Тема урока: «Явление самоиндукции. Индуктивность

План – конспект урока

« Самоиндукция . И ндуктивность . Энергия магнитного поля тока»

Выполнила студентка 5 курса

группы ФМ-112

очной формы обучения

физико-математического образования

Кежутина Ольга Владиславовна

Дата проведения: 23.09.16

Владимир 2016

Тема урока: Самоиндукция . И ндуктивность .

Класс: «11б»

Тип урока : урок усвоения новых знаний.

Вид урока: урок-лекция.

Цель : сформировать представление о том, что изменение силы тока в проводнике создает вихревое воле, которое может или ускорять или тормозить движущиеся электроны; сформировать представление об энергии, которой обладает электрический ток в проводнике и энергии магнитного поля, созданного током.

Задачи:

Образовательные: Повторить знание учащихся о явление электромагнитной индукции, углубить их; на этой основе изучить явление самоиндукции. Научить использовать закон электромагнитной индукции для объяснения явлений. Ввести формулу для расчета энергии магнитного поля тока и понятие электромагнитного поля.

Воспитательные: Воспитать интерес к предмету, трудолюбие и умение внимательно оценивать ответы товарищей, умения работать коллективно и в парах .

Развивающие: Развитие физического мышления учащихся, расширение понятийного аппарата учащихся, формирование умений анализировать информацию, делать выводы из наблюдений и опытов.

Оборудование:

Ход урока:

Организационный этап.

11.20 – 11.21

Здравствуйте, ребята, садитесь.

Ученики настраиваются на урок.

Актуализация знаний.

11.22-11.28

Проверка домашнего задания, если у учеников возникли вопросы, то разбираем их.

Фронтальный опрос:

    Какое поле называют вихревым электрическим полем?

    Что является источником вихревого поля?

    Что такое токи Фуко? Приведите примеры их использования.

    От чего зависит ЭДС индукции, возникающая в проводнике, который движется в переменном во времени магнитном поле?

Ученики проверяют домашнее задание, отвечают на вопросы:

    Поле которое порождает изменяющееся во времени, магнитное поле.

    Изменяющееся во времени, магнитное поле.

    Индукционные токи достигающие в массивных проводниках большого числового значения, из-за того, что их сопротивление мало.

    От скорости движения проводника в однородном магнитном поле.

Примерные наводящие вопросы:

4.Вспомните формулу, по которой можно найти ЭДС индукции в движущихся проводниках.

Мотивационный этап.

11.29-11.31

Основы электродинамики были заложены Ампером в 1820 году. Работы Ампера вдохновили многих инженеров на конструирование различных технических устройств, таких как электродвигатель (конструктор Б.С. Якоби), телеграф (С. Морзе), электромагнит, конструированием которого занимался известный американский ученый Генри.

Джозеф Генри прославился благодаря созданию серии уникальных мощнейших электромагнитов с подъемной силой от 30 до 1500 кг при собственной массе магнита 10 кг. Создавая различные электромагниты, в 1832 году ученый открыл новое явление в электромагнетизме – явление самоиндукции. Именно этому явлению посвящен данный урок.

Запись темы на доске: « Самоиндукция . И ндуктивность . Энергия магнитного поля тока ».

Изучение нового материала.

11.32-11.45

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Опыт: На рисунке изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка.

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх.

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть, для рассматриваемого на рисунке 4 витка индукционный ток должен быть направлен по часовой стрелке, тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно, благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа.

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике. В этом заключается суть явления самоиндукции. Самоиндукция – это частный случай электромагнитной индукции.

Самоиндукция – это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Индуктивность. Модуль вектора индукции В магнитного поля, создаваемого током, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф ~ В~ I.

Можно, следовательно, утверждать, что

Ф = LI,

где L - коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Величину L называют индуктивностью контура, или его коэффициентом самоиндукции.

Используя закон электромагнитной индукции и полученное выражение, получаем равенство

Из формулы следует, что индуктивность - это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность, подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Очевидно, что индуктивность одного проволочного витка меньше, чем у катушки (соленоида), состоящей из N таких же витков, так как магнитный поток катушки увеличивается в N раз.

Единицу индуктивности в СИ называют генри (обозначается Гн). Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В:

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Аналогия между самоиндукцией и инерцией. Явление самоиндукции подобно явлению инерции в механике. Так, инерция приводит к тому, что под действием силы тело не мгновенно приобретает определенную скорость, а постепенно. Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила. Точно так же за счет самоиндукции при замыкании цепи сила тока не сразу приобретает определенное значение, а нарастает постепенно. Выключая источник, мы не прекращаем ток сразу. Самоиндукция поддерживает его некоторое время, несмотря на сопротивление цепи.

Для создания электрического тока и, следовательно, его магнитного поля необходимо выполнить работу против сил вихревого электрического поля. Эта работа (согласно закону сохранения энергии) равна энергии электрического тока или энергии магнитного поля тока.

Записать выражение энергии тока I , текущего по цепи с индуктивностью L , т. е. для энергии магнитного поля тока, можно на основании аналогии между инерцией и самоиндукцией.

Если самоиндукция аналогична инерции, то индуктивность в процессе создания тока играет ту же роль, что и масса при увеличении скорости в механике. Роль скорости тела в электродинамике играет сила тока как величина, характеризующая движение электрических зарядов.

Тогда энергию тока можно считать величиной подобной кинетической энергии в механике:

    Энергия магнитного поля тока.

Отвечают на вопросы, вступают в дискуссию, делают выводы, делают записи в тетрадях.

Закрепление изученного материала

11.46-11.56

Предлагает решить задачу:

Решают задачи у доски и на местах.

Подведение итогов. Домашнее задание.

11.57-11.58

Выставление и обоснование отметок. Запись и обсуждение домашнего задания.

Д/З: §14-16, № 932, 934, 938.

Записывают домашнее задание

Рефлексия

11.59-12.00

Организуется беседа с целью осмысления участниками урока своих собственных действий в ходе урока.

Вопросы:

1. Что нового вы для себя узнали на уроке?

2. Понятен ли был материал урока?

3. Понравился ли вам урок?

Принимают участие в беседе

931. Какова индуктивность контура, если при силе тока 5 А в нем возникает магнитный поток 0,5 мВб?

933. Найти индуктивность проводника, в котором при равномерном изменении силы тока на 2 А в течение 0,25 с возбуждается ЭДС самоиндукции 20 мВ.

937. В катушке индуктивностью 0,6 Гн сила тока равна 20 А. Какова энергия магнитного поля этой катушки? Как изменится энергия поля, если сила тока уменьшится вдвое?

939. Найти энергию магнитного поля соленоида, в котором при силе тока 10 А возникает магнитный поток 0,5 Вб.

932. Какой магнитный поток возникает в контуре индуктивностью 0,2 мГн при силе тока 10 А?

934. Какая ЭДС самоиндукции возбуждается в обмотке электромагнита индуктивностью 0,4 Гн при равномерном изменении силы тока в ней на 5 А за 0,02 с?

938. Какой должна быть сила тока в обмотке дросселя индуктивностью 0,5 Гн, чтобы энергия поля оказалась равной 1 Дж?

Цель урока : сформировать представление о том, что изменение силы тока в проводнике создает вихревое воле, которое может или ускорять или тормозить движущиеся электроны.

Ход урока

Проверка домашнего задания методом индивидуального опроса

1. Получить формулу для вычисления электродвижущей силы индукции для проводника, движущегося в магнитном поле.

2. Вывести формулу для вычисления электродвижущей силы индукции, используя закон электромагнитной индукции.

3. Где применяется и как устроен электродинамический микрофон?

4. Задача. Сопротивление проволочного витка равно 0,03 Ом. Магнитный поток уменьшается внутри витка на 12 мВб. Какой электрический заряд проходит через поперечное сечение витка?

Решение. ξi=ΔФ/Δ t; ξi= Iiʹ·R; Ii =Δq/Δt; ΔФ/Δt = Δq R/Δt; Δq = ΔФΔt/ RΔt; Δq= ΔФ/R;

Изучение нового материала

1. Самоиндукция.

Если по проводнику идет переменный ток, то он создает ЭДС индукции в этом же проводнике – это явление

Самоиндукции. Проводящий контур играет двоякую роль: по нему идет ток, в нем же создается ЭДС индукции этим током.

На основании правила Ленца; когда ток увеличивается, напряженность вихревого электрического поля, направлена против тока, т.е. препятствует его увеличению.

Во время уменьшения тока вихревое поле его поддерживает.

Рассмотрим схему на которой видно, что сила тока достигает определенного

значения постепенно, через какое – то время.

Демонстрация опытов со схемами. С помощью первой цепи покажем, как появляется ЭДС индукции при замыкании цепи.

При замыкании ключа первая лампа загорается мгновенно, вторая с опозданием, из-за большой самоиндукции в цепи, которую создает катушка с сердечником.

С помощью второй цепи продемонстрируем появление ЭДС индукции при размыкании цепи.

В момент размыкания через амперметр, пойдет ток направленный,против начального тока.

При размыкании сила тока может превысить первоначальное значение тока. Значит, ЭДС самоиндукции может быть больше ЭДС источника тока.

Провести аналогию между инерцией и самоиндукцией

Индуктивность.

Магнитный поток пропорционален величине магнитной индукции и силе тока. Ф~B~I.

Ф= L I; где L- коэффициент пропорциональности между током и магнитным потоком.

Данный коэффициент называют чаще индуктивностью контура или коэффициентом самоиндукции.

Используя величину индуктивности, закон электромагнитной индукции можно записать так:

ξis= – ΔФ/Δt = – L ΔI/Δt

Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающий в контуре при изменении силы тока на 1 А за 1 с.

Измеряют индуктивность в генри (Гн) 1 Гн = 1 В с/А

О значении самоиндукции в электротехнике и радиотехнике.

Вывод: когда по проводнику идет изменяющийся ток появляется вихревое электрическое поле.

Вихревое поле тормозит свободные электроны при увеличении тока и поддерживает его при уменьшении.

Закрепление изученного материала.

Как объяснить явление самоиндукции?

– Провести аналогию между инерцией и самоиндукцией.

– Что такое индуктивность контура, в каких единицах измеряется индуктивность?

– Задача. При силе тока в 5 А в контуре возникает магнитный поток 0,5 мВб. Чему будет равна индуктивность контура?

Решение. ΔФ/Δt = – L ΔI/Δt; L = ΔФ/ΔI; L =1 ·10-4Гн

Подведем итоги урока

Домашнее задание: §15, повт. §13, упр. 2 № 10




  1. Цель урока: сформулировать количественный закон электромагнитной индукции; учащиеся должны усвоить, что такое ЭДС магнитной индукции и что такое магнитный поток. Ход урока Проверка домашнего задания...
  2. Цель урока: сформировать у учащихся представление о существовании сопротивления только в цепи переменного тока – это емкостное и индуктивное сопротивления. Ход урока Проверка домашнего задания...
  3. Цель урока: сформировать представление об энергии, которой обладает электрический ток в проводнике и энергии магнитного поля, созданного током. Ход урока Проверка домашнего задания методом тестирования...
  4. Цель урока: ввести понятие электродвижущей силы; получить закон Ома для замкнутой цепи; создать у учащихся представление о различии между ЭДС, напряжением и разностью потенциалов. Ход...
  5. Цель урока: сформировать у учащихся представление об активном сопротивлении в цепи переменного тока, и о действующем значении силы тока и напряжения. Ход урока Проверка домашнего...
  6. Цель урока: сформировать понятие, что ЭДС индукции может возникать или в неподвижном проводнике, помещенном в изменяющееся магнитное поле, или в движущемся проводнике, находящемся в постоянном...
  7. Цель урока: выяснить, как произошло открытие электромагнитной индукции; сформировать понятие об электромагнитной индукции, значение открытия Фарадея для современной электротехники. Ход урока 1. Анализ контрольной работы...
  8. Цель урока: рассмотреть устройство и принцип действия трансформаторов; привести доказательства, что электрический ток никогда не имел бы такого широкого применения, если бы в свое время...
  9. Цель урока: выяснить, какой причиной вызвана ЭДС индукции в движущихся проводниках, помещенных в постоянное магнитное поле; подвести учащихся к выводу, что действует на заряды сила...
  10. Цель урока: контроль усвоения, учащимися изученной темы, развитие логического мышления, совершенствование вычислительных навыков. Ход урока Организация учащихся на выполнение контрольной работы Вариант 1 №1. Явление...
  11. Цель урока: сформировать у учащихся представление об электрическом и магнитном поле, как об едином целом – электромагнитном поле. Ход урока Проверка домашнего задания методом тестирования...
  12. Цель урока: проверить знания учащихся по вопросам изученной темы, совершенствовать навыки решения задач различных видов. Ход урока Проверка домашнего задания Ответы учащихся по подготовленным дома...
  13. Цель урока: повторить и обобщить знания по пройденной теме; совершенствовать умение логически мыслить, обобщать, решать качественные и расчетные задачи. Ход урока Проверка домашнего задания 1....
  14. Цель урока: доказать учащимся, что свободные электромагнитные колебания в контуре не имеют практического применения; используются незатухающие вынужденные колебания, которые имеют большое применение на практике. Ход...
  15. Цель урока: сформировать понятие о модуле магнитной индукции и силе Ампера; уметь решать задачи на определение этих величин. Ход урока Проверка домашнего задания методом индивидуального...

Урок № 46-169

Самоиндукция - явление возникновения ЭДС индукции в проводящем контуре при изменении в нем силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции.

Проявление явления самоиндукции.

Замыкание цепи. При замыкании в электрической цепи нарастает ток, что вызывает в катушке увеличение магнитного потока, возникает вихревое электрическое поле, направленное против тока, т.е. в катушке возникает ЭДС самоиндукции, препятствующая нарастанию тока в цепи (вихревое поле тормозит электроны).

В результате Л1 загорается позже, чем Л2.

Размыкание цепи.

При размыкании электрической цепи ток убывает, возникает уменьшение магнитного потока в катушке, возникает вихревое электрическое поле, направленное как ток (стремящееся сохранить прежнюю силу тока), т.е. в катушке возникает ЭДС самоиндукции, поддерживающая ток в цепи. В результате Л при выключении ярко вспыхивает.

Индуктивность , или коэффициент самоиндук­ции - параметр электрической цепи, который определяет ЭДС самоиндукции, наводимой в цепи при изменении протекающего по ней тока или (и) ее деформации. Термином «индуктивность» обозначают также катушку самоиндукции, которая определяет ин­дуктивные свойства цепи.

Самоиндукция - возникновение ЭДС индук­ции в проводящем контуре при изменении в нем силы тока. ЭДС индукции возникает при изменении маг­нитного потока. Если это изменение вызывается собственным током, то говорят об ЭДС самоиндук­ции:

ε is =–
= –L,

где L - индуктивность контура, или его коэффи­ циент самоиндукции.

Индуктивность - физическая величина, чис­ленно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1 с.

Ф - магнитный поток через контур, I - сила тока в контуре. Единица индуктивности в СИ генри (Гн): [ L] = [] = []= Гн; 1 Гн = 1
.

Индуктивность, как и электроемкость, зависит от геометрии проводника - его размеров и формы, но не зависит от силы тока в проводнике. Кроме того, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Индуктивность катушки зависит от:

− числа витков,

размеров и формы катушки;

от относительной магнитной проницаемости среды (возможен сердечник).

Токи замыкания и размыкания При любом включении и выключении тока в цепи наблюдаются так называемые экстрато­ки самоиндукции (экстратоки замыкания и раз­ мыкания), возникающие в цепи вследствие явле­ния самоиндукции и препятствующие (согласно правилу Ленца) нарастанию либо убыванию тока в цепи. Индуктивность характеризует инерционность цепи по отношению к изменению в ней тока, и ее можно рассматривать как электродинамический аналог массы тела в механике, являющейся мерой инертности тела. При этом сила тока I играет роль скорости тела. Энергия магнитного поля тока. Найдем энергию, которой обла­дает электрический ток в провод­нике. Согласно закону сохранения энергии энергия магнитного поля, созданного током, равна той энер­гии, которую должен затратить ис­точник тока (гальванический эле­мент, генератор на электростанции и др.) на создание тока. При прекращении тока эта энергия выделяется в той или иной форме. Выясним, почему же для созда­ния тока необходимо затратить энергию, т. е. необходимо совершить работу. Объясняется это тем, что при замыкании цепи, когда ток начинает нарастать, в проводнике появляется вихревое электрическое поле, действующее против того электрического поля, которое со­здается в проводнике благодаря ис­точнику тока. Для того чтобы сила тока стала равной I, источник тока должен совершить работу против сил вихревого поля. Эта работа идет на увеличение энергии магнитного поля тока.

При размыкании цепи ток ис­чезает и вихревое поле совершает положительную работу. Запасенная током энергия выделяется. Это обна­руживается по мощной искре, воз­никающей при размыкании цепи с большой индуктивностью.

I, текущего по цепи с ин­дуктивностью L, (т. е. для энергии магнитного поля тока), можно на основании аналогии между инер­цией и самоиндукцией, о которой говорилось выше. W м можно считать величиной, подобной кинетической энергии тела
в ме­ханике, и записать в виде W м =
(**) L, и силу тока в нем I. Но эту же энергию можно выра­зить и через характеристики поля. Вычисления показывают, что плотность энергии магнитного поля (т. е. энергия единицы объема) пропор­циональна квадрату магнитной ин­дукции, подобно тому, как плот­ность энергии электрического поля пропорциональна квадрату напряженности электрического поля.

Магнитное поле, созданное элек­трическим током, обладает энергией, прямо пропорциональной квадрату силы тока.

5. В катушку сопротивлением 2 Ом течёт ток 3 А. Индуктивность катушки 50 мГн. Каким будет напряжение на зажимах катушки, если ток в ней равномерно возрастает со скоростью 200 ?


Урок № 46-169 Самоиндукция. Индуктивность. Энергия магнитного поля тока. Д/з:§15; § 16 1. Самоиндукция – явление возникновения ЭДС в проводящем контуре при изменении в нем силы тока. Возникающая при этом ЭДС называется ЭДС самоиндукции. По правилу Ленца в момент нарастания тока напряженность вихревого электрического поля направлена против тока, т.е. вихревое поле препятствует нарастанию тока. А в момент умень­шения тока вихревое поле поддерживает его.

Явление самоиндукции можно наблюдать в простых опытах.

Схема параллельного со­единения двух одинаковых ламп. Одну из них подключают к источнику через резистор R , а другую - последователь­но с катушкой L , снабженной железным сердечником.

П
ри замыкании ключа первая лампа вспыхивает прак­тически сразу, а вторая - с заметным запозданием. ЭДС са­моиндукции в цепи этой лампы велика, и сила тока не сразу достигает своего максимального значения (рис.).

Появление ЭДС самоиндукции при размыкании:

При размыкании ключа в катушке L возни­ кает ЭДС самоиндукции, поддерживающая первоначаль ный ток. В результате в момент размыкания через гальва­нометр идет ток (от R к A), направленный против начального тока до размыкания ( I к амперметру). Сила тока при размыкании цепи может превышать силу тока,

проходящего через гальванометр при замкнутом ключе. Это означает, что ЭДС самоиндукции ε IS . больше ЭДС ε ба­ тареи элементов.

2. Индуктивность. Модуль вектора индукции магнит­ного поля, создаваемого током, пропорционален силе тока. Так как магнитный поток Ф пропорционален , то Ф ~ В ~ I . Можно утверждать, что Ф=LI, (1)

где L - коэффициент пропорциональности между током в проводящем контуре и магнитным потоком. Величину L называют индуктивностью контура, или его коэффициен­ том самоиндукции.

Используя закон электромагнитной индукции и выра­жение (1), получаем равенство

ε IS = -= - L (2), если считать, что форма контура остается неизменной и по­ ток меняется только за счет изменения силы тока. Из формулы (2) следует, что индуктивность - это фи­ зическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность зависит от геометрических факторов: размеров проводника и его фор­мы, но не зависит непосредственно от силы тока в провод­нике. Кроме геометрии проводника, индуктивность зави­сит от магнитных свойств среды, в которой находится проводник.

Индуктивность одного проволочного витка меньше, чем у катушки (соленоида), состоящей из N таких же витков, так как магнитный поток катушки увеличивает­ся в N раз.

Единицу индуктивности в СИ называют генри (обозна­чается Гн). Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В: 1 Гн == 1


3. Энергия магнитного поля тока Согласно закону сохранения энергии энергия магнит­ного поля, созданного током, равна той энергии, которую должен затратить источник тока (гальванический элемент, генератор на электростанции и др.) на создание тока. При размыкании цепи ток исчезает, и вихревое поле со­вершает положительную работу. Запасенная током энер­гия выделяется. Это обнаруживается, например, по мощ­ной искре, возникающей при размыкании цепи с большой индуктивностью. Записать выражение для энер­гии тока I, текущего по цепи с ин­дуктивностью L, (т. е. для энергии магнитного поля тока), можно на основании аналогии между инер­цией и самоиндукцией. Если самоиндукция аналогична инерции, то индуктивность в про­цессе создания тока должна играть ту же роль, что и масса при увели­чении скорости тела в механике. Роль скорости тела в электродина­мике играет сила тока I как ве­личина, характеризующая движение электрических зарядов. Если это так, то энергию тока W м можно считать величиной, подобной кинетической энергии тела в ме­ханике, и записать в виде W м = (**) Именно такое выражение для энер­гии тока и получается в резуль­тате расчетов. Энергия тока (**) выражена через геометрическую характеристи­ку проводника L, и силу тока в нем I. Но эту же энергию можно выра­зить и через характеристики поля. Вычисления показывают, что плотность энергии магнитного поля (т. е. энергия единицы объема) пропор­циональна квадрату магнитной ин­дукции w М ~ В 2 , подобно тому как плотность энергии электрического поля пропорциональна квадрату напряженности электрического поля w Э ~ Е 2

Запомни: Магнитное поле, созданное элек­трическим током, обладает энергией, прямо пропорциональной квадрату силы тока.


Основные формулы: Закон Фарадея (законом электромагнитной индукции): ε = – ,где ΔФ - изменение магнитного потока, Δt - промежуток време­ни, за которое это изменение произошло.

Явление самоиндукции заключается в том, что при изменении тока в цепи возникает ЭДС, противодействующая этому изменению. Магнитный поток Ф через поверхность, ограниченную контуром, прямо пропорционален силе тока I в контуре: Ф = LI,

где L - коэф­фициент пропорциональности, называемый индуктивностью.

ЭДС самоиндукции выражается через изменение силы тока в цепи Δ I следующей фор­мулой:

ε = - = -L где Δt - время, за которое это изменение произошло.

Энергия магнитного поля W выражается формулой: W=

Задачи. Самоиндукция. Индуктивность.

1. Какая ЭДС самоиндукции возникает в катушке с индуктивностью 86 мГн, если ток 3,8А исчезает в ней за 0,012 с?

2. Определить ЭДС самоиндукции, если в катушке с индуктивностью 0,016 мГн сила тока уменьшается со скоростью 0,5 к А /с.

3. Какова индуктивность катушки, если при равномерном изменении в ней тока от 2 до 12 А за 0,1 с возникает ЭДС самоиндукции, равная 10 В?

4. Магнитный поток, пронизывающий контур проводника сопротивлением 0,2 Ом, равномерно изменяется с 1,2∙10 -3 Вб до 0,4∙10 -3 Вб за 2 мс. Определить силу тока в контуре.

5. В катушку сопротивлением 2 Ом течёт ток 3 А. Индуктивность катушки 50 мГн. Каким будет напряжение на зажимах катушки, если ток в ней равномерно возрастает со скоростью 200 А/с?

6. Какова скорость изменения силы тока в обмотке реле с индуктивностью 3,5 Гн, если в ней возбуждается ЭДС самоиндукции 105 В?

7. Катушку с ничтожно малым сопротивлением и индуктивностью 3 Гн присоединяют к источнику тока с ЭДС 15 В и ничтожно малым внутренним сопротивлением. Через какой промежуток времени сила тока в катушке достигнет 50А? 8. Катушка индуктивностью 0,2 Гн подключена к источнику тока с ЭДС =10 В и внутренним сопротивление 0,4 Ом. Определить общую ЭДС в момент размыкания цепи, если ток в ней исчезает за 0,04 с, а сопротивление проволоки катушки 1,6 Ом. 9. Катушка сопротивлением 10 Ом и индуктивностью 0,01 Гн находится в переменном магнитном поле. Когда создаваемый этим полем магнитный поток увеличился на 0,01 Вб, ток в катушке возрос на 0,5 А. Какой заряд прошёл за это время по катушке?

8

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция - это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция - это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где - магнитная индукция; - магнитная постоянная; - сила тока; - расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

где - площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой - число витков, а - длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N , равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция - это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью , которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?

Урок по физике с применением Интернет – ресурсов.

11 класс, тема: «Самоиндукция, индуктивность» - 2 часа.

Цели:

  1. формирование учебных компетенций - самостоятельно организовывать процесс изучения физических понятий и законов, решать учебные проблемы.
  2. Формирование исследовательских компетенций - развитие самостоятельного получения знаний, используя ресурсы Интернета, анализировать и отбирать необходимую информацию.
  3. Формирование социально- личностных компетенций – умения определять значимость знаний для себя и общества.

Ресурсы для реализации урока: необходимо наличие компьютерного класса с возможностью подключения к Интернету.

  1. Постановка проблемы: самостоятельно, используя ресурсы Интернета, изучить явление самоиндукции, рассмотреть понятие индуктивности, выяснить, как определяется ЭДС самоидукции. Рассмотреть вопросы практического применения самоиндукции. Определить значимость явления для себя и для науки.

2. Самостоятельная работа учащихся, которая предполагает

  • исследовательскую деятельность по получению информации, ее отбору и классификации
  • графическое представление собственной системы знаний на основе полученной информации в виде схемы, графа, описания. Отражение практической направленности изученных явлений и законов в виде рисунков, фотографий.
  • рассуждения о значимости полученных знаний для себя и общества в графической форме или в виде небольшого сочинения, эссе.

Вся деятельность учащихся отражается в электронной рабочей тетради.

3. Самотестирование: учащимся предлагается тест по изученному материалу (ссылка на тест в приложении 2). Уровень ученики выбирают самостоятельно. В рабочую тетрадь помещают только варианты ответов.

  1. Оценивание работ учащихся:

Обмен рабочими тетрадями по локальной сети, анализ полученных знаний, самопроверка теста (ответы в приложении 3). Учащиеся сами оценивают рабочие тетради одноклассников.

  1. Итог урока: рефлексия, обсуждение затруднений, пожелания, достигнутые результаты.
  1. Домашнее задание: осмысление полученных знаний, подготовка проблемного материала для обсуждения по теме «Самоиндукция, индуктивность». Выполнение домашнего задания предполагает самостоятельную работу с учебником, дополнительной информацией.

www.physics.nad.ru - Физика в анимациях

www.physics.ru - Физика в Открытом колледже

http://www.spin.nw.ru/ Физика для школ

http://physicomp.lipetsk.ru/ - Электронный журнал «Физикомп»

http://www.omsknet.ru/acad/fr_elect.htm - Электронный учебник по физике.

www.alsak.ru- Школьная физика для учителей и учеников.

www.physics-regelman.com

Приложение 3

Ответы на тест «Самоиндукция. Индуктивность»

Уровень А

Уровень В

Уровень С

№ вопроса

ответ

№ вопроса

ответ

№ вопроса

ответ

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.