Построение разверток тел вращения. Построение развертки конуса Развертка конуса со смещенным центром

Построить развертку конуса можно 2 путями:

  • Разделить основание конуса на 12 частей (вписываем правильный многогранник – пирамиду). Можете разделить основание конуса и на большее или меньше количество частей, т.к. чем меньше хорда, тем точнее построение развертки конуса. Затем на дугу кругового сектора перенести хорды.
  • Построение развертки конуса, по формуле определяющей угол кругового сектора.

Так как нам необходимо нанести на развертку конуса линии пересечения конуса и цилиндра, то нам все равно придется делить основание конуса на 12 частей и вписывать пирамиду, поэтому мы пойдем сразу по 1 пути построения развертки конуса.

Алгоритм построения развертки конуса

  • Делим основание конуса на 12 равных частей (вписываем правильную пирамиду).
  • Строим боковую поверхность конуса, которая представляет собой круговой сектор. Радиус кругового сектора конуса равен длине образующей конуса, а длина дуги сектора равна длине окружности основания конуса. На дугу сектора переносим 12 хорд, которые определят ее длину, а также угол кругового сектора.
  • К любой точке дуги сектора пристраиваем основание конуса.
  • Через характерные точки пересечения конуса и цилиндра проводим образующие.
  • Находим натуральную величину образующих.
  • Строим данные образующие на развертке конуса.
  • Соединяем характерные точки пересечения конуса и цилиндра на развертке.

Более подробно в видеоуроке по начертательной геометрии в Автокад.

Во время построения развертки конуса мы будем использовать Массив в Автокад - Круговой массив и массив по траектории. Рекомендую к просмотру данные видеоуроки Автокад. Видеокурс Автокад 2D на момент написания статьи содержит классический способ построения кругового массива и интерактивный при построении массива по траектории.

Развертка поверхности конуса - это плоская фигура, полученная путем совмещения боковой поверхности и основания конуса с некоторой плоскостью.

Варианты построения развертки:

Развертка прямого кругового конуса

Развертка боковой поверхности прямого кругового конуса представляет собой круговой сектор, радиус которого равен длине образующей конической поверхности l, а центральный угол φ определяется по формуле φ=360*R/l, где R – радиус окружности основания конуса.

В ряде задач начертательной геометрии предпочтительным решением является аппроксимация (замена) конуса вписанной в него пирамидой и построение приближенной развертки, на которую удобно наносить линии, лежащие на конической поверхности.

Алгоритм построения

  1. Вписываем в коническую поверхность многоугольную пирамиду. Чем больше боковых граней у вписанной пирамиды, тем точнее соответствие между действительной и приближенной разверткой.
  2. Строим развертку боковой поверхности пирамиды способом треугольников . Точки, принадлежащие основанию конуса, соединяем плавной кривой.

Пример

На рисунке ниже в прямой круговой конус вписана правильная шестиугольная пирамида SABCDEF, и приближенная развертка его боковой поверхности состоит из шести равнобедренных треугольников – граней пирамиды.

Рассмотрим треугольник S 0 A 0 B 0 . Длины его сторон S 0 A 0 и S 0 B 0 равны образующей l конической поверхности. Величина A 0 B 0 соответствует длине A’B’. Для построения треугольника S 0 A 0 B 0 в произвольном месте чертежа откладываем отрезок S 0 A 0 =l, после чего из точек S 0 и A 0 проводим окружности радиусом S 0 B 0 =l и A 0 B 0 = A’B’ соответственно. Соединяем точку пересечения окружностей B 0 с точками A 0 и S 0 .

Грани S 0 B 0 C 0 , S 0 C 0 D 0 , S 0 D 0 E 0 , S 0 E 0 F 0 , S 0 F 0 A 0 пирамиды SABCDEF строим аналогично треугольнику S 0 A 0 B 0 .

Точки A, B, C, D, E и F, лежащие в основании конуса, соединяем плавной кривой – дугой окружности, радиус которой равен l.

Развертка наклонного конуса

Рассмотрим порядок построения развертки боковой поверхности наклонного конуса методом аппроксимации (приближения).

Алгоритм

  1. Вписываем в окружность основания конуса шестиугольник 123456. Соединяем точки 1, 2, 3, 4, 5 и 6 с вершиной S. Пирамида S123456, построенная таким образом, с некоторой степенью приближения является заменой конической поверхности и используется в этом качестве в дальнейших построениях.
  2. Определяем натуральные величины ребер пирамиды, используя способ вращения вокруг проецирующей прямой: в примере используется ось i, перпендикулярная горизонтальной плоскости проекций и проходящая через вершину S.
    Так, в результате вращения ребра S5 его новая горизонтальная проекция S’5’ 1 занимает положение, при котором она параллельна фронтальной плоскости π 2 . Соответственно, S’’5’’ 1 – натуральная величина S5.
  3. Строим развертку боковой поверхности пирамиды S123456, состоящую из шести треугольников: S 0 1 0 6 0 , S 0 6 0 5 0 , S 0 5 0 4 0 , S 0 4 0 3 0 , S 0 3 0 2 0 , S 0 2 0 1 0 . Построение каждого треугольника выполняется по трем сторонам. Например, у △S 0 1 0 6 0 длина S 0 1 0 =S’’1’’ 0 , S 0 6 0 =S’’6’’ 1 , 1 0 6 0 =1’6’.

Степень соответствия приближенной развертки действительной зависит от количества граней вписанной пирамиды. Число граней выбирают, исходя из удобства чтения чертежа, требований к его точности, наличия характерных точек и линий, которые нужно перенести на развертку.

Перенос линии с поверхности конуса на развертку

Линия n, лежащая на поверхности конуса, образована в результате его пересечения с некоторой плоскостью (рисунок ниже). Рассмотрим алгоритм построения линии n на развертке.

Алгоритм

  1. Находим проекции точек A, B и C, в которых линия n пересекает ребра вписанной в конус пирамиды S123456.
  2. Определяем натуральную величину отрезков SA, SB, SC способом вращения вокруг проецирующей прямой. В рассматриваемом примере SA=S’’A’’, SB=S’’B’’ 1 , SC=S’’C’’ 1 .
  3. Находим положение точек A 0 , B 0 , C 0 на соответствующих им ребрах пирамиды, откладывая на развертке отрезки S 0 A 0 =S’’A’’, S 0 B 0 =S’’B’’ 1 , S 0 C 0 =S’’C’’ 1 .
  4. Соединяем точки A 0 , B 0 , C 0 плавной линией.

Развертка усеченного конуса

Описываемый ниже способ построения развертки прямого кругового усеченного конуса основан на принципе подобия.

Необходимо построить развертку поверхностей и перенести линию пересечения поверхностей на развертку. В основе данной задачи рассматриваются поверхности (конуса и цилиндра ) с их линией пересечения, приведенные в предыдущей задаче 8 .

Для решения таких задач по начертательной геометрии необходимо знать:

— порядок и методы построения разверток поверхностей;

— взаимное соответствие между поверхностью и ее разверткой;

— частные случаи построения разверток.

Порядок решения з адачи

1. Отметим, что разверткой называется фигура, получаемая в
результате разреза поверхности по какой-либо образующей и постепенного разгибания ее до полного совмещения с плоскостью. Отсюда развертка, прямого кругового конуса — сектор с радиусом, равным длине образующей, и основанием, равным длине окружности основания конуса. Все развертки строятся только из натуральных величин.

Рис.9.1

— длину окружности основания конуса, выраженную в натуральной величине делим на ряд долей: в нашем случае — 10, от количества долей зависит точность построения развертки (рис.9.1.а );

— откладываем полученные доли, заменяя их хордами, на длине
дуги, проведенной радиусом, равным длине образующей конуса l=|Sb|. Начало и конец отсчета долей соединяем с вершиной сектора — это и будет развертка боковой поверхности конуса.

Второй способ:

— строим сектор с радиусом, равным длине образующей конуса.
Заметим, что как в первом, так и во втором случае за радиус берется крайняя правая или левая образующие конуса l=|Sb|, т.к. они выражены в натуральной величине;

— при вершине сектора откладываем угол а, определяемый по формуле:

Рис.9.2

где r — величина радиуса основания конуса;

l — длина образующей конуса;

360 — постоянная переводная в градусы величина.

К сектору-развертке строим основание конуса радиуса r .

2. По условиям задачи требуется перенести линию пересечения
поверхностей конуса и цилиндра на развертку. Для этого используем свойства взаимной однозначности между поверхностью и ее разверткой, в частности, отметим, что каждой точке на поверхности соответствует точка на развертке и каждой линии на поверхности соответствует линия на развертке.

Отсюда вытекает последовательность перенесения точек и линий
с поверхности на развертку.

Рис.9.3

Для развертки конуса. Условимся, что разрез поверхности конуса произведен по образующей S a . Тогда точки 1, 2, 3,…6
будут лежать на окружностях (дугах на развертке) с радиусами соответственно равными величинам расстояний, взятым по образующей S A от вершины S до соответствующей секущей плоскости с точками 1’ , 2’, 3’…6’ -| S 1|, | S 2|, | S 3|….| S 6| (рис.9.1.б) .

Положение точек на этих дугах определяется расстоянием, взятым с горизонтальной проекции от образующей Sa, по хорде до соответствующей точки, например до точки с, ас=35 мм (рис.9.1.а ). Если расстояние по хорде и дуге сильно разнятся, то для уменьшения погрешности можно разделить большее количество долей и отложить их на соответствующие дуги развертки. Таким способом переносятся любые точки с поверхности на ее развертку. Полученные точки соединятся плавной кривой по лекалу (рис.9.3 ).

Для развертки цилиндра .

Развертка цилиндра есть прямоугольник с высотой, равной высоте образующей, и длиной, равной длине окружности основания цилиндра. Таким образом, для построения развертки прямого кругового цилиндра необходимо построить прямоугольник с высотой, равной высоте цилиндра, в нашем случае 100мм , и длиной, равной длине окружности основания цилиндра, определенной по известным формулам: C =2 R =220мм , или делением окружности основания на ряд долей, как было указано выше. К верхней и нижней части полученной развертки пристраиваем основание цилиндра.

Условимся, что разрез произведен по образующей AA 1 (A A ’ 1 ; AA 1) . Заметим, что разрез следует производить по характерным (опорным) точкам для более удобного построения. Учитывая, что длина развертки есть длина окружности основания цилиндра C , от точки A ’= A ’ 1 разреза фронтальной проекции берем расстояние по хорде (если расстояние большое, то необходимо его разделить на доли) до точки B (в нашем примере — 17мм ) и откладываем его на развертке (по длине основания цилиндра) от точки А. Из полученной точки В проводим перпендикуляр (образующую цилиндра). Точка 1 должна находиться на этом перпендикуляре) на расстоянии от основания, взятого с горизонтальной проекции до точки. В нашем случае точка 1 лежит на оси симметрии развертки на расстоянии 100/2=50мм (рис.9.4) .

Рис.9.4

И так поступаем для нахождения на развертке всех других точек.

Подчеркнем, что расстояние по длине развертки для определения положения точек берется с фронтальной проекции, а расстояние по высоте — с горизонтальной, что соответствует их натуральным величинам. Полученные точки соединяем плавной кривой по лекалу (рис.9.4 ).

В вариантах задач, когда линия пересечения распадается на несколько ветвей, что соответствует полному пересечению поверхностей, способы построения (перенесения) линии пересечения на развертку аналогичны, описанным выше.

Раздел: Начертательная геометрия /

ем перпендикуляры к каждому отрезку, на них откладываем действительные величины образующих цилиндра, взятые с фронтальной проекции. Соединив полученные точки между собой, получаем кривую.

Для получения полной развертки к развертке боковой поверхности добавляем окружность (основание) и натуральную величину сечения (эллипс), построенный по его большой и малой оси или по точкам.

5.3.4. Построение развертки усеченного конуса

В частном случае развертка конуса представляет собой плоскую фигуру, состоящую из кругового сектора и круга (основания конуса).

В общем случае развертывание поверхности производится по принципу развертывания многогранной пирамиды (т. е. способом треугольников), вписанной в коническую поверхность. Чем большее число граней пирамиды, вписанной в коническую поверхность, тем меньше будет разница между действительной и приближенной развертками конической поверхности.

Построение развертки конуса начинается с нанесения из точки S 0 дуги окружности радиусом, равным длине образующей конуса. На этой дуге откладывают 12 частей окружности основания конуса и полученные точки соединяют с вершиной. Пример изображения полной развертки усеченного конуса представлен на рис. 5.7.

Лекция 6 (начало)

ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ. СПОСОБЫ ПОСТРОЕНИЯ ВЗАИМНОГО ПЕРЕСЕЧЕНИЯ ПОВЕРХНОСТЕЙ.

СПОСОБ ВСПОМОГАТЕЛЬНЫХ СЕКУЩИХ ПЛОСКОСТЕЙ И ЧАСТНЫЕ СЛУЧАИ

6.1. Взаимное пересечение поверхностей

Пересекаясь между собой, поверхности тел образуют различные ломаные или кривые линии, которые называют линиями взаимного пересечения.

Для построения линий пересечения двух поверхностей нужно найти такие точки, которые одновременно принадлежат двум заданным поверхностям.

Когда одна из поверхностей полностью пронизывает другую, получаются 2 отдельные линии пересечения, называемые ветвями. В случае получения врезки, когда одна поверхность частично входит в другую, линия пересечения поверхностей будет одна.

6.2. Пересечение гранных поверхностей

Линия пересечения двух многогранников представляет собой замкнутую пространственную ломаную линию. Ее звенья являются линиями пересечения граней одного многогранника с гранями другого, а вершины – точки пересечения ребер одного многогранника с гранями другого. Таким образом чтобы построить линию пересечения двух многогранников, нужно решить задачу либо на пересечение двух плоскостей (способ граней), либо на пересечение прямой с плоскостью (способ ребер). На практике обычно используются оба способа в комбинации.

Пересечение пирамиды с призмой. Рассмотрим случай пересече-

ния пирамиды с призмой, боковая поверхность которой проецируется на π3 на очерковые основания (четырехугольник). Построение начинаем с профильной проекции. При нанесении точек воспользуемся способом ребер, т. е. когда ребра вертикальной пирамиды пересекают грани горизонтальной призмы (рис. 6.1).

Анализ условия задачи показывает, что линия пересечения пирамиды и призмы распадается на 2 ветви, одна из ветвей – плоский многоугольник, точки 1 , 2 , 3 , 4 (точки пересечения ребер пирамиды с гранью призмы). Горизонтальные, фронтальные и профильные их проекции находятся на проекциях соответствующих ребер и определяются по линиям связи. Аналогично могут быть найдены точки 5 , 6 , 7 и 8 , принадлежащие другой ветви. Точки 9 , 10 , 11 , 12 определяются из условия, что верхняя и нижняя грани призмы параллельны между собой, т. е. 1 " 2 " параллельна 5" 10" и т. д.

Можно воспользоваться способом вспомогательных секущих плоскостей. Вспомогательная плоскость пересекает обе поверхности по ломаным линиям. Взаимное пересечение этих линий и дает нам точки, принадлежащие искомой линии пересечения. В качестве вспомогательных плоскостей выбираем α""" и β""". С помощью плоскости α"""

находим проекции точек 1 " , 2 " , 3 " , 4 " , а плоскости β""" – точки 5" , 6" , 9 " , 10" , 11 " , 12 " . Точки 7 и 8 определяем как в предыдущем способе.

6.3. Пересечение гранных поверхностей

с поверхностями вращения

Большинство технических деталей и предметов состоит из сочетания различных геометрических тел. Пересекаясь между собой, по-

верхности этих тел образуют различные прямые или кривые линии, которые называются линиями взаимного пересечения.

Для построения линии пересечения двух поверхностей нужно найти такие точки, которые одновременно принадлежали бы двум поверхностям.

При пересечении многогранника с поверхностью вращения образуется пространственная кривая линия пересечения.

Если происходит полное пересечение (проницание), то образуются две замкнутые кривые линии, а если неполное пересечение – то одна замкнутая пространственная линия пересечения.

Для построения линии взаимного пересечения многогранника с поверхностью вращения используется способ вспомогательных секущих плоскостей. Вспомогательная плоскость пересекает обе поверхности по кривой и по ломаной линиям. Взаимное пересечение этих линий и дает нам точки, принадлежащие искомой линии пересечения.

Пусть требуется построить проекции линии пересечения поверхностей цилиндра и треугольной призмы. Как видно из рис. 6.2, в пересечении участвуют все три грани призмы. Две из них направлены под некоторым углом к оси вращения цилиндра, следовательно, пересекают поверхность цилиндра по эллипсам, одна грань перпендикулярна к оси цилиндра, т. е. пересекает его по окружности.

План решения:

1) находим точки пересечения ребер с поверхностью цилиндра;

2) находим линии пересечения граней с поверхностью цилиндра. Как видно из рис. 6.2, боковая поверхность цилиндра – горизон-

тально-проецирующая, т. е. перпендикулярна горизонтальной плоскости проекций. Боковая поверхность призмы – профильно-проецирую- щая, т. е. каждая ее грань перпендикулярна к профильной плоскости проекций. Следовательно, горизонтальная проекция линии пересечения тел совпадает с горизонтальной проекцией цилиндра, а профильная – с профильной проекцией призмы. Таким образом, на чертеже нужно построить лишь фронтальную проекцию линии пересечения.

Построение начинаем с нанесения характерных точек, т. е. точек, которые можно найти без дополнительных построений. Такими являются точки 1, 2 и 3. Они находятся на пересечении очерковых образующих фронтальных проекций цилиндра с фронтальной проекцией соответствующего ребра призмы с помощью линий связи.

Таким образом, точки пересечения ребер призмы с поверхностью цилиндра построены.

Для того чтобы найти промежуточные точки (всего таких точек четыре, но обозначим одну из них А ) линий пересечения цилиндра с гранями призмы, пересекаем обе поверхности какой-либо проецирующей плоскостью или плоскостью уровня. Возьмем, например, горизонтальную плоскость α. Плоскость α пересекает грани призмы по двум прямым, а цилиндр – по окружности. Эти линии пересекаются в точке A " (одну точку подписали, а остальные нет), которая принадлежит одновременно и поверхности цилиндра (лежит на окружности, которая принадлежит цилиндру) и поверхности призмы (лежит на прямых линиях, которые принадлежат граням призмы).

Прямые, по которым пересекаются грани призмы с плоскостью α, найдены сначала на профильной проекции многогранника (там они спроецировались в точку A """ и симметричную точку), а затем с помощью линий связи построены на горизонтальной проекции призмы. Точка A и симметричные точки получены на пересечении горизонтальной проекции линий пересечения (плоскости α с призмой) с окружностью и при помощи линий связи найдены на фронтальной проекции.

Вместо слова «выкройка» иногда употребляют «развертка», однако этот термин неоднозначен: например, разверткой называют инструмент для увеличения диаметра отверстия, и в электронной технике существует понятие развертки. Поэтому, хоть я и обязан употребить слова «развертка конуса», чтобы поисковики и по ним находили эту статью, но пользоваться буду словом «выкройка».

Построение выкройки для конуса — дело нехитрое. Рассмотрим два случая: для полного конуса и для усеченного. На картинке (кликните, чтобы увеличить) показаны эскизы таких конусов и их выкроек. (Сразу замечу, что речь здесь пойдет только о прямых конусах с круглым основанием. Конусы с овальным основанием и наклонные конусы рассмотрим в следующих статьях).

1. Полный конус

Обозначения:

Параметры выкройки рассчитываются по формулам:
;
;
где .

2. Усеченный конус

Обозначения:

Формулы для вычисления параметров выкройки:
;
;
;
где .
Заметим, что эти формулы подойдут и для полного конуса, если мы подставим в них .

Иногда при построении конуса принципиальным является значение угла при его вершине (или при мнимой вершине, если конус усеченный). Самый простой пример — когда нужно, чтобы один конус плотно входил в другой. Обозначим этот угол буквой (см. картинку).
В этом случае мы можем его использовать вместо одного из трех входных значений: , или . Почему «вместо «, а не «вместе «? Потому что для построения конуса достаточно трех параметров, а значение четвертого вычисляется через значения трех остальных. Почему именно трех, а не двух и не четырех — вопрос, выходящий за рамки этой статьи. Таинственный голос мне подсказывает, что это как-то связано с трехмерностью объекта «конус». (Сравните с двумя исходными параметрами двухмерного объекта «сегмент круга», по которым мы вычисляли все остальные его параметры в статье .)

Ниже приведены формулы, по которым определяется четвертый параметр конуса, когда заданы три.

4. Методы построения выкройки

  • Вычислить значения на калькуляторе и построить выкройку на бумаге (или сразу на металле) при помощи циркуля, линейки и транспортира.
  • Занести формулы и исходные данные в электронную таблицу (например, Microsoft Exel). Полученный результат использовать для построения выкройки при помощи графического редактора (например, CorelDRAW).
  • использовать мою программу , которая нарисует на экране и выведет на печать выкройку для конуса с заданными параметрами. Эту выкройку можно сохранить в виде векторного файла и импортировать в CorelDRAW.

5. Не параллельные основания

Что касается усеченных конусов, то программа Cones пока строит выкройки для конусов, имеющих только параллельные основания.
Для тех, кто ищет способ построения выкройки усеченного конуса с не параллельными основаниями, привожу ссылку, предоставленную одним из посетителей сайта:
Усеченный конус с не параллельными основаниями.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.