Формулы краткого умножения. Формулы сокращенного умножения — Гипермаркет знаний

Одной из первых тем, изучаемых в курсе алгебры, являются формулы сокращённого умножения. В 7 классе они применяются в самых простых ситуациях, где требуется распознать в выражении одну из формул и выполнить разложение многочлена на множители или, наоборот, быстро возвести сумму или разность в квадрат или куб. В дальнейшем ФСУ используют для быстрого решения неравенств и уравнений и даже для вычисления некоторых числовых выражений без калькулятора.

Как выглядит список формул

Существует 7 основных формул, позволяющих быстро осуществить перемножение многочленов в скобках.

Иногда в этот список также включается разложение для четвёртой степени, которое следует из представленных тождеств и имеет вид:

a⁴ — b⁴ = (a - b)(a + b)(a² + b²).

Все равенства имеют пару (сумма - разность), кроме разности квадратов. Для суммы квадратов формула не приводится .

Остальные равенства легко запоминаются :

Следует помнить, что ФСУ работают в любом случае и для любых величин a и b : это могут быть как произвольные числа, так и целые выражения.

В ситуации, если вдруг не получается вспомнить, какой знак стоит в формуле перед тем или иным слагаемым, можно раскрыть скобки и получить тот же результат, что и после использования формулы. Например, если проблема возникла при применении ФСУ куба разности, нужно записать исходное выражение и поочерёдно выполнить умножение :

(a - b)³ = (a - b)(a - b)(a - b) = (a² — ab - ab + b²)(a - b) = a³ — a²b - a²b + ab² — a²b + ab² + ab² — b³ = a³ — 3a²b + 3ab² — b³.

В результате после приведения всех подобных членов был получен такой же многочлен, как и в таблице. Такие же манипуляции можно проводить и со всеми остальными ФСУ.

Применение ФСУ для решения уравнений

К примеру, нужно решить уравнение, содержащее многочлен 3 степени :

x³ + 3x² + 3x + 1 = 0.

В школьной программе не рассматриваются универсальные приёмы для решения кубических уравнений, и подобные задания чаще всего решаются более простыми методами (например, разложением на множители). Если заметить, что левая часть тождества напоминает куб суммы, то уравнение можно записать в более простом виде:

(x + 1)³ = 0.

Корень такого уравнения вычисляется устно: x = -1 .

Аналогичным способом решаются неравенства. Для примера можно решить неравенство x³ — 6x² + 9x > 0 .

В первую очередь необходимо разложить выражение на множители. Вначале нужно вынести за скобку x . После этого следует обратить внимание, что выражение в скобках можно преобразовать в квадрат разности.

Затем необходимо найти точки, в которых выражение принимает нулевые значения, и отметить их на числовой прямой. В конкретном случае это будут 0 и 3. Затем методом интервалов определить, в каких промежутках x будет соответствовать условию неравенства.

ФСУ могут оказаться полезными при выполнении некоторых расчётов без помощи калькулятора :

703² — 203² = (703 + 203)(703 - 203) = 906 ∙ 500 = 453000 .

Кроме того, раскладывая выражения на множители, можно легко выполнять сокращение дробей и упрощение различных алгебраических выражений.

Примеры задач для 7−8 класса

В заключение разберём и решим два задания на применение формул сокращённого умножения по алгебре.

Задача 1. Упростить выражение:

(m + 3)² + (3m + 1)(3m - 1) - 2m (5m + 3).

Решение. В условии задания требуется упростить выражение, т. е. раскрыть скобки, выполнить действия умножения и возведения в степень, а также привести все подобные слагаемые. Условно разделим выражение на три части (по числу слагаемых) и поочерёдно раскроем скобки, применяя ФСУ там, где это возможно.

  • (m + 3)² = m² + 6m + 9 (квадрат суммы);
  • (3m + 1)(3m - 1) = 9m² — 1 (разность квадратов);
  • В последнем слагаемом необходимо выполнить перемножение: 2m (5m + 3) = 10m² + 6m .

Подставим полученные результаты в исходное выражение:

(m² + 6m + 9) + (9m² — 1) - (10m² + 6m) .

С учётом знаков раскроем скобки и приведём подобные слагаемые:

m² + 6m + 9 + 9m² 1 - 10m² — 6m = 8.

Задача 2. Решить уравнение, содержащее неизвестное k в 5 степени:

k⁵ + 4k⁴ + 4k³ — 4k² — 4k = k³.

Решение. В этом случае необходимо воспользоваться ФСУ и методом группировки. Нужно перенести последнее и предпоследнее слагаемое в правую часть тождества.

k⁵ + 4k⁴ + 4k³ = k³ + 4k² + 4k.

Из правой и из левой части выносится общий множитель (k² + 4k +4) :

k³(k² + 4k + 4) = k (k² + 4k + 4) .

Всё переносится в левую часть уравнения, чтобы в правой остался 0:

k³(k² + 4k + 4) - k (k² + 4k + 4) = 0 .

Снова необходимо вынести общий множитель:

(k³ — k)(k² + 4k + 4) = 0.

Из первого полученного сомножителя можно вынести k . По формуле краткого умножения второй множитель будет тождественно равен (k + 2)² :

k (k² — 1)(k + 2)² = 0.

Использование формулы разности квадратов:

k (k - 1)(k + 1)(k + 2)² = 0.

Поскольку произведение равно 0, если хотя бы один из его множителей нулевой, найти все корни уравнения не составит труда:

  1. k = 0;
  2. k - 1 = 0; k = 1;
  3. k + 1 = 0; k = -1;
  4. (k + 2)² = 0; k = -2.

На основании наглядных примеров можно понять, как запомнить формулы, их отличия, а также решить несколько практических задач с применением ФСУ. Задачи простые, и при их выполнении не должно возникнуть никаких сложностей.

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Впервые тема ФСУ рассматривается в рамках курса "Алгебра" за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a + b 2 = a 2 + 2 a b + b 2
  2. формула квадрата разности: a - b 2 = a 2 - 2 a b + b 2
  3. формула куба суммы: a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
  4. формула куба разности: a - b 3 = a 3 - 3 a 2 b + 3 a b 2 - b 3
  5. формула разности квадратов: a 2 - b 2 = a - b a + b
  6. формула суммы кубов: a 3 + b 3 = a + b a 2 - a b + b 2
  7. формула разности кубов: a 3 - b 3 = a - b a 2 + a b + b 2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы - соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы.

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Дополнительные формулы сокращенного умножения

Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул.

Во-первых, рассмотрим формулу бинома Ньютона.

a + b n = C n 0 · a n + C n 1 · a n - 1 · b + C n 2 · a n - 2 · b 2 + . . + C n n - 1 · a · b n - 1 + C n n · b n

Здесь C n k - биномиальные коэффициенты, которые стоят в строке под номером n в треугольнике паскаля. Биномиальные коэффициенты вычисляются по формуле:

C n k = n ! k ! · (n - k) ! = n (n - 1) (n - 2) . . (n - (k - 1)) k !

Как видим, ФСУ для квадрата и куба разности и суммы - это частный случай формулы бинома Ньютона при n=2 и n=3соответственно.

Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.

a 1 + a 2 + . . + a n 2 = a 1 2 + a 2 2 + . . + a n 2 + 2 a 1 a 2 + 2 a 1 a 3 + . . + 2 a 1 a n + 2 a 2 a 3 + 2 a 2 a 4 + . . + 2 a 2 a n + 2 a n - 1 a n

Еще одна формула, которая может пригодится - формула формула разности n-ых степеней двух слагаемых.

a n - b n = a - b a n - 1 + a n - 2 b + a n - 3 b 2 + . . + a 2 b n - 2 + b n - 1

Эту формулу обычно разделяют на две формулы - соответственно для четных и нечетных степеней.

Для четных показателей 2m:

a 2 m - b 2 m = a 2 - b 2 a 2 m - 2 + a 2 m - 4 b 2 + a 2 m - 6 b 4 + . . + b 2 m - 2

Для нечетных показателей 2m+1:

a 2 m + 1 - b 2 m + 1 = a 2 - b 2 a 2 m + a 2 m - 1 b + a 2 m - 2 b 2 + . . + b 2 m

Формулы разности квадратов и разности кубов, как вы догадались, являются частными случаями этой формулы при n = 2 и n = 3 соответственно. Для разности кубов b также заменяется на - b .

Как читать формулы сокращенного умножения?

Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.

a + b 2 = a 2 + 2 a b + b 2 .

Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.

Все остальные формулы читаются аналогично. Для квадрата разности a - b 2 = a 2 - 2 a b + b 2 запишем:

квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.

Прочитаем формулу a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 . Куб суммы двух выражений a и b равен сумме кубов этих выражений, утроенного произведения квадрата первого выражения на второе и утроенного произведения квадрата второго выражения на первое выражение.

Переходим к чтению формулы для разности кубов a - b 3 = a 3 - 3 a 2 b + 3 a b 2 - b 3 . Куб разности двух выражений a и b равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе, плюс утроенное произведение квадрата второго выражения на первое выражение, минус куб второго выражения.

Пятая формула a 2 - b 2 = a - b a + b (разность квадратов) читается так: разность квадратов двух выражений равна произведению разности и суммы двух выражений.

Выражения типа a 2 + a b + b 2 и a 2 - a b + b 2 для удобства называют соответственно неполным квадратом суммы и неполным квадратом разности.

С учетом этого, формулы суммы и разности кубов прочитаются так:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Доказательство ФСУ

Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.

Для примера рассмотрим формулу квадрата разности.

a - b 2 = a 2 - 2 a b + b 2 .

Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.

a - b 2 = a - b a - b .

Раскроем скобки:

a - b a - b = a 2 - a b - b a + b 2 = a 2 - 2 a b + b 2 .

Формула доказана. Остальные ФСУ доказываются аналогично.

Примеры применения ФСУ

Цель использования формул сокращенного умножения - быстрое и краткое умножение и возведение выражений в степень. Однако, это не вся сфера применения ФСУ. Они широко используются при сокращении выражений, сокращении дробей, разложении многочленов на множители. Приведем примеры.

Пример 1. ФСУ

Упростим выражение 9 y - (1 + 3 y) 2 .

Применим формулу суммы квадратов и получим:

9 y - (1 + 3 y) 2 = 9 y - (1 + 6 y + 9 y 2) = 9 y - 1 - 6 y - 9 y 2 = 3 y - 1 - 9 y 2

Пример 2. ФСУ

Сократим дробь 8 x 3 - z 6 4 x 2 - z 4 .

Замечаем, что выражение в числителе - разность кубов, а в знаменателе - разность квадратов.

8 x 3 - z 6 4 x 2 - z 4 = 2 x - z (4 x 2 + 2 x z + z 4) 2 x - z 2 x + z .

Сокращаем и получаем:

8 x 3 - z 6 4 x 2 - z 4 = (4 x 2 + 2 x z + z 4) 2 x + z

Также ФСУ помогают вычислять значения выражений. Главное - уметь заметить, где применить формулу. Покажем это на примере.

Возведем в квадрат число 79 . Вместо громоздких вычислений, запишем:

79 = 80 - 1 ; 79 2 = 80 - 1 2 = 6400 - 160 + 1 = 6241 .

Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.

Еще один важный момент - выделение квадрата двучлена. Выражение 4 x 2 + 4 x - 3 можно преобразовать в вид 2 x 2 + 2 · 2 · x · 1 + 1 2 - 4 = 2 x + 1 2 - 4 . Такие преобразования широко используются в интегрировании.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

При расчёте алгебраических многочленов для упрощения вычислений используются формулы сокращенного умножения . Всего таких формул семь. Их все необходимо знать наизусть.

Следует также помнить, что вместо «a » и «b » в формулах могут стоять как числа, так и любые другие алгебраические многочлены.

Разность квадратов

Запомните!

Разность квадратов двух чисел равна произведению разности этих чисел и их суммы.

a 2 − b 2 = (a − b)(a + b)
  • 15 2 − 2 2 = (15 − 2)(15 + 2) = 13 · 17 = 221
  • 9a 2 − 4b 2 с 2 = (3a − 2bc)(3a + 2bc)

Квадрат суммы

Запомните!

Квадрат суммы двух чисел равен квадрату первого числа плюс удвоенное произведение первого числа на второе плюс квадрат второго числа.


(a + b) 2 = a 2 + 2ab + b 2

Обратите внимание, что с помощью этой формулы сокращённого умножения легко находить квадраты больших чисел , не используя калькулятор или умножение в столбик. Поясним на примере:

Найти 112 2 .

  • Разложим 112 на сумму чисел, чьи квадраты мы хорошо помним.
    112 = 100 + 1
  • Запишем сумму чисел в скобки и поставим над скобками квадрат.
    112 2 = (100 + 12) 2
  • Воспользуемся формулой квадрата суммы:
    112 2 = (100 + 12) 2 = 100 2 + 2 · 100 · 12 + 12 2 = 10 000 + 2 400 + 144 = 12 544

Помните, что формула квадрат суммы также справедлива для любых алгебраических многочленов.

  • (8a + с) 2 = 64a 2 + 16ac + c 2

Предостережение!

(a + b) 2 не равно (a 2 + b 2)

Квадрат разности

Запомните!

Квадрат разности двух чисел равен квадрату первого числа минус удвоенное произведение первого на второе плюс квадрат второго числа.


(a − b) 2 = a 2 − 2ab + b 2

Также стоит запомнить весьма полезное преобразование:

(a − b) 2 = (b − a) 2

Формула выше доказывается простым раскрытием скобок:

(a − b) 2 = a 2 −2ab + b 2 = b 2 − 2ab + a 2 = (b − a) 2

Куб суммы

Запомните!

Куб суммы двух чисел равен кубу первого числа плюс утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого на квадрат второго плюс куб второго.


(a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3

Как запомнить куб суммы

Запомнить эту «страшную» на вид формулу довольно просто.

  • Выучите, что в начале идёт «a 3 ».
  • Два многочлена посередине имеют коэффициенты 3 .
  • Вспомним, что любое число в нулевой степени есть 1 . (a 0 = 1, b 0 = 1) . Легко заметить, что в формуле идёт понижение степени «a » и увеличение степени «b ». В этом можно убедиться:
    (a + b) 3 = a 3 b 0 + 3a 2 b 1 + 3a 1 b 2 + b 3 a 0 = a 3 + 3a 2 b + 3ab 2 + b 3

Предостережение!

(a + b) 3 не равно a 3 + b 3

Куб разности

Запомните!

Куб разности двух чисел равен кубу первого числа минус утроенное произведение квадрата первого числа на второе плюс утроенное произведение первого числа на квадрат второго минус куб второго.


(a − b) 3 = a 3 − 3a 2 b + 3ab 2 − b 3

Запоминается эта формула как и предыдущая, но только с учётом чередования знаков «+ » и «− ». Перед первым членом «a 3 » стоит «+ » (по правилам математики мы его не пишем). Значит, перед следующим членом будет стоять «− », затем опять «+ » и т.д.

(a − b) 3 = + a 3 − 3a 2 b + 3ab 2 − b 3 = a 3 − 3a 2 b + 3ab 2 − b 3

Сумма кубов

Не путать с кубом суммы!

Запомните!

Сумма кубов равна произведению суммы двух чисел на неполный квадрат разности.

a 3 + b 3 = (a + b)(a 2 − ab + b 2)

Сумма кубов — это произведение двух скобок.

  • Первая скобка — сумма двух чисел.
  • Вторая скобка — неполный квадрат разности чисел. Неполным квадратом разности называют выражение:
    (a 2 − ab + b 2)
    Данный квадрат неполный, так как посередине вместо удвоенного произведения обычное произведение чисел.

Разность кубов

Не путать с кубом разности!

Запомните!

Разность кубов равна произведению разности двух чисел на неполный квадрат суммы.

a 3 − b 3 = (a − b)(a 2 + ab + b 2)

Будьте внимательны при записи знаков.

Применение формул сокращенного умножения

Следует помнить, что все формулы, приведённые выше, используется также и справа налево.

Многие примеры в учебниках рассчитаны на то, что вы с помощью формул соберёте многочлен обратно.

  • a 2 + 2a + 1 = (a + 1) 2
  • (aс − 4b)(ac + 4b) = a 2 c 2 − 16b 2

Таблицу со всеми формулами сокращённого умножения вы можете скачать в разделе «

Умножение многочлена на многочлен

! Чтобы умножить многочлен на многочлен , нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить.

Будьте внимательны! У каждого слагаемого есть свой знак.

Формулы сокращённого умножения многочленов - это, как правило, 7 (семь) часто встречающихся случаев умножения многочленов.

Определения и Формулы сокращенного умножения. Таблица

Таблица 2. Определения формул сокращенного умножения (нажмите для увеличения)

Три формулы сокращенного умножения для квадратов

1. Формула квадрата суммы.

Квадрат суммы двух выражений равен квадрату первого выражения плюс удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Чтобы лучше понять формулу, сначала упростим выражение (развернем формулу квадрата суммы)

А теперь разложим на множители (свернем формулу)

Последовательность действий при разложении на множители:

  1. определи, какие одночлены возводились в квадрат (5 и 3m );
  2. проверь, стоит ли в середине формулы их удвоенное произведение (2 5 3m = 30m );
  3. запиши ответ (5 + 3m) 2 .

2. Формула квадрата разности

Квадрат разности двух выражений равен квадрату первого выражения минус удвоенное произведение первого выражения на второе плюс квадрат второго выражения.

Сначала упростим выражение (развернем формулу):

А потом наоборот, разложим на множители (свернем формулу):

3. Формула разности квадратов

Произведение суммы двух выражений на их разность равно разности квадратов этих выражений.

Свернем формулу (выполним умножение)

А теперь развернем формулу (разложим на множители)

Четыре формулы сокращенного умножения для кубов

4. Формула куба суммы двух чисел

Куб суммы двух выражений равен кубу первого выражения плюс утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго плюс куб второго выражения.

Последовательность действий при «сворачивании» формулы:

  1. найти одночлены, которые возводились в куб (здесь и 1 );
  2. проверить средние слагаемые на соответствие формуле;
  3. записать ответ.

5. Формула куба разности двух чисел

Куб разности двух выражений равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе плюс утроенное произведение первого выражения на квадрат второго минус куб второго выражения.

6. Формула суммы кубов

Сумма кубов двух выражений равна произведению суммы первого и второго выражения на неполный квадрат разности этих выражений.

И обратно:

7. Формула разности кубов

Разность кубов двух выражений равна произведению разности первого и второго выражения на неполный квадрат суммы этих выражений.

Применение формул сокращенного умножения. Таблица

Пример использования формул на практике (устный счет).

Задача: Найти площадь квадрата со стороной а = 71 см.

Решение: S = a 2 . Используя формулу квадрата суммы, имеем

71 2 = (70 + 1) 2 = 70 2 + 2*70*1 + 1 2 = 4900 + 140 + 1 = 5041 см 2

Ответ: 5041 см 2

Выражение (a + b ) 2 - это квадрат суммы чисел a и b . По определению степени выражение (a + b a + b )(a + b ). Следовательно, из квадрата суммы мы можем сделать выводы, что

(a + b ) 2 = (a + b )(a + b ) = a 2 + ab + ab + b 2 = a 2 + 2ab + b 2 ,

т. е. квадрат суммы двух чисел равен квадрату первого числа, плюс удвоенное произведение первого числа на второе, плюс квадрат второго числа.

формула квадрата суммы

(a + b ) 2 = a 2 + 2ab + b 2

Многочлен a 2 + 2ab + b 2 называется разложением квадрата суммы.

Так как a и b обозначают любые числа или выражения, то правило даёт нам возможность сокращённым путём возводить в квадрат любое выражение, которое может быть рассмотрено как сумма двух слагаемых.

Пример. Возвести в квадрат выражение 3x 2 + 2xy .

Решение: чтобы не производить дополнительных преобразований, воспользуемся формулой квадрата суммы. У нас должна получиться сумма квадрата первого числа, удвоенного произведения первого числа на второе и квадрата второго числа:

(3x 2 + 2xy ) 2 = (3x 2) 2 + 2(3x 2 · 2xy ) + (2xy ) 2

Теперь, пользуясь правилами умножения и возведения в степень одночленов , упростим получившееся выражение:

(3x 2) 2 + 2(3x 2 · 2xy ) + (2xy ) 2 = 9x 4 + 12x 3 y + 4x 2 y 2

Квадрат разности

Выражение (a - b ) 2 - это квадрат разности чисел a и b . Выражение (a - b ) 2 представляет собой произведение двух многочленов (a - b )(a - b ). Следовательно, из квадрата разности мы можем сделать выводы, что

(a - b ) 2 = (a - b )(a - b ) = a 2 - ab - ab + b 2 = a 2 - 2ab + b 2 ,

т. е. квадрат разности двух чисел равен квадрату первого числа, минус удвоенное произведение первого числа на второе, плюс квадрат второго числа.

Из правила следует, что общая формула квадрата разности , без промежуточных преобразований, будет выглядеть так:

(a - b ) 2 = a 2 - 2ab + b 2

Многочлен a 2 - 2ab + b 2 называется разложением квадрата разности.

Это правило применяется к сокращённому возведению в квадрат выражений, которые могут быть представлены как разность двух чисел.

Пример. Представьте квадрат разности в виде трёхчлена:

(2a 2 - 5ab 2) 2

Решение: используя формулу квадрата разности, находим:

(2a 2 - 5ab 2) 2 = (2a 2) 2 - 2(2a 2 · 5ab 2) + (5ab 2) 2

Теперь преобразуем выражение в многочлен стандартного вида :

(2a 2) 2 - 2(2a 2 · 5ab 2) + (5ab 2) 2 = 4a 4 - 20a 3 b 2 + 25a 2 b 4

Разность квадратов

Выражение a 2 - b 2 - это разность квадратов чисел a и b . Выражение a 2 - b 2 представляет собой сокращённый способ умножения суммы двух чисел на их разность:

(a + b )(a - b ) = a 2 + ab - ab - b 2 = a 2 - b 2 ,

т. е. произведение суммы двух чисел на их разность равно разности квадратов этих чисел.

Из правила следует, что общая формула разности квадратов выглядит так:

a 2 - b 2 = (a + b )(a - b )

Это правило применяется к сокращённому умножению таких выражений, которые могут быть представлены: одно - как сумма двух чисел, а другое - как разность тех же чисел.

Пример. Преобразуйте произведение в двучлен:

(5a 2 + 3)(5a 2 - 3)

Решение:

(5a 2 + 3)(5a 2 - 3) = (5a 2) 2 - 3 2 = 25a 4 - 9

В примере мы применили формулу разности квадратов справа налево, то есть, нам дана была правая часть формулы, а мы преобразовали её в левую:

(a + b )(a - b ) = a 2 - b 2

На практике все три рассмотренные формулы применяются и слева направо, и справа налево, в зависимости от ситуации.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.