Ср сv что. Теплоемкость газов

Отношение количества теплоты , полученного телом при бесконечно малом изменении его состояния, к связанному с этим изменению температуры тела , называется теплоемкостью тела в данном процессе:

Обычно теплоемкость относят к еди­нице количества вещества и в зависимо­сти от выбранной единицы различают:

удельную массовую теп­лоемкость c , отнесенную к 1 кг газа,

Дж/(кг·К);

удельную объемную теп­лоемкость , отнесенную к количеству газа, содержащегося в 1 м 3 объема при нормальных физических условиях, Дж/(м 3 ·К);

удельную мольную тепло­емкость , отнесенную к одному киломолю, Дж/(кмоль·К).

Зависимость между удельными теплоемкостями устанавливается очевидны­ми соотношениями: ;

Здесь - плотность газа при нормаль­ных условиях.

Изменение температуры тела при од­ном и том же количестве сообщаемой теплоты зависит от характера происходя­щего при этом процесса, поэтому тепло­емкость является функцией процесса. Это означает, что одно и то же рабочее тело в зависимости от процесса требует для своего нагревания на 1 К различного ко­личества теплоты. Численно величина с изменяется в пределах от +∞ до -∞.

В термодинамических расчетах боль­шое значение имеют:

теплоемкость при посто­янном давлении

равная отношению количества теплоты , сообщенной телу в процессе при по­стоянном давлении, к изменению температуры тела dT

теплоемкость при посто­янном объеме

равная отношению количества теплоты , подведенной к телу в процессе при постоянном объеме, к изменению темпе­ратуры тела .

В соответствии с первым законом термодинамики для закрытых систем, в которых протекают равновесные про­цессы , и

Для изохорного процесса (v =const) это уравнение принимает вид , и, учитывая (1.5), по­лучаем, что

,

т. е. теплоемкость тела при постоянном объеме равна частной производной от его внутренней энергии по температуре и характеризует темп роста внутренней энергии в изохорном процессе с увеличе­нием температуры.

Для идеального газа

Для изобарного процесса () из уравнения (2.16) и (2.14) получаем

Это уравнение показывает связь между теплоемкостями с р и сv . Для иде­ального газа оно значительно упрощает­ся. Действительно, внутренняя энергия идеального газа определяется только его температурой и не зависит от объема, поэтому и, кроме того, из уравнения состояния следует , откуда

Это соотношение называется уравнением Майера и является одним из основных в технической термодинамике идеальных газов.

В процессе v =const теплота, сооб­щаемая газу, идет лишь на изменение его внутренней энергии, тогда как в про­цессе р = const теплота расходуется и на увеличение внутренней энергии и на со­вершение работы против внешних сил. Поэтому с р больше сv на величину этой работы.


Для реальных газов, по­скольку при их расширении (при p =const) совершается работа не только против внешних сил, но и против сил притяжения, действующих между моле­кулами, что вызывает дополнительный расход теплоты.

Обычно теплоемкости определяются экспериментально, но для многих ве­ществ их можно рассчитать методами статистической физики.

Числовое значение теплоемкости идеаль­ного газа позволяет найти классическая тео­рия теплоемкости, основанная на теореме о равномерном распределении энергии по сте­пеням свободы молекул. Согласно этой теоре­ме внутренняя энергия идеального газа прямо пропорциональна числу степеней свободы мо­лекул и энергии kТ/2, приходящейся на одну степень свободы. Для 1 моля газа

,

где - число Авогадро; i - число степеней свободы (число независимых координат, которые нужно задать для того, чтобы полно­стью определить положение молекулы в про­странстве) .

Молекула одноатомного газа имеет три степени свободы соответственно трем состав­ляющим в направлении координатных осей, на которые может быть разложено поступатель­ное движение. Молекула двухатомного газа имеет пять степеней свободы, так как помимо поступательного движения она может вра­щаться около двух осей, перпендикулярных линии, соединяющей атомы (энергия враще­ния вокруг оси, соединяющей атомы, равна нулю, если атомы считать точками). Молекула трехатомного и вообще многоатомного газа имеет шесть степеней свободы: три поступа­тельных и три вращательных.

Поскольку для идеального газа, то мольные теплоемкости одно-, двух- и многоатомных газов равны со­ответственно:

;; .

Результаты классической теории теплоем­кости достаточно хорошо согласуются с экспе­риментальными данными в области комнатных температур (табл. 2.1), однако основной вы­вод о независимости от температуры экспери­мент не подтверждает. Расхождения, особенно существенные в области низких и достаточно высоких температур, связаны с квантовым по­ведением молекул и находят объяснения в рамках квантовой теории теплоемкости.

Теплоемкость некоторых газов при t= 0°С в идеально-газовом состоянии


Кроме удельной теплоемкости вводится понятие молярной теплоемкости, которая определяется количеством тепловой энергии, необходимой для нагревания одного моля вещества на 1К.

Таким образом, если обозначить удельную теплоемкость через с , а молярную теплоемкость через С , то очевидно, С = μс , где μ – масса одного моля вещества.

Для газов удельная теплоемкость, а также молярная теплоемкость, зависит от условий, при которых газ нагревается. Вводится понятие двух теплоемкостей: удельная теплоемкость при постоянном давлении с р и удельная теплоемкость при постоянном объеме с V .

Так как газ при расширении совершает работу против сил внешнего давления, то удельная теплоемкость газа при постоянном давлении больше удельной теплоемкости при постоянном объеме. То есть с р > с V .

Разность величин с р - с V для идеального газа вычисляется теоретически: она равна газовой постоянной, отнесенной к массе одного моля вещества

Адиабатический процесс, при котором отсутствует тепловой обмен между газом и окружающей средой, описывается уравнением Пуассона

где γ – есть отношение удельной теплоемкости идеального при постоянном давлении к удельной теплоемкости того же газа при постоянном объеме, то есть

Из теоретических соображений следует, что для двухатомного газа отношение равно 1,4. Опыт показывает, что для двухатомных газов, например, для водорода, кислорода и т.д., а также для воздуха это отношение близко к его теоретической величине.

1. Описание прибора и метода

Прибор, с помощью которого определяют отношение , состоит из баллона В, манометра М, двух кранов К 1 и К 2 и насоса (рис. 13).

До начала работы в баллоне имеется масса воздуха m , которая при открытых кранах К 1 и К 2 , то есть при атмосферном давлении р 0 , занимает объем V 0 . Температура комнатная Т К.

С помощью насоса нагнетаем в баллон некоторую массу воздуха, закрываем кран К 1 . Та масса воздуха m , которая была в баллоне, сжимается, уступая часть объема баллона новой порции воздуха. Теперь масса воздуха занимает объем меньше объема баллона V 1 < V 0 , давление внутри баллона возрастает до р 1 = р 0 +Δh 1 .

Содержимое баллона при нагнетании дополнительной порции воздуха несколько нагрелось. Вследствие адиабатического сжатия процесс протекает быстро и теплообмен с внешней средой не успевает произойти. Поэтому необходимо подождать, пока температура в баллоне станет равной Т К и установится разность уровней в манометре Δh 1 .

Итак, первое состояние массы воздуха m характеризуется параметрами: р 1 , V 1 , Т к.

р 1 = р 0 +Δh 1

Открываем быстро кран К 2 и выпускаем воздух, пока давление внутри баллона не станет равным атмосферному р 0 , затем снова закрываем кран К 2 . Масса m займет объем всего баллона V 0 , но, так как процесс происходил очень быстро, то обмена теплом с внешней средой не произошло, температура содержимого баллона упала до Т 2 < Т 0 , то есть имеет место адиабатическое расширение.

Итак, второе состояние газа характеризуется параметрами:

р 2 = р 0 ; V 2 = V 0 ; Т 2 < Т К.

При закрытых кранах К 1 и К 2 ждем несколько минут, пока температура повысится до комнатной температуры Т К. В результате этого давление внутри баллона возрастает до

р 3 = р 0 +Δh 2

где Δh 2 – разность уровней жидкости в манометре.

Объем, который занимает масса m воздуха, равен объему баллона V 3 = V 0 . Температура стала комнатной Т К. Третье состояние воздуха характеризуется параметрами:

р 3 = р 0 +Δh 2 ; V 3 = V 0 ; Т К.

Итак, масса воздуха, содержащаяся в баллоне, прошла такие состояния:

I . р 1 = р 0 +Δh 1 ; V 1 < V 0 ; Т К.

II . р 2 = р 0 ; V 2 = V 0 ; Т 2 < Т К.

III . р 3 = р 0 +Δh 3 ; V 3 = V 0 ; Т К.

Переход из I во II состояние – адиабатический процесс. Для него выполнимо уравнение

(40)

Переход из I в III состояние – изотермический. Для него выполнимо уравнение Бойля-Мариотта

(41)

Преобразуем уравнения (40) и (41)

но р 1 = р 0 +Δh 1 , V 2 = V 3 = V 0 , р 3 = р 0 +Δh 3 , р 2 = р 0

(42)

(43)

Подставляем в (42) вместо отношения его значение из (43), получим:

Логарифмируя это уравнение, имеем

Разделим числитель и знаменатель правой части уравнения на р 0 , тогда

из теории приближенных вычислений известно, что при малых значения х:

(44)

Таким образом, измеряя на опыте и, мы можем определить отношение удельных теплоемкостей воздуха:

II . Порядок выполнения работы.

1.Закрыть кран К 2 и открыть кран К 1 . Накачать насосом воздух в баллон до давления, соответствующего разности уровней жидкости Δh = 10 ÷ 15 см, и закрыть кран.

2.Подождать, пока разность уровней в манометре установится, записать эту разность.

3.Открыть кран К 2 и в момент, когда уровни в манометре сравняются, закрыть его, не ожидая, пока закончатся колебания жидкости в манометре.

4.Подождать, пока воздух в баллоне, охладившийся при адиабатическом расширении, прогреется до комнатной температуры. Записать эту разность Δh 2 .

5.По полученным значениям Δh 1 и Δh 2 вычислить

6.Опыт проделать пять раз и по полученным данным вычислить среднее значение

7.Выпустить воздух из баллона, открыв на некоторое время кран К 2 .

8.Вычислить абсолютную и относительную погрешности определения γ

№ п/п

Δh 1 , мм

Δh 2 , мм

1

2

3

4

5

Контрольные вопросы

1.Что называется теплоемкостью? удельной теплоемкостью? молярной теплоемкостью? Запишите связь между удельной и молярной теплоемкостями.

2.Дайте определение с р и с V , С р и С V . От чего зависит теплоемкость?

3.Выведите уравнение Майера (связь С р и С V ).

4.Что больше и почему С р или С V ?

5.Какой процесс называется адиабатическим. Запишите уравнение адиабаты. Что и почему идет круче адиабата или изотерма?

6.Запишите первое начало термодинамики для адиабатического процесса. Чему равны: количество теплоты, внутренняя энергия и работа при адиабатическом процессе?

7.Выведите уравнение Пуассона.

8.Чему равен показатель адиабаты? От чего он зависит?

9.Сколько раз и когда в лабораторной работе происходит адиабатический процесс?

10.Дайте определение энтропии. Какой параметр постоянен при адиабатном процессе? Запишите второе начало термодинамики.

11.Какой процесс называется циклическим? Цикл Карно. КПД цикла Карно. На каких участках цикла Карно тепло подводится, забирается, и на каких совершается работа газом и над газом?

Удельная теплоемкость вещества - величина, равная количеству теплоты, необходимому для нагревания 1 кг вещества на 1 К:

Единила удельной теплоемкости - джоуль на килограмм-кельвин (Дж/(кг К)).

Молярная теплоемкость - величина, равная количеству теплоты, необходимому для нагревания 1 моль вещества на 1 К:

где ν =m/М-количество вещества.

Единица молярной теплоемкости - джоуль на моль кельвин (Дж/(моль К)).

Удельная теплоемкость с связана с молярной теплоемкостью С m , соотношение

где М - молярная масса вещества.

Выделяют теплоемкости при постоянном объеме и постоянном давлении, если в процессе нагревания вещества его объем или давление поддерживается постоянным. Запишем выражение первого начала термодинамики для одного моль газа с учетом (1) и δA=pdV

Если газ нагревается при постоянном объеме, то dV=0 и работа внешних сил равна также равна нулю. Тогда газу сообщаемая извне теплота идет только на увеличение его внутренней энергии:

(4) т. е. молярная теплоемкость газа при постоянном объеме С V равна изменению внутренней энергии одного моль газа при повышении его температуры на 1 К. Поскольку U m =(i /2)RT ,

Если газ нагревается при постоянном давлении, то выражение (3) можно представить в виде

Учитывая, что (U m /dT) не зависит от вида процесса (внутренняя энергия идеального газа не зависит ни от p, ни от V, а определяется лишь температурой Т) и всегда равна С V , и дифференцируя уравнение Клапейрона - Менделеева pV m =RT по T (p=const), получаем

Выражение (6) называется уравнением Майера; оно говорит о том, что С p всегда больше С V ровно на величину молярной газовой постоянной. Это объясняется тем, чтобы осуществить нагревание газа при постоянном давлении требуется еще дополнительное количество теплоты на совершение работы расширения газа, так как постоянство давления обеспечивается увеличением объема газа. Использовав (5), формулу (6) можно записать в виде

При исследовании термодинамических процессов важно знать характерное для каждого газа отношение С p к С V:

(8)

называется показателем адиабаты . Из молекулярно-кинетической теории идеальных газов известны численные значения показателя адиабаты, они зависят от числа атомов в молекуле газа:

Одноатомный газ γ = 1,67;

Двухатомный газ γ = 1,4;

Трех- и многоатомный газ γ = 1,33.

(Еще показатель адиабаты обозначается k)

11. Теплота. Первое начало термодинамики.

Внутренняя энергия термодинамической системы может изменяться двумя способами: посредством совершения работы над системой и посредством теплообмена с окружающей средой. Энергия, которую получает или теряет тело в процессе теплообмена с окружающей средой, называется коли́чеством теплоты́ или просто теплотой .

Единица измерения в (СИ) - джоуль. Как единица измерения теплоты используется также калория.

Первое начало термодинамики - одно из основных положений термодинамики, являющееся, по существу, законом сохранения энергии в применении к термодинамическим процессам.

Первое начало термодинамики было сформулировано в середине XIX века в результате работ Ю. Р. Майера, Джоуля и Г. Гельмгольца. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя 1-го рода, который совершал бы работу, не черпая энергию из какого-либо источника.

Формулировка

Количество теплоты, полученное системой, идет на изменение ее внутренней энергии и совершение работы против внешних сил.

Первый закон термодинамики можно сформулировать так:

«Изменение полной энергии системы в квазистатическом процессе равно количеству теплоты Q, сообщенного системе, в сумме с изменением энергии, связанной с количеством вещества N при химическом потенциале , и работы A", совершённой над системой внешними силами и полями, за вычетом работы А, совершённой самой системой против внешних сил»:

Для элементарного количества теплоты , элементарной работыи малого приращения (полного дифференциала)внутренней энергии первый закон термодинамики имеет вид:

Разделение работы на две части, одна из которых описывает работу, совершённую над системой, а вторая – работу, совершённую самой системой, подчёркивает, что эти работы могут быть совершены силами разной природы вследствие разных источников сил.

Важно заметить, что иявляются полнымидифференциалами, а и- нет. Приращение теплоты часто выражают через температуру и приращениеэнтропии: .

Где А – атомная масса; m ед - атомная единица массы; N А - число Авогадро; моль μ – количество вещества, в котором содержится число молекул, равное числу атомов в 12 г изотопа углерода 12 С.

Теплоёмкость термодинамической системы зависит от того, как изменяется состояние системы при нагревании.

Если газ нагревать при постоянном объёме , то всё подводимое тепло идёт на нагревание газа, то есть изменение его внутренней энергии. Теплоёмкость при этом обозначается С V .

С Р – теплоемкость при постоянном давлении. Если нагревать газ при постоянном давлении Р в сосуде с поршнем, то поршень поднимется на некоторую высоту h , то есть газ совершит работу (рис. 4.2).


Рис. 4.2

Следовательно, проводимое тепло затрачивается и на нагревание и на совершение работы. Отсюда ясно, что .

Итак, проводимое тепло и теплоёмкость зависят от того, каким путём осуществляется передача тепла. Значит, Q и С не являются функциями состояния.

Величины С Р и С V оказываются связанными простыми соотношениями. Найдём их.

Пусть мы нагреваем один моль идеального газа при постоянном объёме(dA = 0). Тогда первое начало термодинамики запишем в виде:

, (4.2.3)

Т.е. бесконечно малое приращение количества теплоты равно приращению внутренней энергии dU .

Теплоемкость при постоянном объёме будет равна:

Так как U может зависеть не только от температуры. Но в случае идеального газа справедлива формула (4.2.4).

Из (4.2.4) следует, что

,

При изобарическом процессе, кроме увеличения внутренней энергии, происходит совершение работы газом:

.

Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

2. Что такое степени свободы молекул? Как число степеней свободы связано с коэффициентом Пуассона γ?

Числом степеней свободы тела называется число независимых координат, которые необходимо задать для того, чтобы полностью определить положение тела в пространстве. Так, например, материальная точка, произвольно движущаяся в пространстве, обладает тремя степенями свободы (координаты x, y, z).

Молекулы одноатомного газа можно рассматривать как материальные точки на том основании, что масса такой частицы (атома) сосредоточена в ядре, размеры которого очень малы (10 -13 см). Поэтому молекула одноатомного газа может иметь лишь три степени свободы поступательного движения.

Молекулы, состоящие из двух, трех и большего числа атомов, не могут быть уподоблены материальным точкам. Молекула двухатомного газа в первом приближении представляет собой два жестко связанных атома, находящихся на некотором расстоянии друг от друга

3. Чему равна теплоемкость идеального газа при адиабатическом процессе?

Теплоемкостью называется величина, равная количеству теплоты, которое нужно сообщить веществу, чтобы повысить его температуру на один кельвин.

4. В каких единицах измеряются в системе си давление, объем, температура, молярные теплоемкости?

Давление – кПа, объем – дм 3 , температура – в Кельвинах, молярные теплоемкости – Дж/(мольК)

5. Что такое молярные теплоемкости Ср и Сv?

У газа различают теплоемкость при постоянном объеме С v и теплоемкость при постоянном давлении С р.

При постоянном объеме работа внешних сил равна нулю, и все сообщаемое газу извне количество теплоты идет целиком на увеличение его внутренней энергии U. Отсюда молярная теплоемкость газа при постоянном объеме С v численно равна изменению внутренней энергии одного моля газа ∆Uпри повышении его температуры на 1К:

∆U=i/2*R(T+1)-i/2RT=i/2R

Таким образом, молярная теплоемкость газа при постоянном объеме

С v =i/2R

удельная теплоемкость при постоянном объеме

С v =i/2*R/µ

При нагревании газа при постоянном давлении газ расширяется, сообщаемое ему извне количество теплоты идет не только на увеличение его внутренней энергии U, но и на совершение работыAпротив внешних сил. Следовательно, теплоемкость газа при постоянном давлении больше теплоемкости при постоянном объеме на величину работыA, которую совершает один моль газа при расширении, происходящем в результате повышения его температуры на 1Kпри постоянном давленииP:

С р = С v +A

Можно показать, что для моля газа работа A=R, тогда

С р = С v +R=(i+2)/2*R

Пользуясь соотношением между удельными в молярными теплоемкостями, находим для удельной теплоемкости:

С р = (i+2)/2*R

Непосредственное измерение удельных и молярных теплоемкостей затруднительно, так как теплоемкость газа составит ничтожную долю теплоемкости сосуда, в котором находится газ, и поэтому измерение будет чрезвычайно неточно.

Проще измерить отношение величии С р / С v

γ=С р / С v =(i+2)/i.

Это отношение зависит только от числа степеней свободы молекул, из которых состоит газ.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.