Современная взрывчатка. Идеальную взрывчатку не придумают никогда? Из воздуха и воды

С тех пор как изобрели порох не прекращается мировая гонка за самую мощную взрывчатку. Актуально это и сегодня, несмотря на появление ядерного оружия.

Гексоген – взрывоопасное лекарство

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентировал лекарство гексоген – аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил – 285 кубических сантиметров. Иными словами, гексаген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

Октоген — полмиллиарда долларов на воздух

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один – с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

В 80-х годах прошлого века после того, как советские химики, в том числе и Е.Ю. Орлова, разработали эффективную и недорогую технологию синтеза октогена, в больших объемах он стал выпускаться и у нас.

Астролит – хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5 показал, что взрывчатка оказалось лишь в два раза мощнее тротила.

После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост – был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт.

В реальности всё закончилось грустно и анекдотично. Полученные окопы источали такой отвратительный запах, что американские солдаты стремились их покинуть любой ценой, невзирая на приказы и опасность для жизни. Те же, кто оставался, теряли сознание. Неиспользованные комплекты военнослужащие за свой счет отправили назад – в офис фирмы EXCOA.

Взрывчатка, которая убивает своих

Наряду гексогеном и октогеном, классикой взрывчатых веществ считают трудно произносимый тетранитропентаэритрит, который чаще называют тэном. Однако из-за высокой чувствительности он так и не получил широкого применения. Дело в том, что для военных целей важна не столько взрывчатка, которая разрушительнее других, сколько – та, которая при этом не взрывается от любого прикосновения, то есть с низкой чувствительностью.

Особенно придирчиво к этому вопросы относятся американцы. Именно они разработали натовский стандарт STANAG 4439 для чувствительности взрывчатки, которая может использоваться в военных целях. Правда, это произошло уже после череды тяжелейших инцидентов, в числе которых: взрыв склада на американской базе ВВС «Бьен-Хо» во Вьетнаме, стоивший жизни 33 техникам; катастрофа на борту авианосца «Форрестол», в результате которой было повреждено 60 самолетов; детонация в хранилище авиационных ракет на борту авианосца «Орискани» (1966 года) тоже с многочисленными жертвами.

Китайский разрушитель

В 80 годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу «мочевины» — один её килограмм заменял двадцать два килограмма тротила.

Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ, и при этом обладает максимальным кислородным коэффициентом. То есть, во время взрыва стопроцентно сжигается весь материал. Кстати, у тротила он равен 0.74.

В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» — динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.

Мечта пироманов – CL-20

Взрывчатка CL-20 на сегодня позиционируется, как одна из самых мощных. В частности, СМИ, в том числе и российские, утверждают, что один кг CL-20 вызывают разрушения, на которые требуется 20кг тротила.

Интересно, что деньги на разработку СL-20 Пентагон выделил лишь после того, как в американской прессе появилось сообщение, что такую взрывчатку уже сделали в СССР. В частности один из докладов на эту тему назывался так: «Возможно, это вещество разработано русскими в институте Зелинского».

В реальности в качестве перспективного взрывчатого вещества американцы рассматривали другую взрывчатку, впервые полученную в СССР, а именно диаминоазоксифуразан. Наряду с высокой мощностью, значительно превосходящей октоген, оно обладает низкой чувствительностью. Единственное, что сдерживает его широкое применение – отсутствие промышленных технологий.

ВЗРЫВЧАТЫЕ ВЕЩЕСТВА (а. explosives, blasting agents; н. Sprengstoffe; ф. explosifs; и. explosivos) — химические соединения или смеси веществ, способные в определённых условиях к крайне быстрому (взрывному) самораспространяющемуся химическому превращению с выделением тепла и образованием газообразных продуктов.

Взрывчатыми могут быть вещества или смеси любого агрегатного состояния. Широкое применение в получили так называемые конденсированные взрывчатые вещества, которые характеризуются высокой объёмной концентрацией тепловой энергии. В отличие от обычных топлив, требующих для своего горения поступления извне газообразного , такие взрывчатые вещества выделяют тепло в результате внутримолекулярных процессов распада или реакций взаимодействия между составными частями смеси, продуктами их разложения или газификации. Специфический характер выделения тепловой энергии и преобразования её в кинетическую энергию продуктов взрыва и энергию ударной волны определяет основную область применения взрывчатых веществ как средства дробления и разрушения твёрдых сред (главным образом ) и сооружений и перемещения раздробленной массы (см. ).

В зависимости от характера внешнего воздействия химические превращения взрывчатых веществ происходят: при нагреве ниже температуры самовоспламенения (вспышки) — сравнительно медленное термическое разложение; при поджигании — горение с перемещением зоны реакции (пламени) по веществу с постоянной скоростью порядка 0,1-10 см/с; при ударно-волновом воздействии — детонация взрывчатых веществ.

Классификация взрывчатых веществ . Имеется несколько признаков классификации взрывчатых веществ: по основным формам превращения, назначению и химическому составу. В зависимости от характера превращения в условиях эксплуатации взрывчатые вещества подразделяют на метательные (или ) и . Первые используют в режиме горения, например, в огнестрельном оружии и ракетных двигателях, вторые — в режиме , например, в боеприпасах и на . Бризантные взрывчатые вещества, применяемые в промышленности, называются . Обычно к собственно взрывчатым относят только бризантные взрывчатые вещества. В химическом отношении перечисленные классы могут комплектоваться одними и теми же соединениями и веществами, но по-разному обработанными или взятыми при смешении в разном соотношении.

По восприимчивости к внешним воздействиям бризантные взрывчатые вещества подразделяют на первичные и вторичные. К первичным относят взрывчатые вещества, способные взрываться в небольшой массе при поджигании (быстрый переход горения в детонацию). Они также значительно более чувствительны к механическим воздействиям, чем вторичные. Детонацию вторичных взрывчатых веществ легче всего вызвать (инициировать) ударно-волновым воздействием, причём давление в инициирующей ударной волне должно быть порядка несколько тысяч или десятков тысяч МПа. Практически это осуществляют с помощью небольших масс первичных взрывчатых веществ, помещённых в , детонация в которых возбуждается от луча огня и контактно передаётся вторичному взрывчатому веществу. Поэтому первичные взрывчатые вещества называются также . Другие виды внешнего воздействия (поджигание, искра, удар, трение) лишь в особых и труднорегулируемых условиях приводят к детонации вторичных взрывчатых веществ. По этой причине широкое и целенаправленное использование бризантных взрывчатых веществ в режиме детонации в гражданской и военной взрывной технике было начато лишь после изобретения капсюля-детонатора как средства инициирования детонации во вторичных взрывчатых веществах.

По химическому составу взрывчатые вещества подразделяют на индивидуальные соединения и взрывчатые смеси. В первых химические превращения при взрыве происходят в форме реакции мономолекулярного распада. Конечные продукты — устойчивые газообразные соединения, такие, как , окись и двуокись , пары воды.

Во взрывчатых смесях процесс превращения состоит из двух стадий: распада или газификации компонентов смеси и взаимодействия продуктов распада (газификации) между собой или с частицами неразлагающихся веществ (например, металлов). Наиболее распространённые вторичные индивидуальные взрывчатые вещества относятся к азотсодержащим ароматическим, алифатическим гетероциклическим органическим соединениям, в том числе нитросоединениям ( , ), нитроаминам ( , ), нитроэфирам ( , ). Из неорганических соединений слабыми взрывчатыми свойствами обладает, например, аммиачная селитра.

Многообразие взрывчатых смесей может быть сведено к двум основным типам: состоящие из окислителей и горючих, и смеси, в которой сочетание компонентов определяет эксплуатационные или технологические качества смеси. Смеси окислитель — горючее рассчитаны на то, что значительная часть тепловой энергии выделяется при взрыве в результате вторичных реакций окисления. В качестве компонентов этих смесей могут быть как взрывчатые, так и невзрывчатые соединения. Окислители, как правило, при разложении выделяют свободный кислород, который необходим для окисления (с выделением тепла) горючих веществ или продуктов их разложения (газификации). В некоторых смесях (например, содержащиеся в качестве горючего металлические порошки) в качестве окислителей могут быть также использованы вещества, выделяющие не кислород, а кислородсодержащие соединения (пары воды, углекислый газ). Эти газы реагируют с металлами с выделением тепла. Пример такой смеси — .

В качестве горючих применяют различного рода природные и синтетические органические вещества, которые при взрыве выделяют продукты неполного окисления (окись углерода) или горючие газы ( , ) и твёрдые вещества (сажу). Наиболее распространённым видом бризантных взрывчатых смесей первого типа являются взрывчатые вещества, содержащие в качестве окислителя нитрат аммония. В зависимости от вида горючего они, в свою очередь, подразделяются на , аммотолы и аммоналы. Менее распространены хлоратные и перхлоратные взрывчатые вещества, в состав которых в качестве окислителей входят хлорат калия и перхлорат аммония, оксиликвиты — смеси жидкого кислорода с пористым органическим поглотителем, смеси на основе других жидких окислителей. К взрывчатым смесям второго типа относятся смеси индивидуальных взрывчатых веществ, например динамиты; смеси тротила с гексогеном или тэном (пентолит), наиболее пригодные для изготовления .

В смеси обоих типов, кроме указанных компонентов, в зависимости от назначения взрывчатых веществ могут вводиться и другие вещества для придания взрывчатому веществу каких-либо эксплуатационных свойств, например, повышающие восприимчивость к средствам инициирования, или, напротив, снижающие чувствительность к внешним воздействиям; гидрофобные добавки — для придания взрывчатому веществу водостойкости; пластификаторы, соли-пламегасители — для придания предохранительных свойств (см. Предохранительные взрывчатые вещества). Основные эксплуатационные характеристики взрывчатых веществ (детонационные и энергетические характеристики и физико-химические свойства взрывчатых веществ) зависят от рецептурного состава взрывчатых веществ и технологии изготовления.

Детонационная характеристика взрывчатых веществ включает детонационную способность и восприимчивость к детонационному импульсу. От них зависят безотказность и надёжность взрывания. Для каждого взрывчатого вещества при данной плотности имеется такой критический диаметр заряда, при котором детонация устойчиво распространяется по всей длине заряда. Мерой восприимчивости взрывчатых веществ к детонационному импульсу служат критическое давление инициирующей волны и время его действия, т.е. величина минимального инициирующего импульса. Её часто выражают в единицах массы какого-либо инициирующего взрывчатого вещества или вторичного взрывчатого вещества с известными параметрами детонации. Детонация возбуждается не только при контактном подрыве инициирующего заряда. Она может передаваться и через инертные среды. Это имеет большое значение для , состоящих из нескольких патронов, между которыми возникают перемычки из инертных материалов. Поэтому для патронированных взрывчатых веществ проверяется показатель передачи детонации на расстояние через различные среды (обычно через воздух).

Энергетические характеристики взрывчатых веществ. Способность взрывчатых веществ при взрыве производить механическую работу определяется запасом энергии, высвобождаемой в виде тепла при взрывчатом превращении. Численно эта величина равна разности между теплотой образования продуктов взрыва и теплотой образования (энтальпией) самого взрывчатого вещества. Поэтому коэффициент преобразования тепловой энергии в работу у металлсодержащих и предохранительных взрывчатых веществ, образующих при взрыве твёрдые продукты (окислы металлов, соли-пламегасители) с высокой теплоёмкостью, ниже, чем у взрывчатых веществ, образующих только газообразные продукты. О способности взрывчатых веществ к местному дробящему или бризантному действию взрыва см. в ст. .

Изменение свойств взрывчатых веществ может происходить в результате физико-химических процессов, влияния температуры, влажности, под воздействием нестойких примесей в составе взрывчатых веществ и др. В зависимости от вида укупорки устанавливают гарантийный срок хранения или использования взрывчатых веществ, в течение которого нормированные показатели взрывчатых веществ либо не должны изменяться, либо их изменение происходит в пределах установленного допуска.

Основной показатель безопасности в обращении с взрывчатыми веществами — их чувствительность к механическим и тепловым воздействиям. Она обычно оценивается экспериментально в лабораторных условиях по специальным методикам. В связи с массовым внедрением механизированных способов перемещения больших масс сыпучих взрывчатых веществ к ним предъявляются требования минимальной электризации и низкой чувствительности к разряду статического электричества.

Историческая справка . Первым из взрывчатых веществ был изобретенный в Китае (7 в.) чёрный (дымный) порох. В Европе он известен с 13 в. С 14 в. порох применяли в качестве метательного средства в огнестрельном оружии. В 17 в. (впервые на одном из рудников Словакии) порох использовали на взрывных работах в горном деле, а также для снаряжения артиллерийских гранат (разрывных ядер). Взрывчатое превращение чёрного пороха возбуждалось поджиганием в режиме взрывного горения. В 1884 французским инженером П. Вьелем был предложен бездымный порох. В 18-19 вв. был синтезирован ряд химических соединений, обладающих взрывчатыми свойствами, в том числе пикриновая кислота, пироксилин, нитроглицерин, тротил и др., однако их использование в качестве бризантных детонирующих взрывчатых веществ стало возможным только после открытия русским инженером Д. И. Андриевским (1865) и шведским изобретателем А. Нобелем (1867) гремучертутного запала (капсюля-детонатора). До этого в России по предложению Н. Н. Зинина и В. Ф. Петрушевского (1854) нитроглицерин использовался при подрывах взамен чёрного пороха в режиме взрывного горения. Сама гремучая ртуть была получена ещё в конце 17 в. и повторно английским химиком Э. Хоуардом в 1799, но способность её детонировать тогда не была известна. После открытия явления детонации бризантные взрывчатые вещества получили широкое применение в горном и военном деле. Среди промышленных взрывчатых веществ первоначально по патентам А. Нобеля наибольшее распространение получили гурдинамиты, затем пластичные динамиты, порошкообразные нитроглицериновые смесевые взрывчатые вещества. Аммиачно-селитренные взрывчатые вещества были запатентованы ещё в 1867 И. Норбином и И. Ольсеном (Швеция), но их практическое использование в качестве промышленных взрывчатых веществ и для снаряжения боеприпасов началось лишь в годы 1-й мировой войны 1914-18. Более безопасные и экономичные, чем динамиты, они в 30-х годах 20 века начали всё в больших масштабах применяться в промышленности.

После Великой Отечественной войны 1941-45 аммиачно-селитренные взрывчатые вещества, вначале преимущественно в виде тонкодисперсных аммонитов, стали доминирующим видом промышленных взрывчатых веществ в CCCP. В других странах процесс массовой замены динамитов на аммиачно-селитренные взрывчатые вещества начался несколько позже, примерно с середины 50-х гг. С 70-х гг. основные виды промышленных взрывчатых веществ — гранулированные и водосодержащие аммиачно-селитренные взрывчатые вещества простейшего состава, не содержащие нитросоединений или других индивидуальных взрывчатых веществ, а также смеси, содержащие нитросоединения. Тонкодисперсные аммиачно-селитренные взрывчатые вещества сохранили своё значение главным образом для изготовления патронов-боевиков, а также для некоторых специальных видов взрывных работ. Индивидуальные взрывчатые вещества, в особенности тротил, широко применяются для изготовления шашек-детонаторов, а также для длительного заряжания обводнённых скважин, в чистом виде () и в высоководоустойчивых взрывчатых смесях, гранулированных и суспензионных (водосодержащих). Для в глубоких применяют и .

Результаты испытаний взрывчатых веществ на проникающую способность: справа — для 30-граммового заряда октогена, слева — для такого же заряда CL-20



Поиск все более мощных взрывчатых веществ продолжается столетиями. Традиционный порох уже давно сошел со сцены, но появление компактных роботизированных средств ведения войны, в том числе и беспилотников, лишь стимулируют новые поиски. Меньшие размеры и масса боеголовок сохранят убийственную силу своих более крупных предшественников лишь благодаря новейшим достижениям химиков.

Идеальное взрывчатое вещество — это обязательно баланс между максимальной взрывчатой силой и максимальной стабильностью при хранении и транспортировке. Это еще и максимальная плотность химической энергии, минимальная цена в производстве и, желательно, экологическая безопасность. Добиться всего этого нелегко, поэтому для разработок в этой области обычно берут уже зарекомендовавшие себя формулы — ТНТ, гексоген, пентрит, гексанитростильбен и т. п. — и пытаются улучшить одну из нужных характеристик без ущерба для остальных. Полностью новые соединения появляются крайне редко.

Интересным исключением из этого правила может стать гексанитрогексаазаизовюрцитан (CL-20), готовый войти в элитный список популярных взрывчатых веществ. Впервые синтезированный в Калифорнии в 1986 г. (отсюда и CL в его сокращенном названии), он содержит химическую энергию в максимально плотном виде. Пока что его промышленно производят считанные компании по цене более 1300 долларов за килограмм, однако при переходе к большим масштабам синтеза стоимость может упасть, по мнению экспертов, в 5−10 раз.

Сегодня одним из самых эффективных боевых взрывчатых веществ является октоген , который используется в пластических зарядах и цена которого составляет порядка 100 долларов за килограмм. Однако CL-20 (взгляните на иллюстрацию слева) демонстрирует заметно большую мощность: в тестах на проникающую способность сквозь стальные блоки он на 40% более эффективен. Эта мощь обеспечивается большей скоростью детонации (9660 м/с против 9100 м/с) и большей плотностью вещества (2,04 г/см3 против 1,91).

Такая невероятная сила позволяет считать, что CL-20 будет особенно полезен в применении именно с компактными боевыми системами — такими, как современные беспилотники. Однако он опасно чувствителен к ударам и сотрясениям — примерно как пентрит , соединение, наиболее чувствительное к ним из всех используемых взрывчатых веществ. Поначалу предполагалось, что CL-20 удастся использовать вместе с пластиковым связывающим компонентом (в соотношении 9:1), хотя при этом параллельно со снижением опасности детонации снижается и взрывчатая сила.

Словом, история CL-20, начавшись в 1980-х, пока что оборачивалась не слишком удачно. Однако химики не перестают экспериментировать с ним. Одним из них стал и американский профессор Адам Матцгер (Adam Matzger), под руководством которого вещество, кажется, удалось усовершенствовать до приемлемого вида. Авторы попробовали изменить у него не структуру, а форму.

Здесь стоит сказать, что если взять смесь кристаллов двух разных веществ, отдельная молекула каждого кристалла оказывается в окружении таких же, как она, соседей. Свойства смеси оказываются чем-то средним между свойствами того и другого вещества в чистом виде. Вместо этого Матцгер с коллегами попробовали метод совместной кристаллизации из общего раствора — им удалось получить молекулярные кристаллы, содержащие оба вещества одновременно: на две молекулы CL-20 приходится одна молекула октогена.

Изучив свойства этого соединения, ученые выяснили, что скорость детонации его составляет 9480 м/с — то есть, примерно посередине между скоростями для чистых CL-20 и октогена. Зато стабильность почти так же высока, как у чистого октогена (по мнению авторов, за счет формирования между двумя типами молекул дополнительных водородных связей, которые стабилизируют чувствительную молекулу CL-20). Вдобавок, плотность кристалла примерно на 20% выше, чем у октогена, что делает его еще более эффективным. Иначе говоря, такой кристалл оказывается в сравнении с октогеном существенным улучшением и весьма перспективным кандидатом на роль нового «лучшего в мире взрывчатого вещества».

С тех пор как изобрели порох не прекращается мировая гонка за самую мощную взрывчатку. Актуально это и сегодня, несмотря на появление ядерного оружия.

1 Гексоген - взрывоопасное лекарство

Еще в 1899 году для лечения воспаления в мочевых путях немецкий химик Ганс Геннинг запатентовал лекарство гексоген - аналог известного уротропина. Но вскоре медики потеряли к нему интерес из-за побочной интоксикации. Только через тридцать лет выяснилось, что гексоген оказался мощнейшим взрывчатым веществом, причем, более разрушительным, чем тротил. Килограммовая взрывчатка гексогена произведет такие же разрушения, как и 1.25 килограмм тротила.

Специалисты-пиротехники в основном характеризуют взрывчатые вещества фугасностью и бризантностью. В первом случае говорят об объеме газа, выделенного при взрыве. Мол, чем он больше, тем мощнее фугасность. Бризантность, в свою очередь, зависит уже от скорости образования газов и показывает, как взрывчатка может дробить окружающие материалы.

10 грамм гексогена при взрыве выделяют 480 кубических сантиметров газа, тогда как тротил - 285 кубических сантиметров. Иными словами, гексоген в 1.7 мощнее тротила по фугасности и динамичнее в 1,26 раза по бризантности.

Однако в СМИ чаще всего использует некий усредненный показатель. Например, атомный заряд «Малыш», сброшенный 6 августа 1945 года на японский город Хиросима, оценивают в 13-18 килотонн в тротиловом эквиваленте. Между тем это характеризует не мощность взрыва, а говорит о том, сколько необходимо тротила, чтобы выделилось столько же тепла, как и при указанной ядерной бомбардировке.

В 1942 году американский химик Бахманн, проводя опыты с гексогеном, случайно обнаружил новое вещество октоген, причем в виде примеси. Свою находку он предложил военным, однако те отказались. Между тем, через несколько лет, после того, как удалось стабилизировать свойства этого химического соединения, в Пентагоне всё же заинтересовались октогеном. Правда, в чистом виде в военных целях он широко не применялся, чаще всего в литьевой смеси с тротилом. Эта взрывчатка получила название «октолом». Она оказалась на 15% мощнее гексогена. Что касается её эффективности, то считается, что один килограмм октогена произведет столько же разрушений, что и четыре килограмма тротила.

Впрочем, в те годы производство октогена было в 10 раз дороже изготовления гексогена, что сдерживало его выпуск в Советском Союзе. Наши генералы подсчитали, что лучше произвести шесть снарядов с гексогеном, чем один - с октолом. Именно поэтому так дорого обошелся американцам взрыв склада боеприпасов во вьетнамском Куи-Нгоне в апреле 1969 года. Тогда официальный представитель Пентагона заявил, что из-за диверсии партизан ущерб составил 123 миллиона долларов, или примерно 0.5 млрд. долларов в нынешних ценах.

В 80-х годах прошлого века после того, как советские химики, в том числе и Е.Ю. Орлова, разработали эффективную и недорогую технологию синтеза октогена, в больших объемах он стал выпускаться и у нас.

3 Астролит - хорош, но дурно пахнет

В начале 60-х прошлого века американская компания EXCOA презентовала новое взрывчатое вещество на основе гидразина, заявив, что оно в 20 раз мощнее тротила. Прибывших на испытания генералов Пентагона сбил с ног жуткий запах заброшенного общественного туалета. Впрочем, они были готовы его потерпеть. Однако ряд тестов с авиабомбами, заправленными астролитом А 1-5 показал, что взрывчатка оказалось лишь в два раза мощнее тротила.

После того, как чиновники Пентагона забраковали эту бомбу, инженеры из EXCOA предложили новую версию этого взрывчатого вещества уже под маркой «АСТРА-ПАК», причем для рытья окопов методом направленного взрыва. На рекламном ролике солдат тонкой струйкой поливал землю, а затем из укрытия детонировал жидкость. И окоп в человеческий рост - был готов. По своей инициативе компания EXCOA выпустила 1000 комплектов такой взрывчатки и отправила на вьетнамский фронт.

В реальности всё закончилось грустно и анекдотично. Полученные окопы источали такой отвратительный запах, что американские солдаты стремились их покинуть любой ценой, невзирая на приказы и опасность для жизни. Те же, кто оставался, теряли сознание. Неиспользованные комплекты военнослужащие за свой счет отправили назад - в офис фирмы EXCOA.

4 Взрывчатка, которая убивает своих

Наряду гексогеном и октогеном, классикой взрывчатых веществ считают трудно произносимый тетранитропентаэритрит, который чаще называют тэном. Однако из-за высокой чувствительности он так и не получил широкого применения. Дело в том, что для военных целей важна не столько взрывчатка, которая разрушительнее других, сколько - та, которая при этом не взрывается от любого прикосновения, то есть с низкой чувствительностью.

Особенно придирчиво к этому вопросы относятся американцы. Именно они разработали натовский стандарт STANAG 4439 для чувствительности взрывчатки, которая может использоваться в военных целях. Правда, это произошло уже после череды тяжелейших инцидентов, в числе которых: взрыв склада на американской базе ВВС «Бьен-Хо» во Вьетнаме, стоивший жизни 33 техникам; катастрофа на борту авианосца «Форрестол», в результате которой было повреждено 60 самолетов; детонация в хранилище авиационных ракет на борту авианосца «Орискани» (1966 года) тоже с многочисленными жертвами.

5 Китайский разрушитель

В 80 годах прошлого века было синтезировано вещество трициклическая мочевина. Считается, что первыми, кто получил эту взрывчатку, были китайцы. Тесты показали огромную разрушительную силу «мочевины» - один её килограмм заменял двадцать два килограмма тротила.

Эксперты соглашаются с такими выводами, поскольку «китайский разрушитель» имеет самую большую плотность из всех известных взрывчатых веществ, и при этом обладает максимальным кислородным коэффициентом. То есть, во время взрыва стопроцентно сжигается весь материал. Кстати, у тротила он равен 0.74.

В реальности трициклическая мочевина не годится для военных действий, прежде всего, из-за плохой гидролитической стойкости. Уже на следующий день при стандартном хранении она превращается в слизь. Впрочем, китайцам удалось получить другую «мочевину» - динитромочевину, которая хоть и хуже по фугасности, чем «разрушитель», но тоже относится к одному из самых мощных взрывчатых веществ. Сегодня ее выпускают американцы на своих трех пилотных установках.

6 Мечта пироманов - CL-20

Взрывчатка CL-20 на сегодня позиционируется, как одна из самых мощных. В частности, СМИ, в том числе и российские, утверждают, что один кг CL-20 вызывают разрушения, на которые требуется 20кг тротила.

Интересно, что деньги на разработку СL-20 Пентагон выделил лишь после того, как в американской прессе появилось сообщение, что такую взрывчатку уже сделали в СССР. В частности один из докладов на эту тему назывался так: «Возможно, это вещество разработано русскими в институте Зелинского».

В реальности в качестве перспективного взрывчатого вещества американцы рассматривали другую взрывчатку, впервые полученную в СССР, а именно диаминоазоксифуразан. Наряду с высокой мощностью, значительно превосходящей октоген, оно обладает низкой чувствительностью. Единственное, что сдерживает его широкое применение - отсутствие промышленных технологий.

Взрывчатое вещество (ВВ) - химическое соединение или их смесь, способное в результате определённых внешних воздействий или внутренних процессов взрываться, выделяя тепло и образуя сильно нагретые газы.

Комплекс процессов, который происходит в таком веществе, называется детонацией.

Традиционно к взрывчатым веществам также относят соединения и смеси, которые не детонируют, а горят с определенной скоростью (метательные пороха, пиротехнические составы).

Также существуют методы воздействия на различные вещества, приводящие к взрыву (например, лазером или электрической дугой). Обычно такие вещества не называют «взрывчатыми».

Сложность и разнообразие химии и технологии ВВ, политические и военные противоречия в мире, стремление к засекречиванию любой информации в этой области привели к неустойчивым и разнообразным формулировкам терминов.

Взрывчатое вещество (или смесь) - твердое или жидкое вещество (или смесь веществ), которое само по себе способно к химической реакции с выделением газов при такой температуре и таком давлении и с такой скоростью, что это вызывает повреждение окружающих предметов. Пиротехнические вещества включаются в эту категорию даже в том случае, если они не выделяют газов.

Пиротехническое вещество (или смесь) - вещество или смесь веществ, которые предназначены для производства эффекта в виде тепла, огня, звука или дыма или их комбинации.

Под взрывчатыми веществами понимаются как индивидуальные взрывчатые вещества, так и взрывчатые составы, содержащие одно или несколько индивидуальных взрывчатых веществ, металлические добавки и другие компоненты.

Важнейшими характеристиками взрывчатых веществ являются:

Скорость взрывчатого превращения (скорость детонации или скорость горения),

Давление детонации,

Теплота взрыва,

Состав и объём газовых продуктов взрывчатого превращения,

Максимальная температура продуктов взрыва,

Чувствительность к внешним воздействиям,

Критический диаметр детонации,

Критическая плотность детонации.

При детонации разложение ВВ происходит настолько быстро, что газообразные продукты разложения с температурой в несколько тысяч градусов оказываются сжатыми в объёме, близком к начальному объёму заряда. Резко расширяясь, они являются основным первичным фактором разрушительного действия взрыва.

Различают 2 основных вида действия ВВ:

Бризантное (местного действия),

Фугасное (общего действия).

Бризантность - это способность ВВ дробить, разрушать соприкасающиеся с ним предметы (металл, горные породы и т.п.). Величина бризантности говорит о том, насколько быстро образуются при взрыве газы. Чем выше бризантность того или иного ВВ, тем более оно годится для снаряжения снарядов, мин, авиабомб. Такое ВВ при взрыве лучше раздробит корпус снаряда, придаст осколкам наибольшую скорость, создаст более сильную ударную волну. С бризантностью напрямую связана характеристика - скорость детонации, т.е. насколько быстро процесс взрыва распространяется по веществу ВВ. Измеряется бризантность в миллиметрах.

Фугасность - иначе говоря, работоспособность ВВ, способность разрушить и выбросить из области взрыва, окружающие материалы (грунт, бетон, кирпич и т.п.). Эта характеристика определяется количеством, образующихся при взрыве газов. Чем больше образуется газов, тем большую работу способно выполнить данное ВВ. Измеряется фугасность в кубических сантиметрах.

Отсюда становится достаточно ясно, что для различных целей подходят различные ВВ. Например, для взрывных работ в грунте (в шахте, при устройстве котлованов, разрушении ледяных заторов и т.п.) больше подойдет ВВ, обладающее наибольшей фугасностью, а бризантность подойдет любая. Наоборот, для снаряжения снарядов в первую очередь ценна высокая бризантность и не столь важна фугасность.

ВВ широко используются и в промышленности для производства различных взрывных работ.

Ежегодный расход ВВ в странах с развитым промышленным производством даже в мирное время составляет сотни тысяч тонн.

В военное время расход ВВ резко возрастает. Так, в период 1-й мировой войны в воюющих странах он составил около 5 миллионов тонн, а во 2-й мировой войне превысил 10 миллионов тонн. Ежегодное использование ВВ в США в 1990-х годах составляло около 2 миллионов тонн.

В Российской Федерации запрещена свободная реализация взрывчатых веществ, средств взрывания, порохов, всех видов ракетного топлива, а также специальных материалов и специального оборудования для их производства, нормативной документации на их производство и эксплуатацию.

У ВВ существуют индивидуальные химические соединения.

Большинство таких соединений представляют собой кислородосодержащие вещества, обладающие свойством полностью или частично окисляться внутри молекулы без доступа воздуха.

Существуют соединения, не содержащие кислород, но обладающие свойством взрываться. Они, как правило, обладают повышенной чувствительностью к внешним воздействиям (трению, удару, нагреву, огню, искре, переходу между фазовыми состояниями, другим химическим веществам) и относятся к веществам с повышенной взрывоопасностью.

Существуют взрывчатые смеси, которые состоят из двух и более химически не связанных между собой веществ.

Многие взрывчатые смеси состоят из индивидуальных веществ, не имеющих взрывчатых свойств (горючих, окислителей и регулирующих добавок). Регулирующие добавки применяют для:

Снижения чувствительности ВВ к внешним воздействиям. Для этого добавляют различные вещества - флегматизаторы (парафин, церезин, воск, дифениламин и др.)

Для увеличения теплоты взрыва. Добавляют металлические порошки, например, алюминий, магний, цирконий, бериллий и прочие восстановители.

Для повышения стабильности при хранении и применении.

Для обеспечения необходимого физического состояния.

Взрывчатые вещества классифицируют по физическому состоянию:

Газообразные,

Гелеобразные,

Суспензионные,

Эмульсионные,

Твердые.

В зависимости от типа взрыва и чувствительности к внешним воздействиям все взрывчатые вещества делят на 3 группы:

1.Инициирующие
2.Бризантные
3.Метательные

Инициирующие (первичные)

Инициирующие ВВ предназначаются для возбуждения взрывчатых превращений в зарядах других ВВ. Они отличаются повышенной чувствительностью и легко взрываются от простых начальных импульсов (удара, трения, накола жалом, электрической искры и т. д.).

Бризантные (вторичные)

Бризантные ВВ менее чувствительны к внешним воздействиям, и возбуждение взрывных превращений в них осуществляется главным образом с помощью инициирующих ВВ.

Бризантные ВВ применяют для снаряжения боевых частей ракет различных классов, снарядов реактивной и ствольной артиллерии, артиллерийских и инженерных мин, авиационных бомб, торпед, глубинных бомб, ручных гранат и т. д.

Значительное количество бризантных ВВ расходуется в горном деле (вскрышные работы, добыча полезных ископаемых), в строительстве (подготовка котлованов, разрушение скальных пород, разрушение ликвидируемых строительных конструкций), в промышленности (сварка взрывом, импульсная обработка металлов и др.).

Метательные ВВ (пороха и ракетные топлива) служат источниками энергии для метания тел (снарядов, мин, пуль и т. д.) или движения ракет. Их отличительная особенность - способность к взрывчатому превращению в форме быстрого сгорания, но без детонации.

Пиротехнические составы применяются для получения пиротехнических эффектов (светового, дымового, зажигательного, звукового и т. д.). Основной вид взрывчатых превращений пиротехнических составов - горение.

Метательные ВВ (пороха) применяются в основном в качестве метательных зарядов для различного рода оружия и предназначаются для придания снаряду (торпеде, пуле и т.д.) определенной начальной скорости. Преимущественным видом химического превращения их является быстрое сгорание, вызываемое лучом огня от средств воспламенения.

Так же существует классификация взрывчатых веществ по направлению применения на военные и промышленные для горного дела (добыча полезных ископаемых), для строительства (плотин, каналов, котлованов), для разрушения строительных конструкций, антисоциального применения (терроризм, хулиганство), при этом часто используются низкокачественные вещества и смеси кустарного изготовления.

Виды взрывчатых веществ

Существует огромное количество взрывчатых веществ, такие как, аммиачно-селитренные взрывчатые вещества, пластит, гексоген, мелинит, тротил, динамит, эластит и многие другие взрывчатые вещества.

1. Пластит - очень популярная в средствах массовой пропаганды взрывчатка. Особенно, если требуется подчеркнуть особенное коварство супостата, ужасные возможные последствия несостоявшегося взрыва, явный след спецслужб, особенно сильные страдания мирного населения под разрывами бомб. Как только ее не называют - пластит, пластид, пластиковая взрывчатка, пластичная взрывчатка, пластическая взрывчатка. Одного спичечного коробка пластида достаточно, чтобы в клочья разнести грузовик, пластиковой взрывчатки, лежащей в кейсе достаточно, чтобы разрушить 200-квартирный дом до основания.

Пластит - это бризантное взрывчатое вещество нормальной мощности. Пластит обладает примерно такими же взрывчатыми характеристиками, что и тротил и все его отличие состоит в удобстве применения при производстве взрывных работ. Особенно это удобство заметно при подрывании металлических, железобетонных и бетонных конструкций.

Например, металл очень хорошо противостоит взрыву. Чтобы перебить металлическую балку необходимо обложить ее по сечению взрывчаткой, причем так, чтобы она как можно плотнее прилегала к металлу. Ясно, что сделать это намного быстрее и легче, имея под рукой ВВ подобное пластилину, нежели подобное деревянным чуркам. Пластит же легко разместить так, что он будет плотно прилегать к металлу даже там, где размещению тротила мешают заклепки, болты, уступы и т.п.

Основные характеристики:

1. Чувствительность: Практически не чувствителен к удару, прострелу пулей, огню, искре, трению, химическому воздействию. Надежно взрывается от стандартного капсюля-детонатора, погруженного в массу ВВ на глубину не менее 10мм.

2. Энергия взрывчатого превращения- 910 ккал/кг.

3. Скорость детонации:7000 м/сек.

4. Бризантность: 21мм.

5. Фугасность:280 куб.см.

6. Химическая стойкость:Не вступает в реакцию с твердыми материалами (металл, дерево, пластмассы, бетон, кирпич и т.п.), не растворяется водой, не гигроскопичен, не изменяет своих взрывчатых свойств при длительном нагреве, смачивании водой. Под длительным воздействии солнечного света темнеет и несколько повышает свою чувствительность. При воздействии открытого пламени загорается и горит ярким энергичным пламенем. Горение в замкнутом пространстве большого количества может перерасти в детонацию.

7. Продолжительность и условия работоспособного состояния. Продолжительность не ограничивается. Длительное (20-30 лет) пребывание в воде, земле, корпусах боеприпасов не изменяет взрывчатых свойств.

8. Нормальное агрегатное состояние:Пластичное глинообразное вещество. При отрицательных температурах значительно снижает пластичность. При температурах ниже -20 градусов затвердевает. С ростом температуры пластичность возрастает. При +30 градусах и выше теряет механическую прочность. При +210 градусах загорается.

9. Плотность:1.44 г./куб см.

Пластит представляет собой смесь гексогена и пластифицирующих веществ (церезин, парафин и др.).

Внешний вид и консистенция сильно зависит от применяемых пластификаторов. Может иметь консистенцию от пасты до плотной глины.

Пластит поступает в войска в виде брикетов массой 1 кг обернутых коричневой парафинированной бумагой.

Некоторые типы пластита могут упаковываться в тубы или выпускаться в виде лент. Такие пластиты имеют консистенцию резины. Отдельные типы пластита имеют клеящие добавки. Такое ВВ обладает способностью прилипать к поверхностям.

2. Гексоген - взрывчатое вещество, относящееся к группе ВВ повышенной мощности. Плотность 1.8 г/куб.см., температура плавления 202 градуса, температура вспышки 215-230 градусов, чувствительность к удару 10 кг. груза 25см., энергия взрывчатого превращения 1290 ккал/кг, скорость детонации 8380 м/сек., бризантность 24мм., фугасность 490 куб.см

Нормальное агрегатное состояние - мелкокристаллическое вещество белого цвета без вкуса и запаха. В воде не растворяется, негигроскопичен, неагрессивен. С металлами в химическую реакцию не вступает. Прессуется плохо. От удара, прострела пулей взрывается. Загорается охотно и горит белым ярким шипящим пламенем. Горение переходит в детонацию (взрыв).

В чистом виде применяется только для снаряжения отдельных образцов капсюлей-детонаторов. Для подрывных работ в чистом виде не используется. Используется для промышленного изготовления взрывчатых смесей. Обычно эти смеси применяются для снаряжения некоторых видов боеприпасов. Например, морских мин. С этой целью чистый гексоген смешивают с парафином, окрашивают суданом в оранжевый цвет и прессуют до плотности 1.66 г./куб.см. В смеси добавляют аллюминевую пудру. Все эти работы проводятся в промышленных условиях на специальном оборудовании

Название "гексоген" стало популярным в средствах массовой пропаганды после памятных диверсионных актов в Москве и Волгодонске, когда подряд было взорвано несколько домов.

Гексоген в чистом виде применяется крайне редко, применение его в этом виде весьма опасно для самих взрывников, производство требует хорошо налаженного промышленного процесса.

3. Тротил – взрывчатое вещество нормальной мощности.

Основные характеристики:

1. Чувствительность: Не чувствителен к удару, прострелу пулей, огню, искре, трению, химическому воздействию. Прессованный и порошкообразный тротил хорошо чувствителен к детонации и надежно взрывается от стандартных капсюлей-детонаторов, запалов.

2. Энергия взрывчатого превращения - 1010 ккал/кг.

3. Скорость детонации:6900 м/сек.

4. Бризантность:19мм.

5. Фугасность:285 куб.см.

6. Химическая стойкость:Не вступает в реакцию с твердыми материалами (металл, дерево, пластмассы, бетон, кирпич и т.п.), не растворяется водой, не гигроскопичен, не изменяет своих взрывчатых свойств при длительном нагреве, смачивании водой, и изменении агрегатного состояния (в расплавленном виде). Под длительном воздействии солнечного света темнеет и несколько повышает свою чувствительность. При воздействии открытого пламени загорается и горит желтым, сильно коптящим пламенем.

7. Продолжительность и условия работоспособного состояния:Продолжительность не ограничивается (надежно срабатывает тротил, изготовленный в начале тридцатых годов). Длительное (60-70 лет) пребывание в воде, земле, корпусах боеприпасов не изменяет взрывчатых свойств.

8. Нормальное агрегатное состояние:Твердое вещество. Применяется в порошкообразном, чешуированом и твердом виде.

9. Плотность:1.66 г./куб см.

В обычных условиях тротил представляет собой твердое вещество. Плавится при температуре +81 градус, при температуре +310 градусов загорается.

Тротил является продуктом воздействия смеси азотной и серной кислот на толуол. На выходе получается чешуированный тротил (отдельные мелкие чешуйки). Из чешуированного тротила механической обработкой можно получить порошкообразный, прессованный тротил, нагреванием плавленый тротил.

Тротил нашел самое широкое применение из-за простоты и удобства его механической обработки (очень легко изготавливать заряды любого веса, заполнять любые полости, резать, сверлить и т.п.), высокой химической стойкости и инертности, невосприимчивости к внешним воздействиям. А значит, он очень надежен и безопасен в применении. В то же время он обладает высокими взрывными характеристиками.

Тротил применяется как в чистом виде, так и в смесях с другими ВВ, причем в химические реакции тротил с ними не вступает. В смеси с гексогеном, тетрилом, тэном тротил понижает чувствительность последних, а в смеси с аммиачно-селитренными ВВ тротил повышает их взрывчатые свойства, повышает химическую стойкость и снижает гигроскопичность.

Тротил в России является основным ВВ для снаряжения снарядов, ракет, минометных мин, авиабомб, инженерных мин и фугасов. Тротил применяется как основное ВВ при проведении подрывных работ в грунте, подрывании металлических, бетонных, кирпичных и иных конструкций.

В России для подрывных работ тротил поставляется:

1.В чешуированном виде в бумажных мешках из крафт-бумаги весом 50кг.

2.В прессованном виде в деревянных ящиках (шашки 75, 200, 400г.)

Тротиловые шашки выпускаются трех типоразмеров:

Большая - размером 10х5х5 см. и массой 400г.

Малая - размером 10х5х2.5 см. и массой 200г.

Буровая - диаметром 3 см., длиной 7см. и массой 75г.

Все шашки обернуты парафинированной бумагой красного, желтого, серого или серо-зеленого цвета. На боковой стороне имеется надпись "Тротиловая шашка".

Из больших и малых тротиловых шашек составляются подрывные заряды нужной массы. Ящик с тротиловыми шашками может также использоваться как подрывной заряд массой 25 кг. Для этого в верхней крышке в центре имеется отверстие для запала, закрытое легко удаляемой дощечкой. Шашка под этим отверстием уложена так, чтобы ее запальное гнездо приходилось как раз под отверстием в крышке ящика. Ящики окрашены в зеленый цвет, снабжены деревянными или веревочными ручками для переноски. На ящиках нанесена соответствующая маркировка.

Диаметр буровой шашки соответствует диаметру стандартного бура для сверления горных пород. Эти шашки используются для комплектования буровых зарядов при разрушении горных пород.

В инженерные войска тротил также поставляется в виде готовых зарядов в металлической оболочке, имеющей гнезда для различного типа запалов и взрывателей, и приспособления для быстрого закрепления заряда на разрушаемом объекте.

Взрывчатка – самодельное взрывное устройство.

Пожалуй, нет сейчас в мире ни одного государства, которое не сталкивалось бы с проблемой использования самодельных взрывных устройств. Что ж, самодельные взрывные устройства (в свое время их метко называли адскими машинками) давно уже стали излюбленным орудием и террористов международного масштаба, и полусумасшедших юнцов, воображающих, что они борются за светлое будущее всего прогрессивного человечества. И немало ни в чем не повинных людей было убито или ранено в результате террористических актов.

Взрывчатка - это химия. Разные компоненты взрывчатых веществ добываются разными химическими реакциями и обладают разной взрывной силой и разными стимулами для воспламенения, такими, например, как нагревание, удар или трение. Конечно, можно выстроить возрастающий рейтинг взрывчатых веществ по весу заряда. Но следует знать, что простое удвоение веса еще не означает удвоения взрывного эффекта.

Химическая взрывчатка бывает двух категорий - пониженной и повышенной мощности (речь идет о скорости воспламенения).

Самые распространенные взрывчатые вещества пониженной мощности - это черный порох (открыт в 1250г), оружейный хлопок и нитрохлопок. Изначально они использовались в артиллерии, для заряжения мушкетов и тому подобного, так как в этом качестве они лучше всего раскрывают свои характеристики. При воспламенении в замкнутом пространстве они выделяют газы, создающие давление, которое собственно и вызывает взрывной эффект.

Взрывчатые вещества повышенной мощности отличаются от взрывчатых веществ пониженной мощности весьма существенно. Первые с самого начала использовались как детонирующие, потому что при детонации распадались, создавая сверхзвуковые волны, которые, проходя через вещество, разрушали его молекулярную структуру и выделяли супергорячие газы. В результате, происходил взрыв несоизмеримо более сильный, чем при использовании взрывчатки пониженной мощности. Еще одним отличительным свойством взрывчатых веществ этого типа является безопасность в обращении - чтобы привести их к взрыву, требуется мощный детонатор.

Но, чтобы в цепи произошел взрыв, необходимо сначала зажечь огонь. Вы ведь не можете сразу заставить гореть кусочек угля. Вам необходима цепь, состоящая из простого листа бумаги, чтобы сначала развести костер, куда потом нужно положить дрова, которые, в свою очередь, и смогу зажечь уголь.

Такая же цепь необходима и для детонации взрывчатых веществ повышенной мощности. Инициатором будет взрывной патрон или детонатор, состоящий из небольшого количества инициирующего вещества. Иногда детонаторы делают двусоставными - с более чувствительным взрывным веществом и катализатором. Частички взрывчатки, используемой в детонаторах, обычно по размеру не превышают горошину. Детонаторы бывают двух типов - вспышечные и электрические. Вспышечные детонаторы действуют в результате химического (детонатор состоит из химических веществ, воспламеняющихся после детонации) или механического (боек, как в ручной гранате или пистолете, бьет по капсюлю, а затем происходит взрыв) воздействия.

Электрический взрыватель соединен с взрывчаткой электрическими проводами. Электрический разряд нагревает соединительные провода, и детонатор, естественно, срабатывает. Террористы, в основном, используют для своих взрывных устройств электрические детонаторы, а военные предпочитают вспышечные детонаторы.

Встречаются простые, последовательные и параллельные электрические цепи террористических взрывных устройств. Простые цепи состоят из заряда взрывчатки, электрического детонатора (чаще всего - из двух, так как террористы обычно подстраховываются из опасения, что один детонатор может не сработать), батареи или другого источника электроэнергии и выключателя, который предотвращает срабатывание устройства.

Кстати, террористы часто гибнут, замыкая цепи взрывных устройств драгоценностями (например, своими кольцами, часами или чем-нибудь в этом роде), и последовательно ставя в цепь второй выключатель в качестве предохранителя. Если велика вероятность того, что бомба может быть обезврежена на улице, террористы вполне могут добавить еще параллельный выключатель. Впрочем, электрические переключатели, которые используются в цепях террористических бомб, имеют бесконечное количество вариаций и различий. Ведь, в конечном итоге, они зависят от фантазии и технических возможностей мастера. А также от поставленной цели. А это значит, что проверять и детально изучать все варианты просто нет смысла.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.