Теорема об изменение количества движения точки. Теорема об изменении количества движения механической системы

Рассмотрим систему, состоящую из материальных точек. Составим для этой системы дифференциальные уравнения движения (13) и сложим их почленно. Тогда получим

Последняя сумма по свойству внутренних сил равна нулю. Кроме того,

Окончательно находим

Уравнение (20) выражает теорему об изменении количества движения системы в дифференциальной форме: производная по времени от количества движения системы равна геометрической сумме всех действующих на систему внешних сил. В проекциях на координатные оси будет:

Найдем другое выражение теоремы. Пусть в момент времени количество движения системы равно а в момент становится равным . Тогда, умножая обе части равенства (20) на и интегрируя, получим

так как интегралы, стоящие справа, дают импульсы внешних сил.

Уравнение (21) выражает теорему об изменении количества движения системы в интегральной форме: изменение количества движения системы за некоторый промежуток времени равно сумме импульсов, действующих на систему внешних сил за тот же промежуток времени.

В проекциях на координатные оси будет:

Укажем на связь между доказанной теоремой и теоремой о движении центра масс. Так как , то, подставляя это значение в равенство (20) и учитывая, что получим , т. е. уравнение (16).

Следовательно, теорема о движении центра масс и теорема об изменении количества движения системы представляют собой, по существу, две разные формы одной и той же теоремы. В тех случаях, когда изучается движение твердого тела (или системы тел), можно в равной мере пользоваться любой из этих форм, причем уравнением (16) обычно пользоваться удобнее. Для непрерывной же среды (жидкость, газ) при решении задач обычно пользуются теоремой об изменении количества движения системы. Важные приложения эта теорема имеет также в теории удара (см. гл. XXXI) и при изучении реактивного движения (см. § 114).

Количеством движения системы называют геометрическую сумму количеств движения всех материальных точек системы

Для выяснения физического смысла (70) вычислим производную от (64)

. (71)

Решая совместно (70) и (71), получим

. (72)

Таким образом, вектор количества движения механической системы определяется произведением массы системы на скорость ее центра масс .

Вычислим производную от (72)

. (73)

Решая совместно (73) и (67), получим

. (74)

Уравнение (74) выражает следующую теорему.

Теорема: Производная по времени от вектора количества движения системы равна геометрической сумме всех внешних сил системы.

При решении задач уравнение (74) необходимо спроектировать на координатные оси:

. (75)

Из анализа (74) и (75) вытекает следующий закон сохранения количества движения системы : Если сумма всех сил системы равна нулю, то вектор количества движения ее сохраняет свою величину и направление.

Если
, то
,Q = const . (76)

В частном случае этот закон может выполнять вдоль одной из координатных осей.

Если
, то,Q z = const . (77)

Теорему об изменении количества движения целесообразно использовать в тех случаях, когда в систему входят жидкие и газообразные тела.

Теорема об изменении кинетического момента механической системы

Количество движения характеризует только поступательную составляющую движения. Для характеристики вращательного движения тела введено понятие главного момента количеств движения системы относительно заданного центра (кинетического момента).

Кинетическим моментом системы относительно данного центра называется геометрическая сумма моментов количеств движения всех его точек относительно того же центра

. (78)

Проектируя (22) на оси координат можно получить выражение кинетического момента относительно координатных осей

. (79)

Кинетический момент тела относительно осей равен произведению момента инерции тела относительно этой оси на угловую скорость тела

. (80)

Из (80) следует, что кинетический момент характеризует только вращательную составляющую движения.

Характеристикой вращательного действия силы является ее момент относительно оси вращения.

Теорема об изменении кинетического момента устанавливает взаимосвязь между характеристикой вращательного движения и силой, вызывающей это движение.

Теорема: Производная по времени от вектора кинетического момента системы относительно некоторого центра равна геометрической сумме моментов всех внешних сил системы относительно того же центра

. (81)

При решении инженерных задач (81) необходимо спроектировать на координатные оси

Их анализа (81) и (82) вытекает закон сохранения кинетического момента : Если сумма моментов всех внешних сил относительно центра (или оси) равна нулю, то кинетический момент системы относительно этого центра (или оси) сохраняет свою величину и направление.

,

или

Кинетический момент нельзя изменить действием внутренних сил системы, но за счет этих сил можно изменить момент инерции, а следовательно угловую скорость.

Количество движения мерой механического движения, если механическое движение перейдет в механическое. Например, механическое движение бильярдного шара (рис. 22) до удара переходит в механическое движение шаров после удара. Для точки количество движения равно произведению .

Мерой действия силы в этом случае является импульс силы

. (9.1)

Импульс определяет действие силы за промежуток времени. Для материальной точки теорему об изменении количества движения можно использовать в дифференциальной форме
(9.2) или интегральной (конечной) форме
. (9.3)

Изменение количества движения материальной точки за какой-то промежуток времени равно импульсу всех сил, приложенных к точке за то же время.

Рисунок 22

При решении задач теорема (9.3) чаще используется в проекциях на координатные оси
;

; (9.4)

.

С помощью теоремы об изменении количества движения точки можно решать задачи, в которых на точку или тело, движущееся поступательно, действуют силы постоянные или переменное, зависящие от времени, а в число заданных и искомых величин входят время движения и скорости в начале и конце движения. Задачи с применением теоремы решаются следующей последовательности:

1. выбирают систему координат;

2. изображают все действующие на точку заданные (активные) силы и реакции;

3. записывают теорему об изменении количества движения точки в проекциях на выбранные оси координат;

4. определяют искомые величины.

ПРИМЕР 12.

Молот весом G=2т падает с высоты h=1м на заготовку за время t=0,01с и производит штамповку детали (рис. 23). Определить среднюю силу давления молота на заготовку.

РЕШЕНИЕ.

1. На заготовку действуют сила тяжести молота и реакция опоры. Величина опорной реакции изменяется со временем, поэтому рассмотрим среднее ее значение
.

2. направим ось координат у по вертикали вниз и применим теорему об изменении количества движения точки в проекции на эту ось:
, (1) где-- скорость молота в конце удара;

-- начальная скорость молота в момент соприкосновения с заготовкой.

3. Для определения скорости составим дифференциальное уравнение движения молота в проекции на ось у:

. (2)

Разделим переменные, проинтегрируем дважды уравнение (2):
;

;

. Постоянные интегрирования С 1 , С 2 найдем из начальных условий. При t=0 V y =0, тогда С 1 =0; у=0, тогда С 2 =0. Следовательно, молот движется по закону
, (3) а скорость движения молота изменяется по закону
. (4) Время движения молота выразим из (3) и подставим в (4)
;
. (5)

4. Проекцию импульса внешних сил на ось у найдем по формуле:
. (6) Подставим (5) и (6) в (1):
, откуда находим реакцию опоры, и, следовательно, искомое давление молота на заготовку
т.

Рисунок 24

К

где М-масса системы, V c -скорость центра масс. Теорему об изменении количества движения механической системы можно записать в дифференциальной и конечной (интегральной) форме:
;

. (9.7)

оличество движения механической системы можно определить как сумму количеств движения точек системы
. (9.5) Количество движения системы или твердого тела можно определить, зная массу системы и скорость центра масс
, (9.6)

Изменение количества движения механической системы за некоторый промежуток времени равно сумме импульсов внешних сил, Действующих за то же время. Иногда удобнее пользоваться теоремой об изменении количества движения в проекции на оси координат
; (9.8)
. (9.9)

Закон сохранения количества движения устанавливает, что при отсутствии внешних сил количество движения механической системы остается постоянным. Действие внутренних сил не может изменить количества движения системы. Из уравнения (9.6) видно, что при
,
.

Если
, то
или
.

Д

гребного винта или пропеллера, реактивного движения. Кальмары движутся рывками, выбрасывая воду из мускульного мешка по принципу водомета (рис. 25). Отталкиваемая вода обладает известным количеством движения, направленным назад. Кальмар получает при этом соответствующую скорость движения вперед за счет реактивной силы тяги, так как перед выпрыгиванием кальмара силауравновешивается силой тяжести.

ействие закона сохранения количества движения механической системы можно проиллюстрировать на примере явления отдачи или отката при стрельбе, работы

Применение теоремы об изменении количества движения позволяет исключить из рассмотрения все внутренние силы.

ПРИМЕР 13.

На железнодорожной платформе, свободно стоящей на рельсах, установлена лебедка А с барабаном радиуса r (рис. 26). Лебедка предназначена для перемещения по платформе груза В массой m 1 . Масса платформы с лебедкой m 2 . Барабан лебедки вращается по закону
. В начальный момент времени система была подвижна. Пренебрегая трением, найти закон изменения скорости платформы после включения лебедки.

РЕШЕНИЕ.

1. Рассмотрим платформу, лебедку и груз как единую механическую систему, на которую действуют внешние силы: сила тяжести груза и платформыи реакциии
.

2. Так как все внешние силы перпендикулярны оси х, т.е.
, применим закон сохранения количества движения механической системы в проекции на ось х:
. В начальный момент времени система была неподвижна, следовательно,

Выразим количество движения системы в произвольный момент времени. Платформа движется поступательно со скоростью , груз совершает сложное движение, состоящее из относительного движения по платформе со скоростьюи переносного движения вместе с платформой со скоростью., откуда
. Платформа будет перемещаться в сторону, противоположную относительному движению груза.

ПРИМЕР 14.

М

РЕШЕНИЕ.

1. Применим теорему об изменении количества движения механической системы в проекции на ось х. Так как все действующие на систему внешние силы вертикальны, то
, тогда
, откуда
. (1)

2. Выразим проекцию количества движения на ось х для рассматриваемой механической системы
,

еханическая система состоит из прямоугольной вертикальной плиты 1 массойm 1 =18кг, движущейся вдоль горизонтальных направляющих и груза D массой m 2 =6кг. В момент времени t 0 =0, когда плита двигалась со скоростью u 0 =2м/с, груз начал движение вдоль желоба в соответствии с уравнением S=AD=0,4sin(t 2) (S-в метрах, t-в секундах), (рис. 26). Определить скорость плиты в момент времени t 1 =1с, используя теорему об изменении количества движения механической системы.

где ,
-- количество движения пластины и груза соответственно.


;
, где--абсолютная скорость грузаD. Из равенства (1) следует, что К 1х +К 2х =С 1 или m 1 u x +m 2 V Dx =C 1 . (2) Для определения V Dx рассмотрим движение груза D как сложное, считая его движение по отношению к пластине относительным, а движение самой пластины переносным, тогда
, (3)
;или в проекции на ось х:. (4) Подставим (4) в (2):
. (5) Постоянную интегрирования С 1 определим из начальных условий: при t=0 u=u 0 ; (m 1 +m 2)u 0 =C 1 . (6) Подставляя значение постоянной С 1 в уравнение (5), получаем

м/с.

(Фрагменты математической симфонии)

Связь импульса силы с основным уравнением ньютоновской динамики выражает теорема об изменении количества движения материальной точки.

Теорема. Изменение количества движения материальной точки за некоторый промежуток времени равно импульсу силы (), действующей на материальную точку за тот же промежуток времени. Математическое доказательство этой теоремы можно назвать фрагментом математической симфонии. Вот он.

Дифференциал количества движения материальной точки равен элементарному импульсу силы, действующей на материальную точку. Интегрируя выражение (128) дифференциала количества движения материальной точки, имеем

(129)

Теорема доказана и математики считают свою миссию законченной, а у инженеров, судьба которых - свято верить математикам, возникают вопросы при использовании доказанного уравнения (129). Но их прочно блокирует последовательность и красота математических действий (128 и 129), которые завораживают и побуждают назвать их фрагментом математической симфонии. Сколько поколений инженеров соглашались с математиками и трепетали перед таинственностью их математических символов! Но вот нашёлся инженер, несогласный с математиками, и задаёт им вопросы.

Уважаемые математики! Почему ни в одном из Ваших учебников по теоретической механике не рассматривается процесс применения Вашего симфонического результата (129) на практике, например, при описании процесса разгона автомобиля? Левая часть уравнения (129) предельно понятна. Автомобиль начинает разгон со скорости и завершает его, например, на скорости . Вполне естественно, что уравнение (129) становится таким

И сразу возникает первый вопрос: как же из уравнения (130) определить силу , под действием которой автомобиль разогнан до скорости 10м/с? Ответа на этот вопрос нет ни в одном из неисчислимых учебников по теоретической механике. Пойдём дальше. После разгона автомобиль начинает равномерное движение с достигнутой скоростью 10м/с. Какая же сила движет автомобиль????????? У меня ничего не остаётся, как краснеть вместе с математиками. Первый закон ньютоновской динамики утверждает, что при равномерном движении автомобиля на него не действуют никакие силы, а автомобиль, образно говоря, чихает на этот закон, расходует бензин и совершает работу, перемещаясь, например, на расстояние 100 км. А где же сила, совершившая работу по перемещению автомобиля на 100км? Симфоническое математическое уравнение (130) молчит, а жизнь продолжается и требует ответа. Начинаем искать его.

Поскольку автомобиль движется прямолинейно и равномерно, то сила, перемещающая его, постоянна по величине и направлению и уравнение (130) становится таким

(131)

Итак, уравнение (131) в данном случае описывает ускоренное движение тела. Чему же равна сила ? Как выразить её изменение с течением времени? Математики предпочитают обходить этот вопрос и оставляют его инженерам, полагая, что они должны искать ответ на этот вопрос. У инженеров остаётся одна возможность – учесть, что если после завершения ускоренного движения тела, наступает фаза равномерного движения, которое сопровождается под действием постоянной силы представить уравнение (131) для момента перехода от ускоренного к равномерному движению в таком виде

(132)

Стрелка в этом уравнении означает не результат интегрирования этого уравнения, а процесс перехода от его интегрального вида к упрощённому виду. Сила в этом уравнении эквивалентна усреднённой силе, изменившей количество движения тела от нуля до конечного значения . Итак, уважаемые, математики и физики-теоретики, отсутствие Вашей методики определения величины Вашего импульса вынуждает нас упрощать процедуру определения силы , а отсутствие методики определения времени действия этой силы вообще ставит нас в безвыходное положение и мы вынуждены использовать выражение для анализа процесса изменения количества движения тела. В результате получается, чем дольше будет действовать сила , тем больше её импульс . Это явно противоречит давно сложившимся представлениям о том, что импульс силы тем больше, чем меньше время его действия.

Обратим внимание на то, что изменение количества движения материальной точки (импульса силы) при ускоренном её движении происходит под действием ньютоновской силы и сил сопротивления движению, в виде сил, формируемых механическими сопротивлениями, и силой инерции. Но ньютоновская динамика в абсолютном большинстве задач игнорирует силу инерции, а Механодинамика утверждает, что изменение количества движения тела при его ускоренном движении происходит за счёт превышения величины ньютоновской силы над силами сопротивления движению, в том числе и над силой инерции.

При замедленном движении тела, например, автомобиля с выключенной передачей, ньютоновская сила отсутствует, и изменение количества движения автомобиля происходит за счёт превышения сил сопротивления движению над силой инерции, которая движет автомобиль при его замедленном движении .

Как же теперь вернуть результаты отмеченных «симфонических» математических действий (128) в русло причинно-следственных связей? Выход один – найти новое определение понятиям «импульс силы» и «ударная сила». Для этого разделим обе части уравнения (132) на время t. В результате будем иметь

. (133)

Обратим внимание на то, что выражение mV/t - скорость изменения количества движения (mV/t) материальной точки или тела. Если учесть, что V/t – ускорение, то mV/t - сила, изменяющая количество движения тела. Одинаковая размерность слева и с права знака равенства даёт нам право назвать силу F ударной силой и обозначить её символом , а импульс S - ударным импульсом и обозначить его символом . Из этого следует и новое определение ударной силы. Ударная сила , действующая на материальную точку или тело, равна отношению изменения количества движения материальной точки или тела ко времени этого изменения.

Обратим особое внимание на то, что в формировании ударного импульса (134) участвует только ньютоновская сила, которая изменила скорость автомобиля от нулевого значения до максимального - , поэтому уравнение (134) всецело принадлежит ньютоновской динамике. Поскольку величину скорости фиксировать экспериментально значительно легче, чем - ускорения, то формула (134) очень удобна для расчётов.

Из уравнения (134) следует такой необычный результат.

Обратим внимание на то, что согласно новым законам механодинамики генератором импульса силы при ускоренном движении материальной точки или тела является ньютоновская сила . Она формирует ускорение движения точки или тела, при котором автоматически возникает сила инерции, направленная противоположно ньютоновской силе и ударная ньютоновская сила должна преодолевать действие силы инерции, поэтому сила инерции должна быть представлена в балансе сил в левой части уравнения (134). Так как сила инерции равна массе точки или тела, умноженной на замедление , которое она формирует, то уравнение (134) становится таким

(136)

Уважаемые математики! Видите, какой вид приняла математическая модель, описывающая ударный импульс, который ускоряет движение ударяемого тела от нулевой скорости до максимальной V (11). Теперь проверим её работу в определении ударного импульса , который равен ударной силе , выстрелившей 2-й энергоблок СШГ (рис. 120), а Вам оставим Ваше бесполезное уравнение (132). Чтобы не усложнять изложение, мы оставим пока формулу (134) в покое и воспользуемся формулами, дающими усреднённые значения сил. Видите, в какое положение Вы ставите инженера, стремящегося решить конкретную задачу.

Начнём с динамики Ньютона. Эксперты установили, что 2-й энергоблок поднялся на высоту 14м. Поскольку он поднимался в поле силы тяжести, то на высоте h=14м его потенциальная энергия оказалась равной

а средняя кинетическая энергия была равна

Рис. 120. Фото машинного зала до катастрофы

Из равенства кинетической (138) и потенциальной (137) энергий следует средняя скорость подъёма энергоблока (рис. 121, 122)

Рис. 121. Фотон машинного зала после катастрофы

Согласно новым законам механодинамики подъём энергоблока состоял из двух фаз (рис. 123): первая фаза ОА - ускоренный подъём и вторая фаза АВ – замедленный подъём , , .

Время и расстояния их действия, примерно, равны (). Тогда кинематическое уравнение ускоренной фазы подъёма энергоблока запишется так

. (140)

Рис. 122. Вид колодца энергоблока и самого энергоблока после катастрофы

Закон изменения скорости подъёма энергоблока в первой фазе имеет вид

. (141)

Рис. 123. Закономерность изменения скорости V полёта энергоблока

Подставляя время из уравнения (140) в уравнение (141), имеем

. (142)

Время подъёма блока в первой фазе определится из формулы (140)

. (143)

Тогда общее время подъёма энергоблока на высоту 14м будет равно . Масса энергоблока и крышки равна 2580 тонн. Согласно динамике Ньютона сила , поднимавшая энергоблок, равна

Уважаемые математики! Следуем Вашим симфоническим математическим результатам и записываем Вашу формулу (129), следующую из динамики Ньютона, для определения ударного импульса, выстрелившего 2-й энергоблок

и задаём элементарный вопрос: как определить время действия ударного импульса, выстрелившего 2-й энергоблок????????????

Уважаемые!!! Вспомните, сколько мела исписали на учебных досках поколения Ваших коллег, заумно уча студентов, как определять ударный импульс и никто не пояснил, как определять время действия ударного импульса в каждом конкретном случае. Вы скажете время действия ударного импульса равно интервалу времени изменения скорости энергоблока от нуля до, будем считать, максимального значения 16,75 м/с (139). Оно в формуле (143) и равно 0,84 с. Соглашаемся пока с Вами и определяем усреднённую величину ударного импульса

Сразу возникает вопрос: а почему величина ударного импульса (146) меньше ньютоновской силы 50600тонн? Ответа, у Вас, уважаемые математики, нет . Пойдём дальше.

Согласно динамике Ньютона, главная сила, которая сопротивлялась подъёму энергоблока, - сила тяжести . Так как эта сила направлена против движения энергоблока, то она генерирует замедление, которое равно ускорению свободного падения . Тогда сила гравитации, действующая на летящий вверх энергоблок, равна

Других сил, препятствовавших действию ньютоновской силы 50600 тонн (144), динамика Ньютона не учитывает, а механодинамика утверждает, что подъёму энергоблока сопротивлялась и сила инерции, равная

Сразу возникает вопрос: как найти величину замедления движению энергоблока? Динамика Ньютона молчит, а механодинамика отвечает: в момент действия ньютоновской силы, поднимавшей энергоблок, ей сопротивлялись: сила тяжести и сила инерции, поэтому уравнение сил, действовавших на энергоблок в этот момент, записывается так .

Так как масса точки постоянна, а ее ускорение то уравнение (2), выражающее основной закон динамики, можно представить в виде

Уравнение (32) выражает одновременно теорему об изменении количества движения точки в дифференциальной форме: производная по времени от количества движения точки равна сумме действующих на точку сил

Пусть движущаяся точка имеет в момент времени скорость а в момент - скорость Умножим тогда обе части равенства (32) на и возьмем от них определенные интегралы. При этом справа, где интегрирование идет по времени, пределами интеграла будут а слева, где интегрируется скорость, пределами интеграла будут соответствующие значения скорости

Так как интеграл от равен то в результате получим

Стоящие справа интегралы, как следует из формулы (30), представляют собой импульсы действующих сил. Поэтому окончательно будет

Уравнение (33) выражает теорему об изменении количества движения точки в конечном виде: изменение количества движения точки за некоторый промежуток времени равно сумме импульсов всех действующих на точку сил за тот же промежуток времени.

При решении задач вместо векторного уравнения (33) часто пользуются уравнениями в проекциях. Проектируя обе части равенства (33) на координатные оси, получим

В случае прямолинейного движения, происходящего вдоль оси теорема выражается первым из этих уравнений.

Решение задач. Уравнения (33) или (34) позволяют, зная как при движении точки изменяется ее скорость, определить импульс действующих сил (первая задача динамики) или, зная импульсы действующих сил, определить, как изменяется при движении скорость точки (вторая задача динамики). При решении второй задачи, когда заданы силы, надо вычислить их импульсы, Как видно из равенств (30) или (31), это можно сделать лишь тогда, когда силы постоянны или зависят только от времени.

Таким образом, уравнения (33), (34) можно непосредственно использовать для решения второй задачи динамики, когда в задаче в число данных и искомых величин входят: действующие силы, время движения точки и ее начальная и конечная скорости (т. е. величины ), причем силы должны быть постоянными или зависящими только от времени.

Задача 95. Точка, масса которой кг, движется по окружности с численно постоянной скоростью Определить импульс действующей на точку силы за время, в течение которого точка проходит четверть окружности

Решение. По теореме об изменении количества движения Строя геометрически разность этих количеств движения (рис. 222), находим из полученного прямоугольного треугольника

Но по условиям задачи следовательно,

Для аналитического подсчета можно, используя первые два из уравнений (34), найти

Задача 96. Грузу, имеющему массу и лежащему на горизонтальной плоскости, сообщают (толчком) начальную скорость Последующее движение груза тормозится постоянной силой F. Определить, через сколько времени груз остановится,

Решение. По данным задачи видно, что для определения времени движения можно воспользоваться доказанной теоремой. Изображаем груз в произвольном положении (рис. 223). На него действуют сила тяжести Р, реакция плоскости N и тормозящая сила F. Направляя ось в сторону движения, составляем первое из уравнений (34)

В данном случае - скорость в момент остановки), а . Из сил проекцию на ось дает только сила F. Так как она постоянна, то где - время торможения. Подставляя все эти данные в уравнение (а), получаем откуда искомое время

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.