants, has been released from the leaves. It helps plants "eat" solar energy.

This experience will be useful in life. For example, if a child accidentally stains his knees or hands with grass, then you can wipe them off with alcohol or cologne.

Where did the smell go?

Take corn sticks, put them in a jar that has been dripped with cologne, and close it with a tight lid. After 10 minutes, when you open the lid, you will not feel the smell: it was absorbed by the porous substance of the corn sticks. This absorption of color or odor is called adsorption.

What is elasticity?

Take a small rubber ball in one hand, and a plasticine ball of the same size in the other. Drop them to the floor from the same height.

How did the ball and the ball behave, what changes happened to them after the fall? Why does the plasticine not bounce, but the ball bounces, perhaps because it is round, or because it is red, or because it is rubber?

Invite your child to be the ball. Touch the baby's head with your hand, and let him sit down a little, bending his knees, and when you remove your hand, let the child straighten his legs and jump. Let the baby jump like a ball. Then explain to the child that the same thing happens with the ball as with him: he bends his knees, and the ball is pressed a little when it hits the floor, he straightens his knees and bounces, and what is pressed in the ball straightens. The ball is elastic.

A plasticine or wooden ball is not elastic. Tell the child: “I will touch your head with my hand, but don’t bend your knees, don’t be elastic.”

Touch the child's head, and let him not bounce like a wooden ball. If you do not bend your knees, then it is impossible to jump. You can't straighten your knees that haven't been bent. A wooden ball, when it hits the floor, is not pressed in, which means it does not straighten out, so it does not bounce. He's not resilient.

The concept of electric charges

Blow up a small balloon. Rub the ball on wool or fur, and even better on your hair, and you will see how the ball will begin to stick to literally all objects in the room: to the closet, to the wall, and most importantly, to the child.

This is because all objects have a certain electrical charge. As a result of contact between two different materials, electrical discharges are separated.

dancing foil

Cut aluminum foil (shiny chocolate or candy wrappers) into very narrow, long strips. Run the comb through your hair, and then bring it close to the sections.

The stripes will begin to dance. This attracts to each other positive and negative electric charges.

Hanging on the head, or is it possible to hang on the head?

Make a light top out of cardboard by putting it on a thin stick. Sharpen the lower end of the stick, and stick a tailor's pin (with a metal, not a plastic head) deeper into the upper end so that only the head is visible.

Let the top “dance” on the table, and bring a magnet to it from above. The spinning top will jump and the pin head will stick to the magnet, but, interestingly, it will not stop, but will rotate, "hanging on the head."

The secret thief of jam. Or maybe it's Carlson?

Grind the pencil lead with a knife. Let the child rub his finger with the prepared powder. Now you need to press your finger to a piece of adhesive tape, and stick the adhesive tape to a white sheet of paper - it will show the imprint of your baby's finger pattern. Now we will find out whose prints were left on the jar of jam. Or maybe it was Carloson who flew in?

Unusual drawing

Give your child a piece of clean, light-colored cloth (white, blue, pink, light green).

Pick petals from different colors: yellow, orange, red, blue, light blue, and also green leaves of different shades. Just remember that some plants are poisonous, such as aconite.

Spread this mixture onto a cloth placed on a cutting board. You can both involuntarily pour petals and leaves, and build a conceived composition. Cover it with plastic wrap, fasten it on the sides with buttons and roll it all out with a rolling pin or tap on the fabric with a hammer. Shake off the used "paints", stretch the fabric over thin plywood and insert it into the frame. The masterpiece of young talent is ready!

It made a great gift for mom and grandma.

Reading 12 min.

Parents of little fidgets can surprise them with experiments that can be done at home. Light, but at the same time amazing and delightful, they are able not only to diversify the child's leisure time, but also allow you to look at familiar things with completely different eyes. And discover their properties, functions, purpose.

Young naturalists

Experimenting at home, great for kids under 10, is the best way to help your child gain hands-on experience for the future.

Safety precautions during experiments

In order for the conduct of cognitive experiments not to be overshadowed by troubles and injuries, it is enough to remember a few simple but important rules.


Safety comes first
  1. Before you start working with chemicals, the work surface must be protected by covering it with film or paper. This will save parents from unnecessary cleaning and will preserve the appearance and functionality of the furniture.
  2. In the process of work, you do not need to get too close to the reagents, bending over them. Especially if the plans include chemical experiments for young children, in which unsafe substances are involved. The measure will protect the mucous membranes of the mouth and eyes from irritation and burns.
  3. If possible, use protective equipment: gloves, goggles. They should fit the child in size and not interfere with him during the experiment.

Simple experiments for the little ones

Developmental experiences and experiments for the youngest children (or for children under 10 years old) are usually simple and do not require parents to have any special skills or rare or expensive equipment. But the joy of discovery and a miracle, which is so easy to do with your own hands, will remain with him for a long time.

For example, children will be indescribably delighted with the real seven-color rainbow, which they can call up themselves with the help of an ordinary mirror, a container of water and a sheet of white paper.


Rainbow in a bottle experience

To begin with, a mirror is placed at the bottom of a small basin or bath. Then, it is filled with water; and the light of the lantern is directed to the mirror. After the light is reflected and passed through the water, it decomposes into its constituent colors, becoming the same rainbow that can be seen on a sheet of white paper.

Another very simple and beautiful experiment can be done with ordinary water, wire and salt.

To start the experiment, you need to prepare a supersaturated salt solution. Calculating the required concentration of a substance is quite simple: with the required amount of salt in water, it ceases to dissolve when the next portion is added. It is very good to use warm distilled water for this purpose. In order for the experiment to be more successful, the finished solution can also be poured into another container - this will remove dirt and make it cleaner.


Experience “Salt on a wire”

When everything is ready, a small piece of copper wire with a loop at the end is lowered into the solution. The container itself is removed to a warm place and left there for a certain time. As the solution begins to cool, the solubility of the salt will decrease and it will begin to settle on the wire in the form of beautiful crystals. It will be possible to notice the first results in a few days. By the way, not only ordinary, straight wire can be used in the experiment: by twisting fancy figures out of it, you can grow crystals of various sizes and shapes. By the way, this experiment will give the child a great idea for New Year's toys in the form of real ice snowflakes - just find a flexible wire and form a beautiful symmetrical snowfield out of it.

Invisible ink can also make an indelible impression on the child. Preparing them is very simple: just take a cup of water, matches, cotton wool, half a lemon. And a sheet on which you can write the text.


Invisible ink can be bought ready-made

Start by mixing equal amounts of lemon juice and water in a bowl. Then, a little cotton wool is wound around a toothpick or a thin match. The resulting "pencil" is dipped into the mixture in the resulting liquid; then they can write any text on a piece of paper.

Although at first the words on paper will be completely invisible, it will be very easy to manifest them. To do this, a sheet with already dried ink must be brought to the lamp. The written words will immediately appear on a heated sheet of paper.

What kid doesn't love balloons?

It turns out that you can even inflate an ordinary balloon in a very original way. To do this, dissolve one tablespoon of baking soda in a bottle of water. And in another cup, the juice of one lemon and three tablespoons of vinegar are mixed. After, the contents of the cup are introduced into the bottle (for convenience, you can use a small funnel). The ball must be put on the neck of the bottle as quickly as possible until the chemical reaction is over. During this time, carbon dioxide will be able to quickly inflate the balloon under pressure. In order for the ball not to jump off the neck of the bottle, it can be fixed with tape or tape.


Experience "Inflate the balloon"

Colored milk looks very interesting and unusual, the colors of which will move, fancifully mixing with each other. For this experiment, you need to pour some whole milk into a plate and add a few drops of food coloring to it. Separate areas of the liquid will turn into different colors, but the spots will remain motionless. How to set them in motion? Very simple. It is enough to take a small cotton swab and, having previously dipped it in detergent, bring it to the surface of colored milk. By reacting with the milk fat molecules, the detergent molecules will make it move.


Experience “Drawings on milk”

Important! Skimmed milk will not work for this experiment. You can only use whole!

Surely all children have seen at home and on the street for funny air bubbles in mineral or sweet water. But are they strong enough to lift a grain of corn or raisins to the surface? It turns out yes! To check this, just pour any sparkling water into the bottle, and then throw some corn or raisins into it. The child will see for himself how easy under the action of air bubbles both corn and raisins will begin to rise, and then - having reached the surface of the liquid - fall down again.

Experiments for older children

Older children (from 10 years old) can be offered more complex chemical experiments that require more components. These experiments for older children are a little more difficult, but children can already take part in them.

To comply with safety regulations, children under 10 years of age should conduct experiments under the strict supervision of adults, mainly in the role of a spectator. Children over 10 years of age can take a more active part in the experiments.

An example of such an experiment would be the creation of a lava lamp. Surely many children dream of such a miracle. But, it is much more pleasant to make it with your own hands, using simple components for this, which are sure to be found in every home.


Experience “Lava Lamp”

The basis of the lava lamp will be a small jar or the most ordinary glass. In addition, for the experiment you will need vegetable oil, water, salt and a little food coloring.

The jar, or other container used as the base of the lamp, is filled with two-thirds of water and one-third with oil. Since oil is much lighter than water by weight, it will remain on its surface without mixing with it. Then, a little food coloring is added to the jar - this will give the lava lamp color and make the experiment more beautiful and spectacular. And after that, a teaspoon of salt is placed in the resulting mixture. For what? Salt causes the oil to sink to the bottom in the form of bubbles, and then, dissolving, pushes them up.

The following chemistry experiment will help make a school subject like geography fun and interesting.


Making a volcano with your own hands

After all, studying volcanoes is much more interesting when there is not just a dry book text nearby, but a whole model! Especially if you make it easy at home with your own hands, using the available tools at hand: sand, food coloring, soda, vinegar and a bottle are perfect.

To begin with, a bottle is placed on the tray - it will become the basis of the future volcano. Around it you need to mold a small cone of sand, clay or plasticine - so the mountain will take on a more complete and believable look. Now you need to cause a volcanic eruption: a little warm water is poured into the bottle, then a little soda and food coloring (red or orange). The final touch will be a quarter cup of vinegar. Having reacted with soda, the vinegar will begin to actively push the contents of the bottle out. This explains the interesting effect of the eruption, which can be observed with the child.


Volcano can be made from toothpaste

Can paper burn without burning?

It turns out yes. And the experiment with fireproof money will easily prove it. To do this, a ten-ruble banknote is immersed in a 50% alcohol solution (water is mixed with alcohol in a ratio of 1 to 1, a pinch of salt is added to it). After the bill is properly soaked, excess liquid is removed from it, and the bill itself is set on fire. Having flared up, it will begin to burn, but it will not burn out at all. The explanation for this experience is quite simple. The temperature at which alcohol burns is not high enough to evaporate water. Thanks to this, even after the substance burns out completely, the money will remain slightly wet, but absolutely intact.


Ice experiments are always a success

Young nature lovers can be encouraged to germinate seeds at home without using the soil. How it's done?

A little cotton wool is placed in the eggshell; it is actively wetted with water, and then some seeds (for example, alfalfa) are placed in it. In just a few days, the first shoots will be visible. Thus, soil is not always needed for seed germination - only water is enough.

And the next experiment, which is easy to do at home for children, will surely appeal to girls. After all, who doesn't love flowers?


A painted flower can be given to mom

Especially the most unusual, bright colors! Thanks to a simple experience, right in front of astonished children, simple and familiar flowers can turn into the most unexpected color. Moreover, it is extremely simple to do this: just put the cut flower in water with food coloring added to it. Climbing the stem to the petals, chemical dyes will color them in the colors you need. To better absorb water, it is better to cut diagonally - so it will have the maximum area. In order for the color to appear brighter, it is advisable to use light, or white flowers. An even more interesting and fantastic effect will be obtained if, before the start of the experiment, the stem is split into several parts and each of them is immersed in its own glass of colored water.

Petals will be painted in all colors at once in the most unexpected and bizarre way. What will undoubtedly make an indelible impression on the child!


Experience “Colored foam”

Everyone knows that under the influence of gravity, water can only flow down. But, is it possible to make it rise up the napkin? To conduct this experiment, an ordinary glass is filled with water by about a third. The napkin is folded several times so that a narrow rectangle is obtained. After that, the napkin unfolds again; stepping back a little from the bottom edge on it, you need to draw a line of colored dots of a sufficiently large diameter. The napkin is immersed in water so that about one and a half centimeters of its colored part is in it. Having come into contact with a napkin, the water will gradually rise up, staining it with multi-colored stripes. This unusual effect is due to the fact that, having a porous structure, the fibers of the napkin easily pass water up.
Gelatin water does not mix

Gelatin dissolves in a quarter cup of water; it should swell and increase in volume. Then, the substance is dissolved in a water bath and brought to about 50 degrees. the resulting liquid must be distributed in a thin layer over a plastic bag. With the help of cookie cutters, figures of various shapes are cut out of gelatin. After that, they need to be laid on a blotter or napkin, and then breathe on them. The warm breath will cause the gelatin to expand in volume, causing the figures to begin to curve on one side.

Experiments carried out at home with children are very easy to diversify.


Gelatin figures from molds

In winter, you can try to slightly modify the experiment by taking the gelatin figurines to the balcony or leaving them in the freezer for a while. When the gelatin hardens under the influence of cold, patterns of ice crystals will clearly appear on it.

Conclusion


Description of other experiences

Delight and a sea of ​​positive emotions - that's what experimenting for curious children will give, carried out together with adults. And parents will allow themselves to share the joy of the first discoveries with young researchers. After all, no matter how old a person is, the opportunity to return to childhood at least for a short time is truly priceless.

Home experiments for children 4 years old require imagination and knowledge of the simple laws of chemistry and physics. “If these sciences were not very good at school, you will have to make up for lost time,” many parents will think. This is not so, experiments can be very simple, not requiring special knowledge, skills and reagents, but at the same time explaining the fundamental laws of nature.

Experiments for children at home will help, using a practical example, to explain the properties of substances and the laws of their interaction, arouse interest in an independent study of the world around them. Interesting physical experiments will teach children to be observant, help to think logically, establishing patterns between ongoing events and their consequences. Perhaps the kids will not become great chemists, physicists or mathematicians, but they will forever keep warm memories of parental attention in their souls.

From this article you will learn

unfamiliar paper

Kids like to make applications out of paper, draw pictures. Some children of 4 years old master the art of origami with their parents. Everyone knows that paper is soft or thick, white or colored. And what is an ordinary white sheet of paper capable of, if you experiment with it?

Animated paper flower

An asterisk is cut out of a sheet of paper. Bend its rays inward in the form of a flower. Water is collected in a cup and an asterisk is lowered to the surface of the water. After a while, the paper flower, as if alive, will begin to open. The water will wet the cellulose fibers that make up the paper and straighten them out.

Strong bridge

This paper experience will be interesting for children 3 years old. Ask the kids how to put an apple in the middle of a thin sheet of paper between two glasses so that it does not fall. How do you make a paper bridge strong enough to support the weight of an apple? We fold a sheet of paper with an accordion and put it on supports. Now it can support the weight of an apple. This is due to the fact that the shape of the structure has changed, which made the paper strong enough. Depending on the shape, the properties of materials become stronger, projects of many architectural creations are based, for example, the Eiffel Tower.

Animated snake

Scientific proof of the upward movement of warm air can be given by a simple experiment. A snake is cut out of paper, cutting a circle in a spiral. You can revive a paper snake very simply. A small hole is made in her head and hung by a thread over a heat source (battery, heater, burning candle). The snake will start spinning fast. The reason for this phenomenon is the upward warm air flow, which spins the paper snake. In the same way, you can make paper birds or butterflies, beautiful and colorful, by hanging them under the ceiling in the apartment. They will rotate from the movement of air, as if flying.

Who is stronger

This entertaining experiment will help you determine which paper shape is more durable. For the experiment, you will need three sheets of office paper, glue and a few thin books. A cylindrical column is glued from one sheet of paper, a triangular one from another, and a rectangular one from the third. They put the "columns" vertically and test them for strength, carefully placing books on top. As a result of the experiment, it turns out that the triangular column is the weakest, and the cylindrical column is the strongest - it will withstand the greatest weight. No wonder the columns in temples and buildings are made precisely of a cylindrical shape, the load on them is distributed evenly over the entire area.

Amazing Salt

Ordinary salt is today in every home, not a single meal can do without it. You can try to make beautiful children's crafts from this affordable product. All you need is salt, water, wire and a little patience.

Salt has interesting properties. It can attract water to itself, dissolving in it, while increasing the density of the solution. But in a supersaturated solution, the salt again turns into crystals.

To conduct an experiment with salt, a beautiful symmetrical snowflake or other figure is bent from a wire. Salt is dissolved in a jar of warm water until it no longer dissolves. They lower the bent wire into the jar, and put it in the shade for several days. As a result, the wire will become overgrown with salt crystals, and will look like a beautiful ice snowflake that will not melt.

Water and ice

Water exists in three states of aggregation: vapor, liquid and ice. The purpose of this experiment is to introduce children to the properties of water and ice and compare them.

Pour water into 4 ice molds and place them in the freezer. To make it more interesting, you can tint the water before freezing with different dyes. Cold water is poured into a cup, and two ice cubes are thrown into it. Simple ice boats or icebergs will float on the surface of the water. This experiment will prove that ice is lighter than water.

While the boats are floating, the remaining ice cubes are sprinkled with salt. See what will happen. After a short time, before the room fleet in the cup has time to go to the bottom (if the water is quite cold), the cubes sprinkled with salt will begin to crumble. This is because the freezing point of salt water is lower than that of normal water.

Fire that doesn't burn

In ancient times, when Egypt was a powerful country, Moses fled from the wrath of Pharaoh and tended herds in the wilderness. One day he saw a strange bush that burned and did not burn. It was a special fire. But can objects that are engulfed in ordinary flames remain unharmed? Yes, this is possible, it can be proved with the help of experience.

For the experiment, you will need a piece of paper or a banknote. A tablespoon of alcohol and two tablespoons of water. The paper is moistened with water so that the water is absorbed into it, poured over with alcohol and set on fire. Fire appears. It's burning alcohol. When the fire goes out, the paper will remain intact. The experimental result is explained very simply - the combustion temperature of alcohol, as a rule, is not enough to evaporate the moisture that the paper is impregnated with.

natural indicators

If the baby wants to feel like a real chemist, you can make special paper for him, which will change color depending on the acidity of the environment.

A natural indicator is prepared from red cabbage juice containing anthocyanin. This substance changes color depending on which liquid it comes into contact with. Anthocyanin-impregnated paper will turn yellow in an acidic solution, green in a neutral solution, and blue in an alkaline solution.

To prepare a natural indicator, take filter paper, a head of red cabbage, gauze and scissors. Finely chop the cabbage and squeeze the juice through cheesecloth, wrinkling your hands. Saturate a sheet of paper with juice and dry. Then cut the made indicator into strips. A child can dip a piece of paper into four different liquids: milk, juice, tea or soapy water, and watch the color of the indicator change.

Electrification by friction

In ancient times, people noticed the special ability of amber to attract light objects if rubbed with a woolen cloth. They did not yet have knowledge of electricity, therefore they explained this property by the spirit living in the stone. It is from the Greek name for amber - electron - that the word electricity comes from.

Not only amber has such amazing properties. A simple experiment can be done to see how a glass rod or a plastic comb attracts small pieces of paper towards itself. To do this, the glass must be rubbed with silk, and the plastic with wool. They will begin to attract small pieces of paper that will stick to them. After a while, this ability of items will disappear.

You can discuss with the children that this phenomenon occurs due to friction electrification. Rapid rubbing of the cloth against the object may cause sparks. Lightning in the sky and thunder are also a consequence of the friction of air currents and the occurrence of electricity discharges in the atmosphere.

Solutions of different densities - interesting details

You can get a multi-colored rainbow in a glass of liquids of different colors by making jelly and pouring it layer by layer. But there is an easier way, although not as tasty.

To conduct the experiment, you will need sugar, vegetable oil, plain water and dyes. From sugar, a concentrated sweet syrup is prepared, and pure water is dyed with a dye. Sugar syrup is poured into a glass, then gently along the wall of the glass so that the liquids do not mix, clean water is poured, and vegetable oil is added at the end. The sugar syrup should be cold and the colored water warm. All liquids will remain in the glass like a small rainbow, without mixing with each other. At the bottom there will be the densest sugar syrup, at the top there will be some water, and oil, as the lightest, will be on top of the water.

color explosion

Another interesting experiment can be done using different densities of vegetable oil and water by making a color explosion in a jar. For the experiment, you will need a jar of water, a few tablespoons of vegetable oil, food coloring. In a small container, several dry food colors are mixed with two tablespoons of vegetable oil. Dry grains of dyes do not dissolve in oil. Now the oil is poured into a jar of water. Heavy grains of dyes will settle to the bottom, gradually being released from the oil, which will remain on the surface of the water, forming colored swirls, as from an explosion.

home volcano

Useful geographic knowledge might not be so boring for a four year old if you set up a visual demonstration of a volcanic eruption on an island. To conduct the experiment, you will need baking soda, vinegar, 50 ml of water and the same amount of detergent.

A small plastic cup or bottle is placed in the crater of the volcano, molded from colored plasticine. But first, baking soda is poured into a glass, water tinted red and detergent are poured. When the makeshift volcano is ready, a little vinegar is poured into its mouth. A violent process of foaming begins, due to the fact that soda and vinegar react. From the mouth of the volcano, “lava” formed by red foam begins to pour out.

Experiments and experiments for children 4 years old, as you have seen, do not need complex reagents. But they are no less fascinating, especially with an interesting story about the reason for what is happening.

Helpful Hints

Children are always trying to find out something new every day and they always have a lot of questions.

They can explain some phenomena, or you can show how this or that thing, this or that phenomenon works.

In these experiments, children not only learn something new, but also learn create differentcrafts with which they can play further.


1. Experiments for children: lemon volcano


You will need:

2 lemons (for 1 volcano)

Baking soda

Food coloring or watercolors

Dishwashing liquid

Wooden stick or spoon (optional)


1. Cut off the bottom of the lemon so it can be placed on a flat surface.

2. On the reverse side, cut a piece of lemon as shown in the image.

* You can cut half a lemon and make an open volcano.


3. Take the second lemon, cut it in half and squeeze the juice out of it into a cup. This will be the backup lemon juice.

4. Place the first lemon (with the part cut out) on the tray and spoon "remember" the lemon inside to squeeze out some of the juice. It is important that the juice is inside the lemon.

5. Add food coloring or watercolor to the inside of the lemon, but do not stir.


6. Pour dishwashing liquid inside the lemon.

7. Add a full tablespoon of baking soda to the lemon. The reaction will start. With a stick or spoon, you can stir everything inside the lemon - the volcano will begin to foam.


8. To make the reaction last longer, you can gradually add more soda, dyes, soap and reserve lemon juice.

2. Home experiments for children: electric eels from chewing worms


You will need:

2 glasses

small capacity

4-6 chewable worms

3 tablespoons of baking soda

1/2 spoon of vinegar

1 cup water

Scissors, kitchen or clerical knife.

1. With scissors or a knife, cut lengthwise (just lengthwise - this will not be easy, but be patient) of each worm into 4 (or more) parts.

* The smaller the piece, the better.

* If scissors don't want to cut properly, try washing them with soap and water.


2. Mix water and baking soda in a glass.

3. Add pieces of worms to the solution of water and soda and stir.

4. Leave the worms in the solution for 10-15 minutes.

5. Using a fork, transfer the worm pieces to a small plate.

6. Pour half a spoon of vinegar into an empty glass and start putting worms in it one by one.


* The experiment can be repeated if the worms are washed with plain water. After a few attempts, your worms will begin to dissolve, and then you will have to cut a new batch.

3. Experiments and experiments: a rainbow on paper or how light is reflected on a flat surface


You will need:

bowl of water

Clear nail polish

Small pieces of black paper.

1. Add 1-2 drops of clear nail polish to a bowl of water. See how the varnish disperses through the water.

2. Quickly (after 10 seconds) dip a piece of black paper into the bowl. Take it out and let it dry on a paper towel.

3. After the paper has dried (it happens quickly) start turning the paper and look at the rainbow that is displayed on it.

* To better see the rainbow on paper, look at it under the sun's rays.



4. Experiments at home: a rain cloud in a jar


When small drops of water accumulate in a cloud, they become heavier and heavier. As a result, they will reach such a weight that they can no longer remain in the air and will begin to fall to the ground - this is how rain appears.

This phenomenon can be shown to children with simple materials.

You will need:

Shaving foam

Food coloring.

1. Fill the jar with water.

2. Apply shaving foam on top - it will be a cloud.

3. Let the child begin to drip food coloring onto the "cloud" until it starts to "rain" - drops of food coloring begin to fall to the bottom of the jar.

During the experiment, explain this phenomenon to the child.

You will need:

warm water

Sunflower oil

4 food coloring

1. Fill the jar 3/4 full with warm water.

2. Take a bowl and mix 3-4 tablespoons of oil and a few drops of food coloring in it. In this example, 1 drop of each of 4 dyes was used - red, yellow, blue and green.


3. Stir the dyes and oil with a fork.


4. Carefully pour the mixture into a jar of warm water.


5. Watch what happens - the food coloring will begin to slowly sink through the oil into the water, after which each drop will begin to disperse and mix with other drops.

* Food coloring dissolves in water, but not in oil, because. The density of oil is less than water (which is why it "floats" on water). A drop of dye is heavier than oil, so it will begin to sink until it reaches the water, where it begins to disperse and look like a small firework.

6. Interesting experiences: ina bowl in which colors merge

You will need:

- a printout of the wheel (or you can cut out your own wheel and draw all the colors of the rainbow on it)

Elastic band or thick thread

Glue stick

Scissors

A skewer or screwdriver (to make holes in the paper wheel).


1. Choose and print the two templates you want to use.


2. Take a piece of cardboard and use a glue stick to glue one template to the cardboard.

3. Cut out the glued circle from the cardboard.

4. Glue the second template to the back of the cardboard circle.

5. Use a skewer or screwdriver to make two holes in the circle.


6. Pass the thread through the holes and tie the ends into a knot.

Now you can spin your spinning top and watch how the colors merge on the circles.



7. Experiments for children at home: jellyfish in a jar


You will need:

Small transparent plastic bag

Transparent plastic bottle

Food coloring

Scissors.


1. Lay the plastic bag on a flat surface and smooth it out.

2. Cut off the bottom and handles of the bag.

3. Cut the bag lengthwise on the right and left so that you have two sheets of polyethylene. You will need one sheet.

4. Find the center of the plastic sheet and fold it like a ball to make a jellyfish head. Tie the thread around the "neck" of the jellyfish, but not too tight - you need to leave a small hole through which to pour water into the head of the jellyfish.

5. There is a head, now let's move on to the tentacles. Make cuts in the sheet - from the bottom to the head. You need about 8-10 tentacles.

6. Cut each tentacle into 3-4 smaller pieces.


7. Pour some water into the jellyfish's head, leaving room for air so the jellyfish can "float" in the bottle.

8. Fill the bottle with water and put your jellyfish in it.


9. Drop a couple of drops of blue or green food coloring.

* Close the lid tightly so that water does not spill out.

* Have the children turn the bottle over and watch the jellyfish swim in it.

8. Chemical experiments: magic crystals in a glass


You will need:

Glass cup or bowl

plastic bowl

1 cup Epsom salt (magnesium sulfate) - used in bath salts

1 cup hot water

Food coloring.

1. Pour Epsom salt into a bowl and add hot water. You can add a couple of drops of food coloring to the bowl.

2. Stir the contents of the bowl for 1-2 minutes. Most of the salt granules should dissolve.


3. Pour the solution into a glass or glass and place it in the freezer for 10-15 minutes. Don't worry, the solution isn't hot enough to crack the glass.

4. After freezing, move the solution to the main compartment of the refrigerator, preferably on the top shelf and leave overnight.


The growth of crystals will be noticeable only after a few hours, but it is better to wait out the night.

This is what the crystals look like the next day. Remember that crystals are very fragile. If you touch them, they are most likely to break or crumble immediately.


9. Experiments for children (video): soap cube

10. Chemical experiments for children (video): how to make a lava lamp with your own hands

Similar articles

2023 liveps.ru. Homework and ready-made tasks in chemistry and biology.