Какой параллелепипед называется кубом. Определения параллелепипеда

Или (равносильно) многогранник, у которого шесть граней и каждая из них - параллелограмм .

Типы параллелепипеда

Различается несколько типов параллелепипедов:

  • Прямоугольный параллелепипед - это параллелепипед, у которого все грани - прямоугольники .
  • Прямой параллелепипед - это параллелепипед, у которого 4 боковые грани прямоугольники.
  • Наклонный параллелепипед - это параллелепипед, боковые грани которого не перпендикулярны основаниям.

Основные элементы

Две грани параллелепипеда, не имеющие общего ребра, называются противоположными, а имеющие общее ребро - смежными. Две вершины параллелепипеда, не принадлежащие одной грани, называются противоположными. Отрезок , соединяющий противоположные вершины, называется диагональю параллелепипеда. Длины трёх рёбер прямоугольного параллелепипеда, имеющих общую вершину, называют его измерениями.

Свойства

  • Параллелепипед симметричен относительно середины его диагонали.
  • Любой отрезок с концами, принадлежащими поверхности параллелепипеда и проходящий через середину его диагонали, делится ею пополам; в частности, все диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.
  • Противолежащие грани параллелепипеда параллельны и равны.
  • Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.

Основные формулы

Прямой параллелепипед

Площадь боковой поверхности S б =Р о *h, где Р о - периметр основания, h - высота

Площадь полной поверхности S п =S б +2S о, где S о - площадь основания

Объём V=S о *h

Прямоугольный параллелепипед

Площадь боковой поверхности S б =2c(a+b), где a, b - стороны основания, c - боковое ребро прямоугольного параллелепипеда

Площадь полной поверхности S п =2(ab+bc+ac)

Объём V=abc, где a, b, c - измерения прямоугольного параллелепипеда.

Куб

Площадь поверхности : S=6a^2
Объём : V=a^3, где a - ребро куба.

Произвольный параллелепипед

Объём и соотношения в наклонном параллелепипеде часто определяются с помощью векторной алгебры. Объём параллелепипеда равен абсолютной величине смешанного произведения трёх векторов, определяемых тремя сторонами параллелепипеда, исходящими из одной вершины. Соотношение между длинами сторон параллелепипеда и углами между ними даёт утверждение, что определитель Грама указанных трёх векторов равен квадрату их смешанного произведения :215 .

В математическом анализе

В математическом анализе под n-мерным прямоугольным параллелепипедом B понимают множество точек x = (x_1,\ldots,x_n) вида B = \{x|a_1\leqslant x_1\leqslant b_1,\ldots,a_n\leqslant x_n\leqslant b_n\}

Напишите отзыв о статье "Параллелепипед"

Примечания

Ссылки

Отрывок, характеризующий Параллелепипед

– On dit que les rivaux se sont reconcilies grace a l"angine… [Говорят, что соперники примирились благодаря этой болезни.]
Слово angine повторялось с большим удовольствием.
– Le vieux comte est touchant a ce qu"on dit. Il a pleure comme un enfant quand le medecin lui a dit que le cas etait dangereux. [Старый граф очень трогателен, говорят. Он заплакал, как дитя, когда доктор сказал, что случай опасный.]
– Oh, ce serait une perte terrible. C"est une femme ravissante. [О, это была бы большая потеря. Такая прелестная женщина.]
– Vous parlez de la pauvre comtesse, – сказала, подходя, Анна Павловна. – J"ai envoye savoir de ses nouvelles. On m"a dit qu"elle allait un peu mieux. Oh, sans doute, c"est la plus charmante femme du monde, – сказала Анна Павловна с улыбкой над своей восторженностью. – Nous appartenons a des camps differents, mais cela ne m"empeche pas de l"estimer, comme elle le merite. Elle est bien malheureuse, [Вы говорите про бедную графиню… Я посылала узнавать о ее здоровье. Мне сказали, что ей немного лучше. О, без сомнения, это прелестнейшая женщина в мире. Мы принадлежим к различным лагерям, но это не мешает мне уважать ее по ее заслугам. Она так несчастна.] – прибавила Анна Павловна.
Полагая, что этими словами Анна Павловна слегка приподнимала завесу тайны над болезнью графини, один неосторожный молодой человек позволил себе выразить удивление в том, что не призваны известные врачи, а лечит графиню шарлатан, который может дать опасные средства.
– Vos informations peuvent etre meilleures que les miennes, – вдруг ядовито напустилась Анна Павловна на неопытного молодого человека. – Mais je sais de bonne source que ce medecin est un homme tres savant et tres habile. C"est le medecin intime de la Reine d"Espagne. [Ваши известия могут быть вернее моих… но я из хороших источников знаю, что этот доктор очень ученый и искусный человек. Это лейб медик королевы испанской.] – И таким образом уничтожив молодого человека, Анна Павловна обратилась к Билибину, который в другом кружке, подобрав кожу и, видимо, сбираясь распустить ее, чтобы сказать un mot, говорил об австрийцах.
– Je trouve que c"est charmant! [Я нахожу, что это прелестно!] – говорил он про дипломатическую бумагу, при которой отосланы были в Вену австрийские знамена, взятые Витгенштейном, le heros de Petropol [героем Петрополя] (как его называли в Петербурге).
– Как, как это? – обратилась к нему Анна Павловна, возбуждая молчание для услышания mot, которое она уже знала.
И Билибин повторил следующие подлинные слова дипломатической депеши, им составленной:
– L"Empereur renvoie les drapeaux Autrichiens, – сказал Билибин, – drapeaux amis et egares qu"il a trouve hors de la route, [Император отсылает австрийские знамена, дружеские и заблудшиеся знамена, которые он нашел вне настоящей дороги.] – докончил Билибин, распуская кожу.
– Charmant, charmant, [Прелестно, прелестно,] – сказал князь Василий.
– C"est la route de Varsovie peut etre, [Это варшавская дорога, может быть.] – громко и неожиданно сказал князь Ипполит. Все оглянулись на него, не понимая того, что он хотел сказать этим. Князь Ипполит тоже с веселым удивлением оглядывался вокруг себя. Он так же, как и другие, не понимал того, что значили сказанные им слова. Он во время своей дипломатической карьеры не раз замечал, что таким образом сказанные вдруг слова оказывались очень остроумны, и он на всякий случай сказал эти слова, первые пришедшие ему на язык. «Может, выйдет очень хорошо, – думал он, – а ежели не выйдет, они там сумеют это устроить». Действительно, в то время как воцарилось неловкое молчание, вошло то недостаточно патриотическое лицо, которого ждала для обращения Анна Павловна, и она, улыбаясь и погрозив пальцем Ипполиту, пригласила князя Василия к столу, и, поднося ему две свечи и рукопись, попросила его начать. Все замолкло.

Определение

Многогранником будем называть замкнутую поверхность, составленную из многоугольников и ограничивающую некоторую часть пространства.

Отрезки, являющиеся сторонами этих многоугольников, называются ребрами многогранника, а сами многоугольники – гранями . Вершины многоугольников называются вершинами многогранника.

Будем рассматривать только выпуклые многогранники (это такой многогранник, который находится по одну сторону от каждой плоскости, содержащей его грань).

Многоугольники, из которых составлен многогранник, образуют его поверхность. Часть пространства, которую ограничивает данный многогранник, называется его внутренностью.

Определение: призма

Рассмотрим два равных многоугольника \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , находящихся в параллельных плоскостях так, что отрезки \(A_1B_1, \ A_2B_2, ..., A_nB_n\) параллельны. Многогранник, образованный многоугольниками \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) , а также параллелограммами \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) , называется (\(n\) -угольной) призмой .

Многоугольники \(A_1A_2A_3...A_n\) и \(B_1B_2B_3...B_n\) называются основаниями призмы, параллелограммы \(A_1B_1B_2A_2, \ A_2B_2B_3A_3, ...\) – боковыми гранями, отрезки \(A_1B_1, \ A_2B_2, \ ..., A_nB_n\) – боковыми ребрами.
Таким образом, боковые ребра призмы параллельны и равны между собой.

Рассмотрим пример - призма \(A_1A_2A_3A_4A_5B_1B_2B_3B_4B_5\) , в основании которой лежит выпуклый пятиугольник.

Высота призмы – это перпендикуляр, опущенный из любой точки одного основания к плоскости другого основания.

Если боковые ребра не перпендикулярны основанию, то такая призма называется наклонной (рис. 1), в противном случае – прямой . У прямой призмы боковые ребра являются высотами, а боковые грани – равными прямоугольниками.

Если в основании прямой призмы лежит правильный многоугольник, то призма называется правильной .

Определение: понятие объема

Единица измерения объема – единичный куб (куб размерами \(1\times1\times1\) ед\(^3\) , где ед - некоторая единица измерения).

Можно сказать, что объем многогранника – это величина пространства, которую ограничивает этот многогранник. Иначе: это величина, числовое значение которой показывает, сколько раз единичный куб и его части вмещаются в данный многогранник.

Объем имеет те же свойства, что и площадь:

1. Объемы равных фигур равны.

2. Если многогранник составлен из нескольких непересекающихся многогранников, то его объем равен сумме объемов этих многогранников.

3. Объем – величина неотрицательная.

4. Объем измеряется в см\(^3\) (кубические сантиметры), м\(^3\) (кубические метры) и т.д.

Теорема

1. Площадь боковой поверхности призмы равна произведению периметра основания на высоту призмы.
Площадь боковой поверхности - сумма площадей боковых граней призмы.

2. Объем призмы равен произведению площади основания на высоту призмы: \

Определение: параллелепипед

Параллелепипед – это призма, в основании которой лежит параллелограмм.

Все грани параллелепипеда (их \(6\) : \(4\) боковые грани и \(2\) основания) представляют собой параллелограммы, причем противоположные грани (параллельные друг другу) представляют собой равные параллелограммы (рис. 2).


Диагональ параллелепипеда – это отрезок, соединяющий две вершины параллелепипеда, не лежащие в одной грани (их \(8\) : \(AC_1, \ A_1C, \ BD_1, \ B_1D\) и т.д.).

Прямоугольный параллелепипед - это прямой параллелепипед, в основании которого лежит прямоугольник.
Т.к. это прямой параллелепипед, то боковые грани представляют собой прямоугольники. Значит, вообще все грани прямоугольного параллелепипеда – прямоугольники.

Все диагонали прямоугольного параллелепипеда равны (это следует из равенства треугольников \(\triangle ACC_1=\triangle AA_1C=\triangle BDD_1=\triangle BB_1D\) и т.д.).

Замечание

Таким образом, параллелепипед обладает всеми свойствами призмы.

Теорема

Площадь боковой поверхности прямоугольного параллелепипеда равна \

Площадь полной поверхности прямоугольного параллелепипеда равна \

Теорема

Объем прямоугольного параллелепипеда равен произведению трех его ребер, выходящих из одной вершины (три измерения прямоугольного параллелепипеда): \


Доказательство

Т.к. у прямоугольного параллелепипеда боковые ребра перпендикулярны основанию, то они являются и его высотами, то есть \(h=AA_1=c\) Т.к. в основании лежит прямоугольник, то \(S_{\text{осн}}=AB\cdot AD=ab\) . Отсюда и следует данная формула.

Теорема

Диагональ \(d\) прямоугольного параллелепипеда ищется по формуле (где \(a,b,c\) - измерения параллелепипеда) \

Доказательство

Рассмотрим рис. 3. Т.к. в основании лежит прямоугольник, то \(\triangle ABD\) – прямоугольный, следовательно, по теореме Пифагора \(BD^2=AB^2+AD^2=a^2+b^2\) .

Т.к. все боковые ребра перпендикулярны основаниям, то \(BB_1\perp (ABC) \Rightarrow BB_1\) перпендикулярно любой прямой в этой плоскости, т.е. \(BB_1\perp BD\) . Значит, \(\triangle BB_1D\) – прямоугольный. Тогда по теореме Пифагора \(B_1D=BB_1^2+BD^2=a^2+b^2+c^2\) , чтд.

Определение: куб

Куб - это прямоугольный параллелепипед, все грани которого – равные квадраты.


Таким образом, три измерения равны между собой: \(a=b=c\) . Значит, верны следующие

Теоремы

1. Объем куба с ребром \(a\) равен \(V_{\text{куба}}=a^3\) .

2. Диагональ куба ищется по формуле \(d=a\sqrt3\) .

3. Площадь полной поверхности куба \(S_{\text{полн.пов-ти куба}}=6a^2\) .

Параллелепипедом называется четырехугольная призма, в основаниях которой лежат параллелограммы. Высотой параллелепипеда называют расстояние между плоскостями его основаниями. На рисунке высота показана отрезком . Различают два вида параллелепипедов: прямой и наклонный. Как правило, репетитор по математике сначала дает соответствующие определения для призмы, а затем переносит их на параллелепипед. Мы сделаем также.

Напомню, что призма называется прямой, если ее боковые ребра перпендикулярны основаниям, если перпендикулярности нет – призму называют наклонной. Эту терминологию наследует и параллелепипед. Прямой параллелепипед – ни что иное, как разновидность прямой призмы, боковое ребро которой совпадает с высотой. Сохраняются определения таких понятий, как грань, ребро и вершина, являющиеся общими для всего семейства многогранников. Появляются понятие противоположные грани. У параллелепипеда 3 пары противоположных граней, 8 вершин ти 12 ребер.

Диагональ параллелепипеда (диагональ призмы) — отрезок, соединяющий две вершины многогранника и не лежащий ни в одной из его граней.

Диагональное сечение – сечение параллелепипеда, проходящее через его диагональ и диагональ его основания.

Свойства наклонного параллелепипеда :
1) Все его грани – параллелограммы, а противоположные грани — равные параллелограммы.
2) Диагонали параллелепипеда пересекаются в одной точке и делятся в этой точки пополам.
3) Каждый параллелепипед состоит из шести равных по объему треугольных пирамид. Чтобы показать их ученику репетитор по математике должен отрезать от параллелепепеда половинку его диагональным сечением и разбить ее отдельно на 3 пирамиды. Их основания должны лежать в разных гранях исходного паралеллепипеда. Репетитор математики найдет применение этого свойства в аналитической геометрии. Оно используется для вывода объема пирамиды через смешанное произведение векторов.

Формулы объема параллелепипеда :
1) , где — площадь основания, h – высота.
2) Объем параллелепипеда равен произведению площади поперечного сечения на боковое ребро .
Репетитору по математике : Как известно, формула является общей для всех призм и если репетитор уже доказал ее, нет смысла повторять тоже самое для параллелепипеда. Однако в работе со учеником среднего уровня (слабому формула не пригодиться) преподавателю желательно действовать с точностью до наоборот. Призму оставить в покое, а для параллелепипеда провести аккуратное доказательство.
3) , где –объем одной из шести треугольных пирамиды из которых состоит параллелепипед.
4) Если , то

Площадью боковой поверхности параллелепипеда называется сумма площадей всех его граней:
Полная поверхность параллелепипеда – это сумма площадей всех его граней, то есть площадь + две площади основания: .

О работе репетитора с наклонным параллелепипедом :
Задачами на наклонный параллелепипед репетитор по математике занимается не часто. Вероятность их появления на ЕГЭ достаточно мала, а дидактика неприлично бедная. Более-менее приличная задача на объем наклонного параллелепипеда вызывает серьезные проблемы, связанные с пределением расположения точки Н — основания его высоты. В этом случае репетитору по математике можно посоветовать обрезать параллелепипед до одной из шести его пирамид (о которых идет речь в свойстве №3), попробовать найти ее объем и умножить его на 6.

Если боковое ребро параллелепипеда имеет равные углы со сторонами основания, то Н лежит на биссектрисе угла A основания ABCD. И если, например, ABCD — ромб, то

Задачи репетитора по математике :
1) Грани параллелепипеда равные роибы со стороной 2см и острым углом . Найти объем параллелепипеда.
2) В наклонном параллелепипеде боковое ребро равно 5см. Сечение, перпендикулярное ему, является четырехугольником со взаимно перпендикулярными диагоналями, имеющими длины 6см и 8 см. Вычислить объем паралеллепипеда.
3) В наклонном параллелепипеде известно, что , а в онованием ABCD является ромб со стороной 2см и уголом . Определите объем параллелепипеда.

Репетитор по математике, Александр Колпаков

Часто ученики возмущенно спрашивают: «Как мне в жизни это пригодится?». На любую тему каждого предмета. Не становится исключением и тема про объем параллелепипеда. И вот здесь как раз можно сказать: «Пригодится».

Как, например, узнать, поместится ли в почтовую коробку посылка? Конечно, можно методом проб и ошибок выбрать подходящую. А если такой возможности нет? Тогда на выручку придут вычисления. Зная вместимость коробки, можно рассчитать объем посылки (хотя бы приблизительно) и ответить на поставленный вопрос.

Параллелепипед и его виды

Если дословно перевести его название с древнегреческого, то получится, что это фигура, состоящая из параллельных плоскостей. Существуют такие равносильные определения параллелепипеда:

  • призма с основанием в виде параллелограмма;
  • многогранник, каждая грань которого - параллелограмм.

Его виды выделяются в зависимости от того, какая фигура лежит в его основании и как направлены боковые ребра. В общем случае говорят о наклонном параллелепипеде , у которого основание и все грани — параллелограммы. Если у предыдущего вида боковые грани станут прямоугольниками, то его нужно будет называть уже прямым . А у прямоугольного и основание тоже имеет углы по 90º.

Причем последний в геометрии стараются изображать так, чтобы было заметно, что все ребра параллельны. Здесь, кстати, наблюдается основное отличие математиков от художников. Последним важно передать тело с соблюдением закона перспективы. И в этом случае параллельность ребер совсем незаметна.

О введенных обозначениях

В приведенных ниже формулах справедливы обозначения, указанные в таблице.

Формулы для наклонного параллелепипеда

Первая и вторая для площадей:

Третья для того, чтобы вычислить объем параллелепипеда:

Так как основание - параллелограмм, то для расчета его площади нужно будет воспользоваться соответствующими выражениями.

Формулы для прямоугольного параллелепипеда

Аналогично первому пункту - две формулы для площадей:

И еще одна для объема:

Первая задача

Условие. Дан прямоугольный параллелепипед, объем которого требуется найти. Известна диагональ — 18 см - и то, что она образует углы в 30 и 45 градусов с плоскостью боковой грани и боковым ребром соответственно.

Решение. Чтобы ответить на вопрос задачи, потребуется узнать все стороны в трех прямоугольных треугольниках. Они дадут необходимые значения ребер, по которым нужно сосчитать объем.

Сначала нужно выяснить, где находится угол в 30º. Для этого нужно провести диагональ боковой грани из той же вершины, откуда чертилась главная диагональ параллелограмма. Угол между ними и будет тем, что нужен.

Первый треугольник, который даст одно из значений сторон основания, будет следующим. В нем содержатся искомая сторона и две проведенные диагонали. Он прямоугольный. Теперь потребуется воспользоваться отношением противолежащего катета (стороны основания) и гипотенузы (диагонали). Оно равно синусу 30º. То есть неизвестная сторона основания будет определяться как диагональ, умноженная на синус 30º или ½. Пусть она будет обозначена буквой «а».

Вторым будет треугольник, содержащий известную диагональ и ребро, с которым она образует 45º. Он тоже прямоугольный, и можно опять воспользоваться отношением катета к гипотенузе. Другими словами, бокового ребра к диагонали. Оно равно косинусу 45º. То есть «с» вычисляется как произведение диагонали на косинус 45º.

с = 18 * 1/√2 = 9 √2 (см).

В этом же треугольнике требуется найти другой катет. Это необходимо для того, чтобы потом сосчитать третью неизвестную - «в». Пусть она будет обозначена буквой «х». Ее легко вычислить по теореме Пифагора:

х = √(18 2 - (9√2) 2) = 9√2 (см).

Теперь нужно рассмотреть еще один прямоугольный треугольник. Он содержит уже известные стороны «с», «х» и ту, что нужно сосчитать, «в»:

в = √((9√2) 2 - 9 2 = 9 (см).

Все три величины известны. Можно воспользоваться формулой для объема и сосчитать его:

V = 9 * 9 * 9√2 = 729√2 (см 3).

Ответ: объем параллелепипеда равен 729√2 см 3 .

Вторая задача

Условие. Требуется найти объем параллелепипеда. В нем известны стороны параллелограмма, который лежит в основании, 3 и 6 см, а также его острый угол — 45º. Боковое ребро имеет наклон к основанию в 30º и равно 4 см.

Решение. Для ответа на вопрос задачи нужно взять формулу, которая была записана для объема наклонного параллелепипеда. Но в ней неизвестны обе величины.

Площадь основания, то есть параллелограмма, будет определена по формуле, в которой нужно перемножить известные стороны и синус острого угла между ними.

S о = 3 * 6 sin 45º = 18 * (√2)/2 = 9 √2 (см 2).

Вторая неизвестная величина — это высота. Ее можно провести из любой из четырех вершин над основанием. Ее найти можно из прямоугольного треугольника, в котором высота является катетом, а боковое ребро — гипотенузой. При этом угол в 30º лежит напротив неизвестной высоты. Значит, можно воспользоваться отношением катета к гипотенузе.

н = 4 * sin 30º = 4 * 1/2 = 2.

Теперь все значения известны и можно вычислить объем:

V = 9 √2 * 2 = 18 √2 (см 3).

Ответ: объем равен 18 √2 см 3 .

Третья задача

Условие. Найти объем параллелепипеда, если известно, что он прямой. Стороны его основания образуют параллелограмм и равны 2 и 3 см. Острый угол между ними 60º. Меньшая диагональ параллелепипеда равна большей диагонали основания.

Решение. Для того чтобы узнать объем параллелепипеда, воспользуемся формулой с площадью основания и высотой. Обе величины неизвестны, но их несложно вычислить. Первая из них высота.

Поскольку меньшая диагональ параллелепипеда совпадает по размеру с большей основания, то их можно обозначить одной буквой d. Больший угол параллелограмма равен 120º, поскольку с острым он образует 180º. Пусть вторая диагональ основания будет обозначена буквой «х». Теперь для двух диагоналей основания можно записать теоремы косинусов :

d 2 = а 2 + в 2 - 2ав cos 120º,

х 2 = а 2 + в 2 - 2ав cos 60º.

Находить значения без квадратов не имеет смысла, так как потом они будут снова возведены во вторую степень. После подстановки данных получается:

d 2 = 2 2 + 3 2 - 2 * 2 * 3 cos 120º = 4 + 9 + 12 * ½ = 19,

х 2 = а 2 + в 2 - 2ав cos 60º = 4 + 9 - 12 * ½ = 7.

Теперь высота, она же боковое ребро параллелепипеда, окажется катетом в треугольнике. Гипотенузой будет известная диагональ тела, а вторым катетом — «х». Можно записать Теорему Пифагора:

н 2 = d 2 - х 2 = 19 - 7 = 12.

Отсюда: н = √12 = 2√3 (см).

Теперь вторая неизвестная величина — площадь основания. Ее можно сосчитать по формуле, упомянутой во второй задаче.

S о = 2 * 3 sin 60º = 6 * √3/2 = 3√3 (см 2).

Объединив все в формулу объема, получаем:

V = 3√3 * 2√3 = 18 (см 3).

Ответ: V = 18 см 3 .

Четвертая задача

Условие. Требуется узнать объем параллелепипеда, отвечающего таким условиям: основание — квадрат со стороной 5 см; боковые грани являются ромбами; одна из вершин, находящихся над основанием, равноудалена от всех вершин, лежащих в основании.

Решение. Сначала нужно разобраться с условием. С первым пунктом про квадрат вопросов нет. Второй, про ромбы, дает понять, что параллелепипед наклонный. Причем все его ребра равны 5 см, поскольку стороны у ромба одинаковые. А из третьего становится ясно, что три диагонали, проведенные из нее, равны. Это две, которые лежат на боковых гранях, а последняя внутри параллелепипеда. И эти диагонали равны ребру, то есть тоже имеют длину 5 см.

Для определения объема будет нужна формула, записанная для наклонного параллелепипеда. В ней опять нет известных величин. Однако площадь основания вычислить легко, потому что это квадрат.

S о = 5 2 = 25 (см 2).

Немного сложнее обстоит дело с высотой. Она будет таковой в трех фигурах: параллелепипеде, четырехугольной пирамиде и равнобедренном треугольнике. Последним обстоятельством и нужно воспользоваться.

Поскольку она высота, то является катетом в прямоугольном треугольнике. Гипотенузой в нем будет известное ребро, а второй катет равен половине диагонали квадрата (высота - она же и медиана). А диагональ основания найти просто:

d = √(2 * 5 2) = 5√2 (см).

Высоту нужно будет сосчитать как разность второй степени ребра и квадрата половины диагонали и не забыть потом извлечь квадратный корень :

н = √ (5 2 - (5/2 * √2) 2) = √(25 - 25/2) = √(25/2) = 2,5 √2 (см).

V = 25 * 2,5 √2 = 62,5 √2 (см 3).

Ответ: 62,5 √2 (см 3).

либо (равносильно) многогранник с шестью гранями, являющимися параллелограммами. Шестигранник.

Параллелограммы, из которых состоит параллелепипед являются гранями этого параллелепипеда, стороны этих параллелограммов являются ребрами параллелепипеда , а вершины параллелограммов — вершинами параллелепипеда . У параллелепипеда каждая грань является параллелограммом .

Как правило выделяют любые 2-е противолежащие грани и называют их основаниями параллелепипеда , а оставшиеся грани — боковыми гранями параллелепипеда . Ребра параллелепипеда, которые не принадлежат основаниям являются боковыми ребрами .

2 грани параллелепипеда, которые имеют общее ребро являются смежными , а те, которые не имеют общих ребер — противоположными .

Отрезок, который соединяет 2 вершины, которые не принадлежат 1-ой грани является диагональю параллелепипеда .

Длины ребер прямоугольного параллелепипеда, которые не параллельны, являются линейными размерами (измерениями ) параллелепипеда. У прямоугольного параллелепипеда 3 линейных размера.

Типы параллелепипеда.

Существует несколько видов параллелепипедов:

Прямым является параллелепипед с ребром, перпендикулярным плоскости основания.

Прямоугольный параллелепипед, у которого все 3 измерения имеют равную величину, является кубом . Каждая из граней куба - это равные квадраты .

Произвольный параллелепипед. Объём и соотношения в наклонном параллелепипеде в основном определяются при помощи векторной алгебры. Объём параллелепипеда равняется абсолютной величине смешанного произведения 3-х векторов, которые определяются 3-мя сторонами параллелепипеда (которые исходят из одной вершины). Соотношение между длинами сторон параллелепипеда и углами между ними показывает утверждение, что определитель Грама данных 3-х векторов равняется квадрату их смешанного произведения .

Свойства параллелепипеда.

  • Параллелепипед симметричен относительно середины его диагонали.
  • Всякий отрезок с концами, которые принадлежат поверхности параллелепипеда и который проходит через середину его диагонали, делится ею на две равные части. Все диагонали параллелепипеда пересекаются в 1-ой точке и делятся ею на две равные части.
  • Противоположные грани параллелепипеда параллельны и имеют равные размеры.
  • Квадрат длины диагонали прямоугольного параллелепипеда равняется
Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.