Как найти радиус сферы если известна площадь. Площадь сферы

Многие из нас любят играть в футбол или, по крайней мере, почти каждый из нас слышал про эту знаменитую спортивную игру. Всем известно, что в футбол играют мячом.

Если спросить прохожего, форму какой геометрической фигуры имеет мяч, то часть людей скажут, что форму шара, а часть, что формы сферы. Так кто же из них прав? И в чем разница между сферой и шаром?

Важно!

Шар — это пространственное тело. Внутри шар чем-либо заполнен. Поэтому у шара можно найти объем.

Примеры шара в жизни: арбуз и стальной шарик.

Шар и сфера, подобно кругу и окружности, имеют центр, радиус и диаметр.

Важно!

Сфера — поверхность шара. У сферы можно найти площадь поверхности.

Примеры сферы в жизни: волейбольный мяч и шарик для игры в настольный теннис.

Как найти площадь сферы

Запомните!

Формула площади сферы: S = 4π R 2

Для того, чтобы найти площадь сферы, необходимо вспомнить, что такое степень числа . Зная определение степени, можно записать формулу площади сферы следующим образом.
S = 4π R 2 = 4π R · R;

Закрепим полученные знания и решим задачу на площадь сферы.

Зубарева 6 класс. Номер 692(а)

Условие задачи:

  • Вычислите площадь сферы, если её радиус равен 1 = 3 · = = / (4 · 3) = ) = = ) =
    = = = 88
    88
    = 1
  • R 3 = 1
  • R = 1 м

Важно!

Уважаемые родители!

При окончательном расчете радиуса не надо заставлять ребенка считать кубический корень. Учащиеся 6-го класса еще не проходили и не знают определение корней в математике.

В 6 классе при решении такой задачи используйте метод перебора.

Спросите ученика, какое число, если его умножить 3 раза на самого себя даст единицу.

Шар и сфера — это прежде всего геометрические фигуры, и если шар — это геометрическое тело, то сфера — это поверхность шара. Этими фигурами интересовались еще многие тысячи лет назад до н.э.

Впоследствии когда было открыто, что Земля — это шар, а небо — небесная сфера, получило развитие новое увлекательное направление в геометрии — геометрия на сфере или сферическая геометрия. Для того, чтобы рассуждать о размере и объеме шара, нужно сначала дать ему определение.

Шар

Шаром радиуса R с центром в точке О в геометрии называют тело, которое создано всеми точками пространство, имеющими общее свойство. Эти точки находятся на расстоянии, не превышающем радиуса шара, то есть заполняют все пространство меньше радиуса шара во все стороны от его центра. Если мы рассмотрим только те точки, которые равноудалены от центра шара — мы будем рассматривать его поверхность или оболочку шара.

Как можно получить шар? Мы можем вырезать из бумаги круг и начать его вращать вокруг его же диаметра. То есть диаметр круга будет осью вращения. Образованная фигура — будет шар. Поэтому шар называют также телом вращения. Потому что он может быть образован путем вращения плоской фигуры — круга.

Возьмем какую-нибудь плоскость и разрежем ею наш шар. Подобно тому как мы режем ножом апельсин. Кусок, который мы отсечем от шара, называется шаровым сегментом.

В Древней Греции умели не только работать с шаром и сферой, как с геометрическими фигурами, например, использовать их при строительстве, а также умели расчитывать площадь поверхности шара и объем шара.

Сферой иначе называется поверхность шара. Сфера — это не тело — это поверхность тела вращения. Однако так как и Земля и многие тела имеют сферическую форму, например капля воды, то изучение геометрических соотношений внутри сферы получило большое распространение.

Например, если мы соединим две точки сферы между собой прямой линией, то эта прямая линия назовется хордой, а если эта хорда пройдет через центр сферы, который совпадает с центром шара, то хорда назовется диаметром сферы.

Если мы проведем прямую линию, которая коснется сферы всего в одной точке, то эта линия будет называться касательной. Кроме того, эта касательная к сфере в этой точке будет перпендикулярна к радиусу сферы, проведенному в точку касания.

Если мы продолжим хорду до прямой в одну и другую сторону от сферы, то эта хорда станет называться секущей. Или можно сказать иначе — секущая к сфере содержит в себе ее хорду.

Объем шара

Формула для вычисления объема шара имеет вид:

где R — радиус шара.

Если нужно найти объем шарового сегмента — воспользуйтесь формулой:

V сег =πh 2 (R-h/3), h — высота шарового сегмента.

Площадь поверхности шара или сферы

Чтобы вычислить площадь сферы или площадь поверхности шара (это одно и то же):

где R — радиус сферы.

Архимед очень любил шар и сферу, он даже попросил оставить на его гробницу рисунок, на котором в цилиндр вписан шар. Архимед считал, что объем шара и его поверхность равны двум третьим от объема и поверхности цилиндра, в который вписан шар»

Площадь искривленной поверхности, которую нельзя развернуть на плоскость, вычисляют так. Разбивают поверхность на такие куски, которые уже достаточно мало отличаются от плоских. Потом находят площади этих кусков, как если бы они были плоскими (например, заменяя их проекциями на плоскости, от которых поверхность мало отклоняется). Сумма их площадей и даст приближенно площадь поверхности. Так поступают на практике: площадь поверхности купола получается как сумма площадей покрывающих его кусков листового металла (рис. 17.5). Еще

лучше это видно на примере земной поверхности. Она искривлена - примерно сферическая. Но участки, небольшие в сравнении с размерами всей Земли, измеряют как плоские.

Вычисляя плоскость сферы, описывают вокруг нее близкую к ней многогранную поверхность. Ее грани будут приближенно представлять куски сферы, а ее площадь дает приближенно площадь самой сферы. Ее дальнейшее вычисление основано на следующей лемме.

Лемма. Объем многогранника Р, описанного вокруг сферы радиуса R, и площадь его поверхности связаны соотношением

Замечание: Аналогичным соотношением связаны площадь многоугольника Q, описанного вокруг круга радиуса и его периметр (рис. 17.6):

Опишем вокруг сферы какой-либо многогранник Р. Пусть у него граней Разобьем Р на пирамиды с общей вершиной в центре О и с гранями в основаниях (рис. 17.7).

Каждая такая грань лежит в касательной плоскости сферы и, значит, перпендикулярна радиусу сферы в точке касания. Значит, этот радиус есть высота пирамиды Поэтому ее объем будет:

где - площадь грани Сумма этих площадей дает площадь поверхности многогранника Р, а сумма объемов пирамид - его объем Поэтому

Теорема (о площади сферы). Площадь сферы радиуса R выражается формулой:

Пусть дана сфера радиуса R. Возьмем на ней П точек, не лежащих в одной полусфере, и проведем через них касательные плоскости к сфере. Эти плоскости ограничат многогранник описанный вокруг сферы. Пусть - объем многогранника - площадь его поверхности, V - объем шара, ограниченного рассматриваемой сферой, и S - ее площадь.

Определение.

Сфера (поверхность шара ) - это совокупность всех точек в трехмерном пространстве, которые находятся на одинаковом расстоянии от одной точки, называемой центром сферы (О).

Сферу можно описать, как объёмную фигуру, которая образуется вращением окружности вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение.

Шар - это совокупность всех точек в трехмерном пространстве, расстояние от которых не превышает определенного расстояния до точки, называемой центром шара (О) (совокупность всех точек трехмерного пространства ограниченных сферой).

Шар можно описать как объёмную фигуру, которая образуется вращением круга вокруг своего диаметра на 180° или полуокружности вокруг своего диаметра на 360°.

Определение. Радиус сферы (шара) (R) - это расстояние от центра сферы (шара) O к любой точке сферы (поверхности шара).

Определение. Диаметр сферы (шара) (D) - это отрезок, соединяющий две точки сферы (поверхности шара) и проходящий через ее центр.

Формула. Объём шара :

V = 4 π R 3 = 1 π D 3
3 6

Формула. Площадь поверхности сферы через радиус или диаметр:

S = 4π R 2 = π D 2

Уравнение сферы

1. Уравнение сферы с радиусом R и центром в начале декартовой системе координат :

x 2 + y 2 + z 2 = R 2

2. Уравнение сферы с радиусом R и центром в точке с координатами (x 0 , y 0 , z 0) в декартовой системе координат :

(x - x 0) 2 + (y - y 0) 2 + (z - z 0) 2 = R 2

Определение. Диаметрально противоположными точками называются любые две точки на поверхности шара (сфере), которые соединены диаметром.

Основные свойства сферы и шара

1. Все точки сферы одинаково удалены от центра.

2. Любое сечение сферы плоскостью является окружностью.

3. Любое сечение шара плоскостью есть кругом.

4. Сфера имеет наибольший объём среди всех пространственных фигур с одинаковой площадью поверхности.

5. Через любые две диаметрально противоположные точки можно провести множество больших окружностей для сферы или кругов для шара.

6. Через любые две точки, кроме диаметрально противоположных точек, можно провести только одну большую окружность для сферы или большой круг для шара.

7. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух диаметрально противоположных точках.

8. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары пересекаются , а в плоскости пересечения образуется круг.


Секущая, хорда, секущая плоскость сферы и их свойства

Определение. Секущая сферы - это прямая, которая пересекает сферу в двух точках. Точки пересечения называются точками протыкания поверхности или точками входа и выхода на поверхности.

Определение. Хорда сферы (шара) - это отрезок, соединяющий две точки сферы (поверхности шара).

Определение. Секущая плоскость - это плоскость, которая пересекает сферу.

Определение. Диаметральная плоскость - это секущая плоскость, проходящая через центр сферы или шара, сеченме образует соответственно большую окружность и большой круг . Большая окружность и большой круг имеют центр, который совпадают с центром сферы (шара).

Любая хорда, проходящая через центр сферы (шара) является диаметром.

Хорда является отрезком секущей прямой.

Расстояние d от центра сферы до секущей всегда меньше чем радиус сферы:

d < R

Расстояние m между секущей плоскостью и центром сферы всегда меньше радиуса R:

m < R

Местом сечения секущей плоскости на сфере всегда будет малая окружность , а на шаре местом сечения будет малый круг . Малая окружность и малый круг имеют свои центры, не совпадающих с центром сферы (шара). Радиус r такого круга можно найти по формуле:

r = √R 2 - m 2 ,

Где R - радиус сферы (шара), m - расстояние от центра шара до секущей плоскости.

Определение. Полусфера (полушар) - это половина сферы (шара), которая образуется при ее сечении диаметральной плоскостью.

Касательная, касательная плоскость к сфере и их свойства

Определение. Касательная к сфере - это прямая, которая касается сферы только в одной точке.

Определение. Касательная плоскость к сфере - это плоскость, которая соприкасается со сферой только в одной точке.

Касательная пряма (плоскость) всегда перпендикулярна радиусу сферы проведенному к точке соприкосновения

Расстояние от центра сферы до касательной прямой (плоскости) равно радиусу сферы.

Определение. Сегмент шара - это часть шара, которая отсекается от шара секущей плоскостью. Основой сегмента называют круг, который образовался в месте сечения. Высотой сегмента h называют длину перпендикуляра проведенного с середины основы сегмента к поверхности сегмента.

Формула. Площадь внешней поверхности сегмента сферы с высотой h через радиус сферы R:

S = 2π Rh

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.