Подписаться на акции и бонусы. Биообъекты, используемые в биотехнологическом производстве и методы их совершенствования Создание новых биообъектов методами генетической инженерии

Антропогенное воздействие на биосферу неотъемлемо от развития цивилизации. Распашка земель, выруб­ка лесов, «вытаптывание» степей постоянно сопутствуют истории человечества. Уместно вспомнить об уничтожении отдельных ви­дов животных и растений и о расселении некоторых видов из мест коренного обитания.

В связи с особой актуальностью проблемы влияния промыш­ленности на биосферу рассмотрим, как выглядит в этом отноше­нии биотехнологическое производство. Прежде всего, оно науко­емко и по сравнению с химико-технологическим производством более эффективно, так как клетка продуцента (биообъекта) пред­ставляет «сбалансированный комплекс биокатализаторов», рабо­тающий более производительно, чем системы последовательных химических реакций с неорганическими катализаторами.

Потребление энергоресурсов и воды биотехнологической про­мышленностью составляет доли процента от потребляемого со­временной химической промышленностью. Выброс в атмосферу газообразных отходов предприятий биотехнологической промыш­ленности не превышает и десятой доли процента от выброса про­мышленностью в целом. Именно биотехнологическое производ­ство наиболее приемлемо в современных условиях, однако и оно имеет специфические, экологические проблемы и, соответствен­но, совершенствуется в направлениях:

Создания и использования более активных биообъектов-про­дуцентов (в результате на единицу продукции будет меньше отхо­дов!);

Замены сред и реагентов на менее дефицитные;

Иммобилизации биообъектов (как клеток, так и ферментов), многократного их использования для уменьшения отходов;

Внедрения мембранной технологии на стадии выделения и очистки целевого продукта (уменьшение количества применяе­мых органических растворителей во избежание агрессивных усло­вий на некоторых стадиях производственного процесса);

Соблюдения правил GMP.

Рассмотрим кратко проблемы, относящиеся к ликвидации (ути­лизации) или очистки производственных отходов традиционного биотехнологического предприятия.



Твердые отходы. Прежде всего, к ним относится мицелий (био­масса) продуцента после его отделения от культуральной жидко­сти и целевого продукта. О количестве мицелия, с которым при­ходится иметь дело, можно получить наглядное представление исходя из того, что объем слива промышленного ферментера - это 50- 100 м 3 густой, вязкой (из-за наличия мицелия) жидкости. Учитывая, что на предприятии имеется ряд ферментеров, а фер­ментационный цикл длится около недели, можно сделать вывод, что этот вид твердых отходов на одном (крупном) предприятии составляет сотни тонн в год. При этом необходимо учитывать, что мицелий содержит и остаточные количества целевого продукта, а это, как правило, биологически высокоактивные вещества.

В настоящее время твердые отходы ликвидируют путем перера­ботки мицелия. Его перемешивают с почвой и помещают в ямы с бетонными подложками. Каждую такую яму оставляют закрытой

на несколько лет. За это время почвенные микроорганизмы под­вергают органические вещества мицелия ферментативному рас­щеплению, используя их для построения «своей» биомассы. Фак­тически образуется компост, органическая часть мицелия при этом разлагается. Бетонная подложка в такого рода «компостных ямах» необходима, чтобы предотвратить попадание еще неразложившихся растворимых органических веществ мицелия в грунтовые воды и водоемы с дождевой водой. Обычно для компостных ям выделяют специальные участки на территории предприятия. Отметим, что вывоз подсушенного мицелия (его масса по сравнению с перво­начальной уменьшается в 10-100 раз) на общегородские свалки запрещен.

Попытки применения мицелия для тех или иных целей в це­лом пока не увенчались успехом, однако в лабораторных условиях уже создана малоотходная технология. Из мицелия актиномицета продуцента тетрациклина извлекалась суммарная липидная фрак­ция и использовалась как пеногаситель в следующем производ­ственном цикле при получении тетрациклина, образуемого про­дуцентом, принадлежащем к тому же штамму. В некоторых случа­ях (при ограниченности пастбищ) простерилизованную и пере­молотую биомассу некоторых микроорганизмов используют в ка­честве добавки в корм сельскохозяйственных животных. Мицелий грибов и актиномицетов (отходы при производстве антибиоти­ков) повышает качество некоторых строительных материалов (ке­рамзитовые плиты, кирпич и др.), увеличивая их прочность. Но по экономическим соображениям производить эти материалы не­целесообразно.

Жидкие отходы. В случае биотехнологического производства жидкими отходами являются стоки и сточная жидкость, в основ­ном это культуральная жидкость после отделения от нее мицелия и извлечения целевого продукта. Суммарный годовой объем культуральной жидкости, которая должна подвергнуться очистке, со­ставляет для одного предприятия десятки тысяч кубометров. Сте­пень очистки, контролируемой разными методами, должна быть такой, чтобы очищенная жидкость могла сливаться в открытые водоемы.

Существуют разные схемы очистки. Почти во всех из них клю­чевую роль играют микроорганизмы (биологическая очистка). Приведем одну из таких схем. Первым компонентом си­стемы очистки является железобетонный отстойник, куда попа­дает отработанная культуральная жидкость. На дне отстойника про­ложены трубы, через которые происходит отсасывание осадка. На этой стадии из культуральной жидкости удаляется примерно 40 % загрязнений.

Следующий участок системы очистки состоит из од­ного или нескольких, расположенных один за другим, аэротенков - баков с проходящими по дну трубами, из которых выходит в виде пузырьков воздух, проходящий через всю толщу жидко­сти, в результате она насыщается кислородом. Воздух способству­ет интенсивному протеканию окислительных процессов. Ключе­вая особенность аэротенка - наличие в нем так называемого «ак­тивного ила» (искусственного биоценоза - сообщества микроор­ганизмов, окисляющих растворенные в жидкости органические вещества до СО 2 и Н 2 О), постепенно формирующегося в процес­се работы предприятия.

Видовой состав биоценоза активного ила на разных предприя­тиях может незначительно варьировать, поскольку последний за­висит от окисляемых субстратов. Как правило, в нем доминируют представители рода Pseudomonas (70 %). Далее следуют микроор­ганизмы, объединенные в род Bacterium (20%). Остальные 10% составляют представители родов Bacillus, Sarcina и другие микро­организмы. Характеризуя активный ил как биоценоз или как надорганизменное межвидовое сообщество применительно к очист­ке сточной жидкости биотехнологического производства, следует отметить три важных обстоятельства.

Во-первых, принципиальную роль здесь играют штаммы рода Pseudomonas. Однако не следует сводить этот род только к виду Pseudomonas acruginosa - известному возбудителю опасных ране­вых инфекций. В природных условиях род Pseudomonas представ­лен большим количеством не опасных для человека видов. Имен­но непатогенные штаммы входят в состав активного ила. Для этих микроорганизмов характерен широкий набор окислительных ферментов. Препараты, состоящие из клеток Pseudomonas, использу­ются при ликвидации загрязнений, вызванных утечкой нефти. Окислению подвергаются, образно говоря, и экзотические суб­страты, например, кольчатые углеводороды. Помимо этого обо­лочка сапрофитных видов Pseudomonas, входящих в активный ил, имеет свои особенности на уровне пориновых каналов, облегча­ющие доступ субстратов к окислительным ферментам.

Во-вторых, превращение некоторых субстратов в СО 2 и Н 2 О осуществляется за счет последовательного воздействия на них ферментов разных микроорганизмов. Иными словами, одна фер­ментная система превращает конкретное соединение в промежу­точные продукты, а другая катализирует дальнейшую деградацию этих промежуточных продуктов. Этим подчеркивается, что актив­ный ил функционирует как комплекс микроорганизмов.

В-третьих, следует иметь в виду, что в сточных водах некоторых производств (в частности, предприятий антибиотической промыш­ленности) могут содержаться остаточные количества антимикроб­ных веществ. Это означает, что микроорганизмы в аэротенках посто­янно контактируют с ними, т.е. создаются условия для селекции резистентных форм. Но не исключены случаи, когда концентрация антимикробных веществ в очищаемых жидких отходах может ока­заться необычно высокой и вызвать гибель клеток активного ила.

Это требует контроля за состоянием активного ила. После уча­стка с аэротенком или несколькими последовательно располо­женными аэротенками и вторичным отстойником принципиаль­но важным для системы жидких отходов является «блок доочист-ки». В нем культуральная жидкость, в которой остается примерно 10 % первоначального содержания органических веществ (как пра­вило, это трудноокисляемые вещества), пропускается через био­фильтры - пленки с иммобилизованными клетками микроорга­низмов с наиболее высокой окислительной активностью. Нередко эти клетки принадлежат к сконструированным методами генной инженерии штаммам, содержащим плазмиды, несущие гены окис­лительных ферментов (ферментов деструкции). Такие целенаправ­ленно полученные «штаммы-деструкторы» способны окислять трудноокисляемые вещества и уничтожать оставшиеся 10% за­грязнений в очищаемой жидкости.

Иммобилизация клеток таких штаммов в биопленках рацио­нальна ввиду того, что при свободном размножении этих клеток искусственно повышенная окислительная активность может быть утрачена за счет обратных мутаций или потери плазмид. В этом случае в «блоке доочистки» как бы «сочетаются» генная инжене­рия и инженерная энзимология. Прошедшая «блок доочистки» жид­кость, соответствующая официальным критериям питьевой воды (одним из принятых методов контроля токсичности в данном слу­чае является подавление жизнеспособности микроскопического

ракообразного Daphnia magna), хлорируется и затем поступает в открытые водоемы.

Касаясь работы систем биологической очистки сточных вод в разных режимах, следует отметить, что при максимальных («шоко­вых») нагрузках могут возникнуть разные трудности. В такие рабо­чие периоды в аэротенки вносят высокоактивные штаммы де­структоры («бактериальные закваски»), что позволяет значительно усилить пропускную способность системы очистки жидких отходов. С этой целью для биотехнологических предприятий разного профи­ля рекомендованы специальные препараты: «Phenobac» - для ути­лизации углеводородов, «Thermobac» - для окисления полисаха­ридов, «Polibac» - для освобождения от синтетических детерген­тов и т. п. Ориентировочная доза «бактериальной закваски» из жи­вых клеток составляет около 100 мг на 1 м 3 сточной жидкости.

В заключение отметим возможное разнообразие схем биологи­ческой утилизации жидких отходов. Так, помимо аэробной очист­ки в схему могут быть включены: этап анаэробной очистки, этапы с использованием сорбентов (активированного угля, цеолитов и др.), этапы с применением электрохимических методов (напри­мер, электрокоагуляции).

Газообразные отходы. Газовые выбросы очищают от органи­ческих соединений при температуре от 300 до 1 000 °С в колонках с неорганическими катализаторами. В этом случае летучая «орга­ника» превращается в СО 2 . В некоторых случаях используются био­логические фильтры на основе микроорганизмов, окисляющих органические вещества до СО 2 .

Суперпродуцент – это объект промышленного использования. Как можно получить его и какими свойствами должен он обладать в отличие от природного штамма?

Совершенствование биообъектов как источников ЛС включает несколько направлений. Определите эти направления в соответствии с целевыми задачами.

Современный биообъект, используемый в биотехнологической промышленности, - это биологический организм-суперпродуцент, отличающийся от исходного природного штамма по нескольким показателям.

1) безвредность для потребителя и обслуживающего персонала.

2) генетическая однородность и стабильность в отношении к субстратам и условиям культивирования.

3) высокий выход целевого продукта

4) способность расти на относительно дешевых питательных средах

5) благоприятные реологические свойства биомассы, обеспечивающие относительно несложное выделение продукта

6) устойчивость к фагам

7) благоприятные экологические показатели процесса (низкое спорообразование, запах и т.д.)

8) Отсутствие токсических веществ в целевом продукте и промышленных стоках.

Совершенствование биообъектов методами мутации и селекции

На биохимическом уровне мутация - изменение первичной структуры ДНК организма и, как следствие, изменение фенотипа биообъекта. Изменение биообъекта, благоприятное для его использования в производстве (мутация), должно передаваться по наследству.

Долгое время понятие мутации относили только к хромосомам у прокариот и хромосомам (ядру) у эукариот. В настоящее время кроме хромосомных мутаций появилось также понятие мутаций цитоплазматических (плазмидных - у прокариот, митохондриальных и плазмидных - у эукариот).

Спонтанные мутации встречаются, как правило, довольно редко. Совершенствование биообъектов путем мутаций и последующей селекции оказалось гораздо более действенным.

Мутагенез осуществляется при обработке биообъекта физическими или химическими мутагенами. В первом случае это ультрафиолетовые, гамма-, рентгеновские лучи; во втором - нитрозометилмочевина, нитрозогуанидин, акридиновые красители, антибиотики, специфично взаимодействующие с ДНК (их обычно не используют в терапии).



Механизм действия как физических, так и химических мутагенов связан с их непосредственным влиянием на ДНК (прежде всего на азотистые основания ДНК, что выражается в сшивках, димеризации, алкилировании последних, интеркаляции между ними). Повреждения не должны приводить к летальному исходу. Последующей задачей является отбор (селекция) нужных биотехнологу мутаций. Эта часть работы в целом весьма трудоемка.

В первую очередь биотехнолога интересуют мутантные культуры, обладающие повышенной способностью к образованию целевого продукта. Продуцент целевого вещества, наиболее перспективный в практическом отношении, может многократно обрабатываться разными мутагенами. Новые мутантные штаммы, получаемые в научных лабораториях разных стран мира, служат предметом обмена при творческом сотрудничестве, лицензионной продажи и т.п.

Одним из примеров эффективности мутагенеза с последующей селекцией по признаку увеличения образования целевого продукта является история создания современных суперпродуцентов пенициллина. Работа с исходными биообъектами - штаммами гриба Penicillium chrysogenum, выделенными из природных источников, велась с 1940-х гг. в течение нескольких десятилетий во многих лабораториях. Вначале проводили отбор в результате спонтанных мутаций. Затем перешли к индуцированию мутаций физическими и химическими мутагенами. В настоящее время активность штаммов сейчас в 100 тыс. раз выше, чем у обнаруженного А. Флемингом исходного штамма, с которого и началась история открытия пенициллина.

Производственные штаммы крайне нестабильны вследствие того, что многочисленные искусственные изменения в геноме клеток штамма сами по себе для жизнеспособности этих клеток положительного значения не имеют. Поэтому мутантные штаммы требуют постоянного контроля при хранении.

Совершенствование биообъектов не исчерпывается только повышением их продуктивности. С экономической точки зрения весьма важно получение мутантов, способных использовать более дешевые и менее дефицитные питательные среды. Большое значение в отношении гарантии надежности производства приобретает получение фагоустойчивых биообъектов.

Таким образом, современный биообъект, используемый в биотехнологическом производстве, - это суперпродуцент, отличающийся от исходного природного штамма не по одному, а, как правило, по нескольким показателям.

В случае применения высших растений и животных в качестве биообъектов для получения лекарственных средств возможности использования мутагенеза и селекции для их совершенствования ограничены.

Совершенствование биообъектов методами клеточной инженерии

Клеточная инженерия - «насильственный» обмен участками хромосом у прокариот или участками и даже целыми хромосомами у эукариот. В результате создаются неприродные биообъекты, среди которых могут быть отобраны продуценты новых веществ или организмы с ценными в практическом отношении свойствами.

С помощью клеточной инженерии возможно получение межвидовых и межродовых гибридных культур микроорганизмов, а также гибридных клеток между отдаленными в эволюционном отношении многоклеточными организмами. Культуры таких клеток обладают новыми свойствами. В качестве примера можно привести получение «гибридных» антибиотиков.

Известно, что среди актиномицетов есть принадлежащие к разным видам продуценты антибиотиков гликозидной структуры с варьирующими агликонами и сахарами. Так, антибиотик эритромицин имеет 14-членный макроциклический агликон и два сахара (дезозамин и кладинозу), присоединенных к нему гликозидной связью, а у антибиотиков - антрациклинов агликон состоит из четырех сконденсированных углеродных шестичленных колец, соединенных с аминосахаром.

С помощью клеточной инженерии были получены продуценты таких антибиотиков, у которых макролидный агликон эритромицина был связан с углеводной частью, соответствующей антрациклинам, и наоборот, антрациклиновый агликон с сахарами, свойственными эритромицину.

Создание биообъектов методами генетической инженерии

Генетическая инженерия – это методы получения рекомбинантных ДНК, объединяющих последовательности различного происхождения.

Гены, кодирующие белки человека, вводятся в геном одноклеточных (E. coli, Corynebacterium, Saccharomyces cerevisiae и др.). В результате микробные клетки синтезируют соединения, специфичные для человека - белковые гормоны, белковые факторы неспецифического иммунитета (инсулин, соматотропин, интерфероны, факторы свертывания крови, лактоферрин и т.д.)

Основные этапы генетической инженерии

1) Получение ДНК (химический синтез, из мРНК, обработка ДНК рестриктазой)

2) Линеаризация вектора для клонирования той же рестриктазой

3) Смешивание ДНК и разрезанного вектора

4) Трансформация сшитыми молекулами вектора клеток-хозяев

5) Размножение клеток-хозяев, амплификация рекомбинантной ДНК в трансформированных клетках

6) Получение белкового продукта

Таким образом, генетическая инженерия позволяет создавать биологически активные вещества человека вне его организма.

План лекции

1. Понятие биообъекта.

2. Классификация биообъектов как продуцентов лекарственных и диагностических препаратов и их функции.

3. Макромолекулы природного происхождения – промышленные биокатализаторы.

4. Совершенствование биообъектов методами мутагенеза и селекции.

5. Мутации

а) понятие

б) мутагены

в) классификация

6. Вариационный ряд.

7. Методы отбора.

8. Мутасинтез.

9. Совершенствование биообъектов методами клеточной инженерии.

а) этапы работы

б) перспективы

Самым главным элементом биотехнологического производства, определяющим его специфику, является биообъект.

Биообъектом может быть целостный, сохранивший жизнеспособность, многоклеточный или одноклеточный организм. Им могут являться изолированные клетки многоклеточного организма, а также вирусы и выделенные из клеток мультиферментные комплексы, включенные в определенный метаболический процесс. Наконец, биообъектом может быть индивидуальный изолированный фермент.

Функция биообъекта – полный биосинтез целевого продукта, включающий обычно ряд этапов, то есть последовательных ферментативных реакций или, в крайнем случае, катализ лишь одной ферментативной реакции, которая имеет ключевое значение для получения целевого продукта.

Биообъект, осуществляющий полный биосинтез целевого продукта принято именовать продуцентом. Иммобилизированный биообъект, являющийся индивидуальным ферментом или выполняющий функцию одной ферментативной реакции используемой биотехнологом – именуют промышленным биокатализатором.

Таким образом, к биообъектам могут быть отнесены как макромолекулы, так микро- и макроорганизмы, то есть от вирусов до человека. В качестве макромолекул в промышленном производстве используются все известные классы ферментов, но наиболее часто - гидролазы и трансферазы.

Наиболее широко в качестве биообъектов используются микроорганизмы . Как биообъекты, микробные клетки прокариот и эукариот в современном биотехнологическом производстве являются продуцентами первичных метаболитов, используемых в качестве лекарственных средств: аминокислот, азотистых оснований, липидных структур, коферментов, моно- и дисахаров, ферментов медицинского назначения, применяемых в заместительной терапии и т.д.

Микроорганизмы образуют также огромное количество вторичных метаболитов, многие из которых также нашли применение в клинике. Например, гормоны, антибиотики, витамины и другие перспективные корректоры гомеостаза клеток млекопитающих.



Итак, что же мы подразумеваем под термином "совершенствование биообъекта"? - Прежде всего – это повышение продуктивности биообъекта. Далее, какие же изменения нужны при совершенствовании биообъекта? - только наследственные. Это изменения, локализованные в ДНК, передающиеся при репликации ДНК и, соответственно, при размножении биообъекта (наследственные изменения). Только это, собственно, и интересует биотехнологов. То есть, наследственные изменения фенотипа - это изменения, которые реализуются, при изменении ДНК.

По выраженности почти любого признака в микробной популяции составляют вариационный ряд. Большинство клеток имеют среднюю выраженность признака.

Итак, по каким же специфическим свойствам мы совершенствуем биообъект?

1. Продуктивность

2. Экономичность (микроорганизм использует более дешевую и питательную среду).

3. Дефицитность (микроорганизм использует более доступную питательную среду).

4. Вязкость (в случае жидкой культуральной среды).

Поскольку из цеха ферментации культуральная среда (жидкость) идет в цех выделения и очистки, то там сотрудники часто жалуются на высокую вязкость культуральной жидкости, в результате чего мицелий невозможно ни отцентрифугировать, ни отфильтровать. Значит, задача селекционеров - улучшение свойств культуральной жидкости.

5. Промышленная гигиена.

Например, когда нарабатывается антибиотик цефалоспорин, очень трудно находиться в помещении (запах тухлой капусты). Значит, в идеале штамм должен выделять как можно меньше летучих веществ.

6. Устойчивость к заболеваниям.

Вы знаете, что если у вас биообъект – растение, то он может быть поражен бактериями, грибами и т.д. А если у вас биообъектом является микробный гриб или актиномицет, то он может быть поражен фагами (т.е. микробными вирусами).

Если рассмотреть цели клеточной инженерии, то можно сказать, что в идеале с ее помощью мы можем получать межвидовые и межродовые гибриды микроорганизмов, а также – можем получать гибриды клеток между отдаленными в эволюционном отношении многоклеточными организмами. Новое направление в биотехнологии – сочетание клеточной инженерии с инженерной энзимологией непосредственно в производстве.



Лекция №3

Совершенствование продуцентов (биообъектов) методами генетической инженерии.

План лекции

1. Понятие генетической инженерии.

2. Схема этапов работы генного инженера.

3. Факторы, определяющие выбор микроорганизма-продуцента.

4. Понятие и функции плазмидного вектора.

5. Функции рестриктаз и лигаз.

6. Гены-маркеры.

7. Явление сплайсинга

Наибольшие практические успехи генетической инженерии применительно к биотехнологии лекарств достигнуты в настоящее время в области создания штаммов микроорганизмов-продуцентов видоспецифичных для человека белков. Такие белки для микробной клетки являются чуждыми, в организме же человека одни из них играют роль биорегуляторов (белковые гормоны), другие – факторов врожденного иммунитета (интерфероны) и т. д.

Технология рекомбинантных ДНК (её называют также молекулярным клонированием или генной инженерией) – это совокупность экспериментальных процедур, позволяющая осуществить перенос генетического материала из одного организма в другой. Никакого единого универсального набора методик здесь не существует, но чаще всего эксперименты проводятся по строго определенной схеме. Генетическая инженерии – это соединение фрагментов ДНК (природного происхождения, синтетических или тех и других) в пробирке, т. е. in vitro и последующее введение новых (рекомбинантных) структур в живую клетку с тем условием, чтобы введенный, точно охарактеризованный фрагмент ДНК реплицировался после включения в хромосому или автономно экспрессировался.

Схему этапов работы генного инженера.

1. Соединение фрагментов ДНК, т.е. нуклеотидных последовательностей в пробирке (могут быть и синтетические последовательности или смесь природных и синтетических последовательностей).

2. Далее, к гену, кодирующему целевой белок присоединяется нуклеотидная последовательность, кодирующая так называемую лидерную последовательность аминокислот (преимущественно гидрофобных). Синтезированный в клетке целевой продукт с такой лидерной последовательностью аминокислот проходит с их помощью через липидные слои цитоплазматической мембраны из клетки наружу.

3. Затем, производится включение гена в клетку, но «не прямо в клетку, конечно» так как, вы понимаете, что клетка окружена оболочкой и для включения в неё генов приходится использовать так называемые «транспортные устройства» на основе плазмид.

При выборе микроорганизма учитывается ряд обстоятельств.

1. Поскольку микроорганизм будет выращиваться в производственных условиях в большом количестве и с ним будут контактировать многие работники предприятия (биологи, химики и т.д.), поэтому желательно, чтобы он не был патогенным. Также необходимо, чтобы в целевом генно-инженерном продукте не было присутствия даже следов микробных токсинов.

2. Как чужеродная для клетки структура, проникший в клетку вектор не должен расщепляться нуклеазами клетки. Генетический материал должен сохраняться.

3. У будущего продуцента целевого продукта необходимо ослабить те системы репарации на уровне ДНК, которые могут уничтожить вектор. То есть рибосомы потенциального продуцента должны воспринимать информационную РНК, соответствующую чужеродному материалу.

4. Образовавшийся чужеродный для клетки белок (для биотехнолога - целевой продукт) не должен расщепляться ее протеазами, т.е. он не должен подвергаться воздействию систем, гидролизующих чужеродные белки.

5. Наконец, желательно, чтобы у потенциального продуцента чужеродного белка, последний выводился из клетки в среду. Этим облегчается его последующее выделение и очистка.

Таким образом, нужно иметь ген, подходящую клетку и транспортное устройство, которое получило название вектор. Вектор конструируется на основе плазмид. Плазмида состоит из 2-х спиральной ДНК (замкнутая кольцевая молекула), в принципе тоже самое, как и у бактериальной хромосомы. Отличие заключается в том, что плазмида раз в 100 меньше хромосомы. Например, если в бактериальной хромосоме содержится примерно 3000 генов (от 1 тысячи до 6-7 тысяч), то в плазмиде - примерно 30 генов.

Так вот, надо. Что используется для этого? Для того чтобы ввести ген в вектор используются ферменты рестриктазы (от слова restrict - разрезание), которые по биохимической классификации относятся к нуклеазам (к эндонуклеазам). Затем, чтобы ген закрепить прочно в векторе (транспортном устройстве) вступают в действие другие ферменты - это лигазы (от слова "лигатура" - сшивание), которые "сшивают" ген и вектор ковалентной связью.

Сплайсинг (от англ. splice - сращивать или склеивать концы чего-либо) - процесс вырезания определенных нуклеотидных последовательностей из молекул РНК и соединения последовательностей, сохраняющихся в «зрелой» молекуле, в ходе процессинга РНК. Наиболее часто этот процесс встречается при созревании информационной РНК (иРНК) у эукариот.

Лекция №4

Геномика и протеомика

План лекции

1. Периоды развития генетики.

2. Секвенирование генома.

3. Цель и классификация геномики.

4. Модельные микроорганизмы.

5. Существенность гена.

6. Философские проблемы геномики.

7. «house kеeping genes» и «ivi genes».

8. Система «IVET».

9. Протеомика.

Что собственно значит геномика? Чем она отличается от генетики? Геномика во главу угла ставит уже не ген, а полный геном микробной, растительной и животной клеток. Геном - это уже качественный скачок вперед, демонстрирующий преодоление массы трудностей как технических и теоретических. Итак, геном прокариот, как вы знаете, в наследственном, т.е. генетически рассматриваемом отношении - это одна хромосома, т.е. кольцевая, замкнутая ДНК. Что касается генома эукариот (помните, там оформленное ядро, мембрана), то он, как правило, сложнее, так как клетки эукариот имеют несколько хромосом. У прокариот геном - гораздо проще, чем у эукариот, количество генов у них гораздо меньше, чем у эукариот. И мы с вами будем рассматривать некоторые примеры, используя клетки именно прокариот, геном которых является более простым.

Теперь, геномика расматривающая ген целиком, возможна только тогда, когда осуществлено секвенирование этого гена. От (англ.) секвенс- последовательность. В данном случае «секвенс» - последовательность нуклеотидных пар ДНК. Цель геномики - установление полной генетической характеристики всей клетки: установление количества содержащихся в ней генов и их последовательности, установление количества нуклеотидов в каждом гене и их последовательности, установление функций каждого гена применительно к метаболизму организма.

Несмотря на то, что геномика как наука, возникла относительно недавно, условно можно выделить определенные направления. Ну сама по себе геномика - это структурная оценка генома в целом: вы определяете путем секвенирования последовательность пар нуклеотидов, то есть сначала структуру отдельного гена, а затем и структуру всего генома.

Однако по ряду отдельных вопросов вы ведете исследования в направлении, так называемой сравнительной геномики . Значит, секвенируете геномы и гены в разных организмах и сопоставляете их друг с другом и решаете определенные теоретические и практические вопросы.

Еще одно очень важное направление, оказавшееся в дальнейшем ещё и очень трудоемким - это геномика функциональная или метаболическая . Идентификация генов проводится с помощью специальных компьютерных программ, в которых описаны геномы так называемых модельных микроорганизмов.

Теперь следующий очень важный момент - у каждого гена есть стартовая часть, есть детерминирующая часть и есть рамка считывания, т.е. структурный ген, которой индивидуален для каждого гена. А вот стартовая и детерминирующая части, как правило, стандартны (за редким исключением).

Итак, важнейшая проблема заключается в том, - каким образом от шифра перейти к функции.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.

Подобные документы

    История, цели и основы генетической инженерии; биоэтические аспекты. Группы генетических заболеваний, их диагностика и лечение. Применение генетической инженерии в медицинской практике: генные вакцины, генотерапия, производство лекарственных препаратов.

    реферат , добавлен 26.10.2011

    Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат , добавлен 23.07.2008

    презентация , добавлен 05.02.2014

    Ферменты генетической инженерии. Типы нуклеаз и их действия. Методы получения химер. Использование специфических термостабильных ДНК-полимераз. Ферментативная активность рестриктаз. Образование фосфодиэфирной связи между двумя основаниями одной цепи ДНК.

    контрольная работа , добавлен 21.04.2011

    Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

    реферат , добавлен 11.11.2010

    Понятие генетической инженерии, ее основные цели и задачи, порядок применения при получении рекомбинантных белков. Биологическая природа и типы плазмид, их разновидности и отличительные черты. признаки присутствия плазмид в бактериальной клетке.

    реферат , добавлен 23.01.2010

    Последовательность приемов генетической инженерии, используемая при создании генетически модифицированных организмов. Классификация основных типов рестриктаз, используемых для фрагментации ДНК. Ферменты, синтезирующие ДНК на матрице ДНК или РНК.



    Микроорганизмы как объекты биотехнологии. Классификация. Характеристика.

    Бактерии чрезвычайно разнообразны по условиям обитания, приспособляемости, типам питания и биоэнергообразования, по отношению к макроорганизмам - животным и растениям. Наиболее древние формы бактерий - архебактерии способны жить в экстремальных условиях (высокие температуры и давления, концентрированные растворы солей, кислые растворы). Эубактерии (типичные прокариоты, или бактерии) более чувствительны к условиям окружающей среды.

    По типу питания бактерии делятся по источнику энергии:

    · фототрофы, использующие энергию солнечного света;

    · хемоавтотрофы, использующие энергию окисления неорганических веществ (соединений серы, метана, аммиака, нитритов, соединений двухвалентного железа и др.);

    По типу окисления вещества:

    · органотрофы, получающие энергию при разложении органических веществ до минеральных веществ; эти бактерии - основные участники круговорота углерода, к этой же группе относятся бактерии, использующие энергию брожения;

    · литотрофы (неорганические вещества);

    По типу источников углерода:

    · гетеротрофные – используют органические вещества;

    · афтотрофные – используют газ;

    Для обозначения типа питания используется:

    1. природа источника энергии фото- или хемо-;

    2. Доноры электронов лито- или органо-;

    3. Источники углерода афто- и гетеро-;

    И заканчивается термин словами трофия. 8 различных типов питания.

    Высшие животные и растение склоны к 2 типам питания:

    1) Хемоорганогетеротрофия (животные)

    2) Фотолитоафтотрофия (растения)

    У микроорганизму представлены все типы питания при чем они могут переходить с одного на другой в зависимости от существования

    Существует отдельный вид питания:

    Бактерии являются удобным объектом для генетических исследований. Наиболее изученной и широко применяемой в генно-инженерных исследованиях является кишечная палочка Escherichia coli (Е. coli), обитающая в кишечнике человека.

    Организация и структура биотехнологических производств. Отличительные особенности биотехнологического производства от традиционных видов технологий. Преимущества и недостатки биотехнологических производств по сравнению с традиционными технологиями.

    Большое разнообразие биотехнологических процессов, нашедших промышленное применение, приводит к необходимости рассмотреть общие, наиболее важные проблемы, возникающие при создании любого биотехнологического производства. Процессы промышленной биотехнологии разделяют на 2 большие группы: производство биомассы и получение продуктов метаболизма. Однако такая классификация не отражает наиболее существенных с технологической точки зрения аспектов промышленных биотехнологических процессов. В этом плане необходимо рассматривать стадии биотехнологического производства, их сходство и различие в зависимости от конечной цели биотехнологического процесса.

    Существует 5 стадий биотехнологического производства.

    Две начальные стадии включают подготовку сырья и биологически действующего начала. В процессах инженерной энзимологии они обычно состоят из приготовления раствора субстрата с заданными свойствами (рН, температура, концентрация) и подготовки партии ферментного препарата данного типа, ферментного или иммобилизованного. При осуществлении микробиологического синтеза необходимы стадии приготовления питательной среды и поддержания чистой культуры, которая могла бы постоянно или по мере необходимости использоваться в процессе. Поддержание чистой культуры штамма-продуцента - главная задача любого микробиологического производства, поскольку высокоактивный, не претерпевший нежелательных изменений штамм может служить гарантией получения целевого продукта с заданными свойствами.

    Третья стадия - стадия ферментации, на которой происходит образование целевого продукта. На этой стадии идет микробиологическое превращение компонентов питательной среды сначала в биомассу, затем, если это необходимо, в целевой метаболит.

    На четвертом этапе из культуральной жидкости выделяют и очищают целевые продукты. Для промышленных микробиологических процессов характерно, как правило, образование очень разбавленных растворов и суспензий, содержащих, помимо целевого, большое количество других веществ. При этом приходится разделять смеси веществ очень близкой природы, находящихся в растворе в сравнимых концентрациях, весьма лабильных, легко подвергающихся термической деструкции.

    Заключительная стадия биотехнологического производства - приготовление товарных форм продуктов. Общим свойством большинства продуктов микробиологического синтеза является их недостаточная стойкость к хранению, поскольку они склонны к разложению и в таком виде представляют прекрасную среду для развития посторонней микрофлоры. Это заставляет технологов принимать специальные меры для повышения сохранности препаратов промышленной биотехнологии. Кроме того, препараты для медицинских целей требуют специальных решений на стадии расфасовки и укупорки, так должны быть стерильными.

    Основная цель биотехнологии - промышленное использование биологи­ческих процессов и агентов на основе получения высокоэффективных форм мик­роорганизмов, культур клеток и тканей растений и животных с заданными свой­ствами. Биотехнология возникла на стыке биологических, химических и техниче­ских наук.

    Биотехнологический процесс - включает ряд этанов: подготовку объекта, его культивирование, выделение, очистку, модификацию и использование продуктов.

    Биотехнологические процессы могут быть основаны на периодическом или непрерывном культивировании.

    Во многих странах мира биотехнологии придается первостепенное значе­ние. Это связано с тем, что биотехнология имеет ряд существенных преиму­ществ перед другими видами технологий, например, химической.

    1). Это, прежде всего, низкая энергоемкость. Биотехнологические процес­сы совершаются при нормальном давлении и температурах 20-40° С.

    2). Биотехпологическое производство чаще базируется на использовании стандартного однотипною оборудования. Однотипные ферменты применяются для производства аминокислот, витаминов; ферментов, антибиотиков.

    3). Биотехнологические процессы несложно сделать безотходными. Мик­роорганизмы усваивают самые разнообразные субстраты, поэтому отходы одного какого-то производства можно превращать в ценные продукты с помощью мик­роорганизмов в ходе другого производства.

    4). Безотходность биотехнологических производств делает их экологиче­ски наиболее чистыми

    5). Исследования в области биотехонологии не требуют крупных капи­тальных вложений, для их проведения не нужна дорогостоящая аппаратура.

    К первоочередным задачам современной биотехнологии относятся -создание и широкое освоение:

    1)новых биологически активных веществ и лекарственных препаратов для медицины (интерферонов, инсулина, гормонов роста, антител);

    2)микробиологических средств защиты растений от болезней и вредите­

    лей, бактериальных удобрений и регуляторов роста растений, новых высокопродуктивных и устойчивых к неблагоприятным факторам внешней среды гибридов сельскохозяйственных растений, полученных методами генетической и клеточной инженерии;

    3)ценных кормовых добавок и биологически активных веществ (кормового белка, аминокислот, ферментов, витаминов, кормовых антибиотиков) для по­вышения продуктивности животноводства;

    4)новых технологий получения хозяйственно-ценных продуктов для использования в пищевой, химической, микробиологической и других отраслях промышленности;

    5)технологий глубокой и эффективной переработки сельскохозяйствен­ных, промышленных и бытовых отходов, использования сточных вод и газовоздушных выбросов для получения биогаза и высококачественных удобрений.

    Традиционная (обычная) технология представляет собой разработки, отражающие средний уровень производства, достигнутый большинством производителей продукции в данной отрасли. Такая технология не обеспечивает ее покупателю значительных технико-экономических преимуществ и качество продукции по сравнению с аналогичной продукцией ведущих производителей, и рассчитывать на дополнительную (сверх средней) прибыль в данном случае не приходится. Ее преимуществами для покупателя являются сравнительно невысокая стоимость и возможность приобретения проверенной в производственных условиях технологии. Традиционная технология создается, как правило, в результате устаревания и широкомасштабного распространения прогрессивной технологии. Продажа такой технологии обычно осуществляется по ценам, компенсирующим продавцу издержки на ее подготовку и получение средней прибыли.

    Преимущества биотехнологических процессов по сравнению с химической технологией биотехнология имеет следующие основные преимущества:

    ·возможность получения специфичных и уникальных природных веществ, часть из которых (например, белки, ДНК) еще не удается получать путем химического синтеза;

    ·проведение биотехнологических процессов при относительно невысоких температурах и давлениях;

    ·микроорганизмы имеют значительно более высокие скорости роста и накопления клеточной массы, чем другие организмы

    ·в качестве сырья в процессах биотехнологии можно использовать дешевые отходы сельского хозяйства и промышленности;

    ·биотехнологические процессы по сравнению с химическими обычно более экологичны, имеют меньше вредных отходов, близки к протекающим в природе естественным процессам;

    ·как правило, технология и аппаратура в биотехнологических производствах более просты и дешевы.

    Биотехнологическая стадия

    Основной стадией является собственно биотехнологическая стадия, на которой с использованием того или иного биологического агента происходит преобразование сырья в тот или иной целевой продукт.

    Обычно главной задачей биотехнологической стадии является получение определенного органического вещества.

    Биотехнологическая стадия включает в себя:

    Ферментация - процесс, осуществляемый с помощью культивирования микроорганизмов.

    Биотрансформация - процесс изменения химической структуры вещества под действием ферментативной активности клеток микроорганизмов или готовых ферментов.

    Биокатализ - химические превращения вещества, протекающие с использованием биокатализаторов-ферментов.

    Биоокисление - потребление загрязняющих веществ с помощью микроорганизмов или ассоциации микроорганизмов в аэробных условиях.

    Метановое брожение - переработка органических отходов с помощью ассоциации метаногенных микроорганизмов в анаэробных условиях.

    Биокомпостирование - снижение содержания вредных органических веществ ассоциацией микроорганизмов в твердых отходах, которым придана специальная взрыхленная структура для обеспечения доступа воздуха и равномерного увлажнения.

    Биосорбция - сорбция вредных примесей из газов или жидкостей микроорганизмами, обычно закрепленными на специальных твердых носителях.

    Бактериальное выщелачивание - процесс перевода нерастворимых в воде соединений металлов в растворенное состояние под действием специальных микроорганизмов.

    Биодеградация - деструкция вредных соединений под воздействием микроорганизмов-биодеструкторов.

    Обычно биотехнологическая стадия имеет в качестве выходных потоков один жидкостной поток и один газовый, иногда только один - жидкостной. В случае, если процесс протекает в твердой фазе (например, созревание сыра или биокомпостирование отходов), выходом является поток переработанного твердого продукта.

    Подготовительные стадии

    Подготовительные стадии служат для приготовления и подготовки необходимых видов сырья биотехнологической стадии.

    На стадии подготовки могут быть использованы следующие процессы.

    Стерилизация среды - для асептических биотехнологических процессов, где нежелательно попадание посторонней микрофлоры.

    Подготовка и стерилизация газов (обычно воздуха), необходимых для протекания биотехнологического процесса. Чаще всего подготовка воздуха заключается в очистке его от пыли и влаги, обеспечении требуемой температуры и очистке от присутствующих в воздухе микроорганизмов, включая споры.

    Подготовка посевного материала. Очевидно, что для проведения микробиологического процесса или процесса культивирования изолированных клеток растений или животных необходимо подготовить и посевной материал - предварительно выращенное малое по сравнению с основной стадией количество биологического агента.

    Подготовка биокатализатора. Для процессов биотрансформации или биокатализа необходимо предварительно подготовить биокатализатор - либо фермент в свободном или закрепленном на носителе виде, либо биомассу микроорганизмов, выращенную предварительно до состояния, в котором проявляется ее ферментативная активность

    Предварительная обработка сырья. Если сырье поступает в производство в виде, непригодном для непосредственного использования в биотехнологическом процессе, то проводят операцию по предварительной подготовке сырья. Например, при получении спирта пшеницу сначала дробят, а затем подвергают ферментативному процессу "осахаривания", после чего осахаренное сусло на биотехнологической стадии путем ферментации превращается в спирт.

    Очистка продукта

    Задача этой стадии - убрать примеси, сделать продукт максимально чистым.

    Хроматография - процесс, напоминающий адсорбцию.

    Диализ - процесс, в котором через полупроницаемую перегородку могут проходить низкомолекулярные вещества, а высокомолекулярные остаются.

    Кристаллизация. Этот процесс базируется на различной растворимости веществ при разных температурах.

    Концентрирование продукта

    Дальнейшая задача - обеспечить его концентрирование.

    На стадии концентрирования применяют такие процессы, как выпаривание, сушка, осаждение, кристаллизация с фильтрацией получившихся кристаллов, ультрафильтрация и гиперфильтрация или нанофильтрация, обеспечивающие как бы "отжим" растворителя из раствора.

    Очистка стоков и выбросов

    Очистка этих стоков и выбросов - специальная задача, которая обязательно должна решаться в наше экологически неблагополучное время. По существу очистка стоков - это отдельное биотехнологическое производство, имеющее свои подготовительные стадии, биотехнологическую стадию, стадию отстаивания биомассы активного ила и стадию дополнительной очистки стоков и переработки осадка.

    Виды биологических объектов применяемых в биотехнологии, их классификация и характеристика. Биологические объекты животного происхождения. Биологические объекты растительного происхождения.

    К объектам биотехнологии относятся: организованные внеклеточные частицы (вирусы), клетки бактерий, грибов, простейшие организмы, ткани грибов, растений, животных и человека, ферменты и ферментные компоненты, биогенные молекулы нуклеиновой кислоты, лектины, цитокинины, первичные и вторичные метаболиты.

    В настоящее время большинство биообъектов биотехнологии представляется представителями 3-х надцарств:

    1) Acoryotac – акориоты или безъядерные;

    2) Procaryotac – прокариоты или предъядерные;

    3) Eucaryotac – эукариоты или ядерные.

    Представляются 5-ю царствами: к акариотам относят вирусы (неклеточная организованная частица); к прокариотам относят бактерии (морфологическая элементарная единица); к эукариотам относят грибы, растения и животные. Тип кодирование генетической информации ДНК (для вирусов ДНК или РНК).

    Бактрии имеют клеточную организацию, но при этом материал ядра не отделен от цитоплазмы ни какими мембранами и не связан ни с какими белками. В основном бактерии одноклеточные их размер не превышает 10 микрометров. Все бактерии делятся на архиобактерии и эубактерии.

    Грибы (Mycota) являются важными биотехнологическими объектами и продуцентами ряда важнейших соединений пищевых продуктов и добавок: антибиотики, растительные гормоны, красители, грибной белок, сыры различных типов. Микромицеты неформируют плодового тела, а макромицеты формируют. Имеют признаки животных и растений.

    Растения (Plantae). Известно около 300 тысяч видов растений. Это дифференцированные органические растения, составные части которых ткани (мериместентные, покровные, проводимые, механические, основные и секреторные). К делению способны только мириместентные ткани. Любой вид растения при определенных условиях может давать неорганизованную клеточную массу делящихся клеток – каллус. Важнейшими биообъектами являются протопласты растительных клеток. Они лишены клеточной стенки. Используются в клеточной инженерии. Часто используют водоросли. Из них получают агар-агар и альгинаты (полисахариды, используемые для приготовления микробиологических сред).

    Животные (Animalia). В биотехнологии широко применяются такие биообъекты как клетки различных животных. Кроме клеток высших животных используются клетки простейших животных. Клетки высших животных используются для получения рекомбинантной ДНК и для проведения токсикологических исследований.

    Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.