Оптические свойства растворов наночастиц. Поверхностный плазмонный резонанс

ПОВЕРХНОСТНЫЙ ПЛАЗМОННЫЙ РЕЗОНАНС НАНОЧАСТИЦ СЕРЕБРА В СТЕКЛЕ СТЕХИОМЕТРИСЕСКОГО СОСТАВА ДИСИЛИКАТА ЛИТИЯ

Институт химии силикатов имени И. В.Гребенщикова РАН,

Макарова, Санкт-Петербург, 199034 Россия

e-mail *****@***ru

Поверхностный плазмонный резонанс наночастиц представляет собой резкое увеличение интенсивности поглощения и рассеяния при определенной длине волны падающего света, попадающей в резонанс с собственной частотой колебаний электронного газа на поверхности наночастицы. Параметрами плазмонного резонанса являются: его величина, положение в спектре, полуширина полосы. Они зависят от материала, формы, размера наночастицы, а также от состава окружающей среды. Выполнено исследование, в котором на одних и тех же образцах фотоструктурированных (фоточувствительных) стекол с добавками примеси серебра 0.03Ag (масс.%) сверх 100 % и диоксида церия 0.05 CeO2 (масс.%) сверх 100 %, введенными как порознь, так и совместно, изучены кристаллизационные и оптические свойства стекла стехиометрического состава дисиликата лития 33.5Li2O · 66.5SiO2 (мол.%):

При воздействии ультрафиолетового излучения и термообработки ионы-восстановители отдают электроны ионам серебра, переводя их в атомарное состояние. Рентгеновское излучение введения сенсибилизатора не требует. При повышенной температуре атомы серебра формируют наночастицы, которые служат центрами кристаллизации основной неметаллической фазы дисиликата лития.

Так как максимальная скорость зарождения кристаллов дисиликата лития наблюдается при температуре 460 °С , для исследований оптических свойств стекол мы избрали именно эту температуру. Образцы выдерживали при температуре 460 °С в течение 3 часов. На рисунке 1 представлены зависимости оптической плотности образцов, D , от длины волны для исходного стекла 1 (без примесей и облучения); с примесями серебра и диоксида церия 2; с примесью серебра 3. Образцы 2 и 3 облучены в течение 10 минут. Режим термообработки 460 °С 3 часа.


Как видно из рисунка 1, зависимость оптической плотности образца 1 не имеет максимумов, она плавно уменьшается. Оптическая плотность образца с церием и серебром имеет два максимума: первый - для длины волны 310 нм, второй лежит при λ = 425 нм, и, наконец, оптическая плотность образца с серебром имеет только один максимум при λ = 425 нм. Отсюда можно сделать вывод, что полоса поглощения на длине волны λ = 310 нм связана с присутствием в стекле ионов церия, а длина волны λ = 425 – соответствует плазмонному резонансу наночастиц серебра.

Выводы по работе

Выполнено комплексное исследование, в котором на одних и тех же образцах фотоструктурированного (фоточувствительного) стекла стехиометрического состава дисиликата лития 33.5Li2O·66.5SiO2 (мол.%) с добавками фоточувствительной примеси серебра (0.03 масс.% сверх 100 %) и диоксида церия (0.05 масс.% сверх 100 %), введенными как порознь, так и совместно, изучены кристаллизационные и оптические свойства. Установлено, что полоса поглощения на длине волны λ =310 нм связана с присутствием в стекле ионов церия, а длина волны λ = 425 – соответствует плазмонному резонансу наночастиц серебра.

Скорость зарождения дисиликата лития на частицах серебра для глубины образца 0.52 мм в 500 раз выше скорости зарождения в гомогенных условиях нуклеации , что позволяет рекомендовать литиевосиликатное стекло данного состава использовать в качестве фотоструктурированного материала для получения фоточувствительных стеклов и фотоситаллов.

1. А. Зарождение кристаллов в литиевосиликатных фоточувствительных стеклах. Изд-во LAP LAMBERT Academic Publishing. ISBN: 978-3-8454-1285-6. 148с. Проектный номер (24811). LAP LAMBERT Academic Publishing GmbH & Co. KG Dudweiler Landstraße 99, 66123 Saarbrücken Germany. 2011г.

2. А., В., А., А. Влияние наночастиц золота на процессы аморфизации и кристаллизации в фотоструктурируемом литиевосиликатном стекле // Физ. и хим. стекла. 2013. Т.39. №4. С.513-521.

При взаимодействии электромагнитного излучения с металлическими наночастицами подвижные электроны проводимости частиц смещаются относительно положительно заряженных ионов металлов решетки. Это смещение носит коллективный характер, при котором движение электронов согласованно по фазе. Если размер частицы много меньше длины волны падающего света, то перемещение электронов приводит к возникновению диполя. В результате возникает сила, стремящаяся возвратить электроны в положение равновесия. Величина возвращающей силы пропорциональна величине смещения, как для типичного осциллятора, поэтому можно говорить о наличии собственной частоты коллективных колебаний электронов в частице. Если частота колебаний падающего света совпадает с собственной частотой колебаний свободных электронов вблизи поверхности металлической частицы, наблюдается резкое увеличение амплитуды колебания «электронной плазмы», квантовым аналогом которой является плазмон. Это явление получило название поверхностный плазмонный резонанс (ППР). В спектре поглощения света появляется пик. Для частиц благородных металлов с размером порядка 10-100 нм ППР наблюдается в видимой области спектра и в ближнем инфракрасном диапазоне. Его положение и интенсивность зависит от размера, формы наночастиц и локального диэлектрического окружения. Наночастицы серебра сферической формы с диаметром 10-25 нм имеют пик поглощения вблизи 400-420 нм (рис. 1а), наночастицы золота сферической формы – 520 нм, наночастицы оксида меди (I) – 450-700 нм.

Наностержни имеют анизотропную симметрию, и поэтому в спектре поглощения наблюдаются два пика, соответствующие поперечному и продольному плазмонам Поперечный плазмон дает абсорбционный пик при 400 нм, а продольный может проявляться в интервале от 500-1000 нм, т.е. в

ближней инфракрасной области. Его положение определяется размерными факторами наностержня, а именно отношением длины к ширине.

λ, нм

λ, нм

Рис.1а Оптический спектр поглощения наночастиц серебра

Рис.1б Оптический спектр поглощения стержнеобразных наночастиц серебра

Экспериментальная часть Обработка и представление результатов лабораторных работ

В отчете необходимо представить:

Схему и уравнение реакции синтеза наночастиц

Записи об изменении цвета раствора во время синтеза

Записи о влиянии (или отсутствия влияния) концентрации восстановителя и /или стабилизатора на размеры и устойчивость образующихся наночастиц

Спектр поглощения раствора наночастиц

Выводы о форме и размере наночастиц в синтезированном растворе

Лабораторная работа № 1 Получение наночастиц Ag цитратным способом

Этот метод позволяет получать относительно большие частицы серебра диаметром 60-80 нм. Максимум поглощения 420 нм.

Реактивы и оборудование

Реактивы: 0.005M раствор нитрата серебра AgNO 3 , цитрат натрия Na 3 C 6 H 5 O 7 ∙6H 2 O (1%-ный раствор), дистиллированная вода.

Оборудование: весы, спектрофотометр, кварцевые кюветы с длиной оптического пути 1 см, колбы 200 мл, стаканы 50 мл, мешалка с подогревом, мерный цилиндр.

Порядок выполнения работы

    Приготовить 0,005М (0,085%) раствор AgNO 3 в воде. Для этого растворите 0,0425 г. вещества в 50 мл дистиллированной воды.

    Перенесите 25 мл приготовленного раствора в колбу и добавьте 100 мл воды.

    Приготовьте 1% раствор цитрата натрия, растворив 0,5 г его в 50 мл воды.

    Нагрейте 125 мл полученного раствора нитрата серебра до кипения на плитке с мешалкой.

    Как только раствор начнет закипать, введите в него 5 мл 1% раствора цитрата натрия.

    Нагревайте раствор до тех пор, пока цвет не станет бледно-желтым.

    Оставьте раствор охлаждаться до комнатной температуры при включенной мешалке.

    Уменьшившийся за счет кипения объем раствора доведите водой до 125 мл.

    Снять спектр поглощения полученного коллоидного раствора в диапазоне 200 – 800 нм. В качестве раствора сравнения возьмите воду.

    Снимите спектр поглощения через сутки, неделю. Сравните полученные спектры. Что можно сказать об устойчивости наночастиц? Какие факторы определяют устойчивость наночастиц, полученных по этой методике? Какие ещё известны способы повышения устойчивости металлических наночастиц? Почему водный раствор нитрата серебра хранят в лаборатории в темной посуде?

    К 5 мл раствора полученных наночастиц серебра добавить по каплям 5 мл разбавленной НCl. Повторить опыт с уксусной кислотой СН 3 СООН. Наблюдать постепенное растворение наночастиц серебра и образование белого осадка при добавлении соляной кислоты и обесцвечивание раствора в случае добавления уксусной кислоты. Выводы, наблюдения и уравнения реакций запишите в тетрадь.

, поляритон , плазмон , нанофотоника Определение плазмонный резонанс (в случае наноразмерных металлических структур - локализованный плазмонный резонанс) – это возбуждение поверхностного плазмона на его резонансной частоте внешней электромагнитной волной. Описание

Поверхностный плазмон непосредственно не связан с электромагнитным излучением в прилегающей к металлу среде, так как его скорость меньше скорости света. Технический прием, позволяющий использовать поверхностные плазмоны в оптике, основан на использовании полного внутреннего отражения. При полном внутреннем отражении вдоль отражающей свет поверхности распространяется электромагнитная волна, скорость которой меньше скорости света и зависит от угла падения. Если при определенном угле падения скорость этой волны совпадет со скоростью поверхностного плазмона на поверхности металла, то условия полного внутреннего отражения нарушатся, и отражение перестанет быть полным, возникнет поверхностный плазмонный резонанс.

В наноразмерных металлических системах происходит модификация коллективных электронных возбуждений. Коллективное электронное возбуждение металлических наночастиц, размер которых меньше длины волны электромагнитного излучения в окружающей среде - локализованный поверхностный плазмон, - колеблется на частоте, меньшей частоты объемного плазмона в?3 раз, тогда как частота поверхностного плазмона примерно в?2 раз меньше, чем частота объемного плазмона. Из-за малого размера системы требование совпадения скорости распространения возбуждения и электромагнитной волны во внешней среде отпадает, так что локализованные поверхностные плазмоны связаны с излучением непосредственно. При совпадении частоты внешнего поля с частотой локализованного поверхностного плазмона возникает резонанс, приводящий к резкому усилению поля на поверхности частицы и увеличению сечения поглощения.

Свойства локализованных плазмонов критически зависят от формы наночастиц, что позволяет настраивать систему их резонансов на эффективное взаимодействие со светом или элементарными квантовыми системами.

В настоящее время явление поверхностного плазмонного резонанса широко применяется при создании химических и биологических сенсоров. При контакте с биообъектами (ДНК, вирусы, антитела) плазмонные наноструктуры позволяют более чем на порядок увеличить интенсивность сигналов флуоресценции, т.е. значительно расширяют возможности обнаружения, идентификации и диагностики биологических объектов.

  • Наймушина Дарья Анатольевна
Ссылки
  1. Перлин Е.Ю., Вартанян Т.А., Федоров А.В. Физика твердого тела. Оптика полупроводников, диэлектриков, металлов: Учебное пособие. - СПб: СПбГУ ИТМО, 2008. - 216 с.
  2. Pompa P.P., Martiradonna L. et al. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control // Nature Nanotechnology - vol. 1, 2006 - P. 126 -130
  3. Нащекин А.В. и др. Биосенсоры на основе поверхностного плазмонного резонанса // Cборник тезисов секционных докладов, стендовых докладов и докладов участников конкурса научных работ молодых ученых - Второй Международный форум по нанотехнологиям, 2008
Иллюстрации Теги Разделы Методы диагностики и исследования наноструктур и наноматериалов
Наука

Энциклопедический словарь нанотехнологий. - Роснано . 2010 .

Смотреть что такое "плазмонный резонанс" в других словарях:

    Англ. plasmon resonance) возбуждение поверхностного плазмона на его резонансной частоте внешней электромагнитной волной (в случае наноразмерных металлических структур называется локализованным плазмонным резонансом) . Описание Технический … Википедия

    Термин нанофармакология Термин на английском nanopharmacology Синонимы Аббревиатуры Связанные термины адгезия, доставка генов, антитело, бактериофаг, белки, биологическая мембрана, гипертермия, ДНК, капсид, квантовая точка, кинезин, клетка … Энциклопедический словарь нанотехнологий

    Шестерни молекулярного размера на основе нанотрубок … Википедия

    Наношестерни молекулярного размера Нанотехнология междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также… … Википедия

    Наношестерни молекулярного размера Нанотехнология междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также… … Википедия

    Наношестерни молекулярного размера Нанотехнология междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также… … Википедия

    В физике, плазмон квазичастица, отвечающая квантованию плазменных колебаний, которые представляют собой коллективные колебания свободного электронного газа. Содержание 1 Объяснение 2 Возможное использование … Википедия

    В физике, плазмон квазичастица, отвечающая квантованию плазменных колебаний, которые представляют собой коллективные колебания свободного электронного газа. Объяснение Плазмоны играет большую роль в оптических свойствах металлов. Свет с частотой … Википедия

    Золото - (Gold) Золото это драгоценный металл Золото: стоимость, пробы, курс, скупка, разновидности золота Содержание >>>>>>>>>>>>>>>> Золото это, определение … Энциклопедия инвестора

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.