Что таоке косинус. Нахождение значений синуса, косинуса, тангенса и котангенса


В этой статье мы покажем, как даются определения синуса, косинуса, тангенса и котангенса угла и числа в тригонометрии . Здесь же мы поговорим об обозначениях, приведем примеры записей, дадим графические иллюстрации. В заключение проведем параллель между определениями синуса, косинуса, тангенса и котангенса в тригонометрии и геометрии.

Навигация по странице.

Определение синуса, косинуса, тангенса и котангенса

Проследим за тем, как формируются представление о синусе, косинусе, тангенсе и котангенсе в школьном курсе математики. На уроках геометрии дается определение синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. А позже изучается тригонометрия, где говорится о синусе, косинусе, тангенсе и котангенсе угла поворота и числа. Приведем все эти определения, приведем примеры и дадим необходимые комментарии.

Острого угла в прямоугольном треугольнике

Из курса геометрии известны определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике. Они даются как отношение сторон прямоугольного треугольника. Приведем их формулировки.

Определение.

Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе.

Определение.

Косинус острого угла в прямоугольном треугольнике – это отношение прилежащего катета к гипотенузе.

Определение.

Тангенс острого угла в прямоугольном треугольнике – это отношение противолежащего катета к прилежащему.

Определение.

Котангенс острого угла в прямоугольном треугольнике – это отношение прилежащего катета к противолежащему.

Там же вводятся обозначения синуса, косинуса, тангенса и котангенса – sin , cos , tg и ctg соответственно.

Например, если АВС – прямоугольный треугольник с прямым углом С , то синус острого угла A равен отношению противолежащего катета BC к гипотенузе AB , то есть, sin∠A=BC/AB .

Эти определения позволяют вычислять значения синуса, косинуса, тангенса и котангенса острого угла по известным длинам сторон прямоугольного треугольника, а также по известным значениям синуса, косинуса, тангенса, котангенса и длине одной из сторон находить длины других сторон. Например, если бы мы знали, что в прямоугольном треугольнике катет AC равен 3 , а гипотенуза AB равна 7 , то мы могли бы вычислить значение косинуса острого угла A по определению: cos∠A=AC/AB=3/7 .

Угла поворота

В тригонометрии на угол начинают смотреть более широко - вводят понятие угла поворота . Величина угла поворота, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов, угол поворота в градусах (и в радианах) может выражаться каким угодно действительным числом от −∞ до +∞ .

В этом свете дают определения синуса, косинуса, тангенса и котангенса уже не острого угла, а угла произвольной величины - угла поворота. Они даются через координаты x и y точки A 1 , в которую переходит так называемая начальная точка A(1, 0) после ее поворота на угол α вокруг точки O – начала прямоугольной декартовой системы координат и центра единичной окружности .

Определение.

Синус угла поворота α - это ордината точки A 1 , то есть, sinα=y .

Определение.

Косинусом угла поворота α называют абсциссу точки A 1 , то есть, cosα=x .

Определение.

Тангенс угла поворота α - это отношение ординаты точки A 1 к ее абсциссе, то есть, tgα=y/x .

Определение.

Котангенсом угла поворота α называют отношение абсциссы точки A 1 к ее ординате, то есть, ctgα=x/y .

Синус и косинус определены для любого угла α , так как мы всегда можем определить абсциссу и ординату точки, которая получается в результате поворота начальной точки на угол α . А тангенс и котангенс определены не для любого угла. Тангенс не определен для таких углов α , при которых начальная точка переходит в точку с нулевой абсциссой (0, 1) или (0, −1) , а это имеет место при углах 90°+180°·k , k∈Z (π/2+π·k рад). Действительно, при таких углах поворота выражение tgα=y/x не имеет смысла, так как в нем присутствует деление на нуль. Что же касается котангенса, то он не определен для таких углов α , при которых начальная точка переходит к в точку с нулевой ординатой (1, 0) или (−1, 0) , а это имеет место для углов 180°·k , k∈Z (π·k рад).

Итак, синус и косинус определены для любых углов поворота, тангенс определен для всех углов, кроме 90°+180°·k , k∈Z (π/2+π·k рад), а котангенс – для всех углов, кроме 180°·k , k∈Z (π·k рад).

В определениях фигурируют уже известные нам обозначения sin , cos , tg и ctg , они используются и для обозначения синуса, косинуса, тангенса и котангенса угла поворота (иногда можно встретить обозначения tan и cot , отвечающие тангенсу и котангенсу). Так синус угла поворота 30 градусов можно записать как sin30° , записям tg(−24°17′) и ctgα отвечают тангенс угла поворота −24 градуса 17 минут и котангенс угла поворота α . Напомним, что при записи радианной меры угла обозначение «рад» часто опускают. Например, косинус угла поворота в три пи рад обычно обозначают cos3·π .

В заключение этого пункта стоит заметить, что в разговоре про синус, косинус, тангенс и котангенс угла поворота часто опускают словосочетание «угол поворота» или слово «поворота». То есть, вместо фразы «синус угла поворота альфа» обычно используют фразу «синус угла альфа» или еще короче – «синус альфа». Это же касается и косинуса, и тангенса, и котангенса.

Также скажем, что определения синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике согласуются с только что данными определениями синуса, косинуса, тангенса и котангенса угла поворота величиной от 0 до 90 градусов. Это мы обоснуем .

Числа

Определение.

Синусом, косинусом, тангенсом и котангенсом числа t называют число, равное синусу, косинусу, тангенсу и котангенсу угла поворота в t радианов соответственно.

Например, косинус числа 8·π по определению есть число, равное косинусу угла в 8·π рад. А косинус угла в 8·π рад равен единице, поэтому, косинус числа 8·π равен 1 .

Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Он состоит в том, что каждому действительному числу t ставится в соответствие точка единичной окружности с центром в начале прямоугольной системы координат, и синус, косинус, тангенс и котангенс определяются через координаты этой точки. Остановимся на этом подробнее.

Покажем, как устанавливается соответствие между действительными числами и точками окружности:

  • числу 0 ставится в соответствие начальная точка A(1, 0) ;
  • положительному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении против часовой стрелки и пройдем путь длиной t ;
  • отрицательному числу t ставится в соответствие точка единичной окружности, в которую мы попадем, если будем двигаться по окружности из начальной точки в направлении по часовой стрелке и пройдем путь длиной |t| .

Теперь переходим к определениями синуса, косинуса, тангенса и котангенса числа t . Допустим, что числу t соответствует точка окружности A 1 (x, y) (например, числу &pi/2; отвечает точка A 1 (0, 1) ).

Определение.

Синусом числа t называют ординату точки единичной окружности, соответствующей числу t , то есть, sint=y .

Определение.

Косинусом числа t называют абсциссу точки единичной окружности, отвечающей числу t , то есть, cost=x .

Определение.

Тангенсом числа t называют отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t , то есть, tgt=y/x . В другой равносильной формулировке тангенс числа t – это отношение синуса этого числа к косинусу, то есть, tgt=sint/cost .

Определение.

Котангенсом числа t называют отношение абсциссы к ординате точки единичной окружности, соответствующей числу t , то есть, ctgt=x/y . Другая формулировка такова: тангенс числа t – это отношение косинуса числа t к синусу числа t : ctgt=cost/sint .

Здесь отметим, что только что данные определения согласуются с определением, данным в начале этого пункта. Действительно, точка единичной окружности, соответствующая числу t , совпадает с точкой, полученной в результате поворота начальной точки на угол в t радианов.

Еще стоит прояснить такой момент. Допустим, перед нами запись sin3 . Как понять, о синусе числа 3 или о синусе угла поворота в 3 радиана идет речь? Обычно это ясно из контекста, в противном случае это скорее всего не имеет принципиального значения.

Тригонометрические функции углового и числового аргумента

Согласно данным в предыдущем пункте определениям, каждому углу поворота α соответствуют вполне определенное значение sinα , как и значение cosα . Кроме того, всем углам поворота, отличным от 90°+180°·k , k∈Z (π/2+π·k рад) отвечают значения tgα , а отличным от 180°·k , k∈Z (π·k рад) – значения ctgα . Поэтому sinα , cosα , tgα и ctgα - это функции угла α . Другими словами – это функции углового аргумента.

Аналогично можно говорить и про функции синус, косинус, тангенс и котангенс числового аргумента. Действительно, каждому действительному числу t отвечает вполне определенное значение sint , как и cost . Кроме того, всем числам, отличным от π/2+π·k , k∈Z соответствуют значения tgt , а числам π·k , k∈Z - значения ctgt .

Функции синус, косинус, тангенс и котангенс называют основными тригонометрическими функциями .

Из контекста обычно понятно, с тригонометрическими функциями углового аргумента или числового аргумента мы имеем дело. В противном случае мы можем считать независимую переменную как мерой угла (угловым аргументом), так и числовым аргументом.

Однако, в школе в основном изучаются числовые функции, то есть, функции, аргументы которых, как и соответствующие им значения функции, являются числами. Поэтому, если речь идет именно о функциях, то целесообразно считать тригонометрические функции функциями числовых аргументов.

Связь определений из геометрии и тригонометрии

Если рассматривать угол поворота α величиной от 0 до 90 градусов, то данные в контексте тригонометрии определения синуса, косинуса, тангенса и котангенса угла поворота полностью согласуются с определениями синуса, косинуса, тангенса и котангенса острого угла в прямоугольном треугольнике, которые даются в курсе геометрии. Обоснуем это.

Изобразим в прямоугольной декартовой системе координат Oxy единичную окружность. Отметим начальную точку A(1, 0) . Повернем ее на угол α величиной от 0 до 90 градусов, получим точку A 1 (x, y) . Опустим из точки А 1 на ось Ox перпендикуляр A 1 H .

Легко видеть, что в прямоугольном треугольнике угол A 1 OH равен углу поворота α , длина прилежащего к этому углу катета OH равна абсциссе точки A 1 , то есть, |OH|=x , длина противолежащего к углу катета A 1 H равна ординате точки A 1 , то есть, |A 1 H|=y , а длина гипотенузы OA 1 равна единице, так как она является радиусом единичной окружности. Тогда по определению из геометрии синус острого угла α в прямоугольном треугольнике A 1 OH равен отношению противолежащего катета к гипотенузе, то есть, sinα=|A 1 H|/|OA 1 |=y/1=y . А по определению из тригонометрии синус угла поворота α равен ординате точки A 1 , то есть, sinα=y . Отсюда видно, что определение синуса острого угла в прямоугольном треугольнике эквивалентно определению синуса угла поворота α при α от 0 до 90 градусов.

Аналогично можно показать, что и определения косинуса, тангенса и котангенса острого угла α согласуются с определениями косинуса, тангенса и котангенса угла поворота α .

Список литературы.

  1. Геометрия. 7-9 классы : учеб. для общеобразоват. учреждений / [Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев и др.]. - 20-е изд. М.: Просвещение, 2010. - 384 с.: ил. - ISBN 978-5-09-023915-8.
  2. Погорелов А. В. Геометрия: Учеб. для 7-9 кл. общеобразоват. учреждений/ А. В. Погорелов. - 2-е изд - М.: Просвещение, 2001. - 224 с.: ил. - ISBN 5-09-010803-X.
  3. Алгебра и элементарные функции : Учебное пособие для учащихся 9 класса средней школы / Е. С. Кочетков, Е. С. Кочеткова; Под редакцией доктора физико-математических наук О. Н. Головина.- 4-е изд. М.: Просвещение, 1969.
  4. Алгебра: Учеб. для 9 кл. сред. шк./Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова; Под ред. С. А. Теляковского.- М.: Просвещение, 1990.- 272 с.: ил.- ISBN 5-09-002727-7
  5. Алгебра и начала анализа: Учеб. для 10-11 кл. общеобразоват. учреждений / А. Н. Колмогоров, А. М. Абрамов, Ю. П. Дудницын и др.; Под ред. А. Н. Колмогорова.- 14-е изд.- М.: Просвещение, 2004.- 384 с.: ил.- ISBN 5-09-013651-3.
  6. Мордкович А. Г. Алгебра и начала анализа. 10 класс. В 2 ч. Ч. 1: учебник для общеобразовательных учреждений (профильный уровень)/ А. Г. Мордкович, П. В. Семенов. - 4-е изд., доп. - М.: Мнемозина, 2007. - 424 с.: ил. ISBN 978-5-346-00792-0.
  7. Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни /[Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - И.: Просвещение, 2010.- 368 с.: ил.- ISBN 978-5-09-022771-1.
  8. Башмаков М. И. Алгебра и начала анализа: Учеб. для 10-11 кл. сред. шк. - 3-е изд. - М.: Просвещение, 1993. - 351 с.: ил. - ISBN 5-09-004617-4.
  9. Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.

Синус острого угла α прямоугольного треугольника – это отношение противолежащего катета к гипотенузе.
Обозначается так: sin α.

Косинус острого угла α прямоугольного треугольника – это отношение прилежащего катета к гипотенузе.
Обозначается так: cos α.


Тангенс
острого угла α – это отношение противолежащего катета к прилежащему катету.
Обозначается так: tg α.

Котангенс острого угла α – это отношение прилежащего катета к противолежащему.
Обозначается так: ctg α.

Синус, косинус, тангенс и котангенс угла зависят только от величины угла.

Правила:

Основные тригонометрические тождества в прямоугольном треугольнике:

(α – острый угол, противолежащий катету b и прилежащий к катету a . Сторона с – гипотенуза. β – второй острый угол).

b
sin α = -
c

sin 2 α + cos 2 α = 1

a
cos α = -
c

1
1 + tg 2 α = --
cos 2 α

b
tg α = -
a

1
1 + ctg 2 α = --
sin 2 α

a
ctg α = -
b

1 1
1 + -- = --
tg 2 α sin 2 α

sin α
tg α = --
cos α


При возрастании острого угла
sin α и tg α возрастают, а cos α убывает.


Для любого острого угла α:

sin (90° – α) = cos α

cos (90° – α) = sin α

Пример-пояснение :

Пусть в прямоугольном треугольнике АВС
АВ = 6,
ВС = 3,
угол А = 30º.

Выясним синус угла А и косинус угла В.

Решение .

1) Сначала находим величину угла В. Тут все просто: так как в прямоугольном треугольнике сумма острых углов равна 90º, то угол В = 60º:

В = 90º – 30º = 60º.

2) Вычислим sin A. Мы знаем, что синус равен отношению противолежащего катета к гипотенузе. Для угла А противолежащим катетом является сторона ВС. Итак:

BC 3 1
sin A = -- = - = -
AB 6 2

3) Теперь вычислим cos B. Мы знаем, что косинус равен отношению прилежащего катета к гипотенузе. Для угла В прилежащим катетом является все та же сторона ВС. Это значит, что нам снова надо разделить ВС на АВ – то есть совершить те же действия, что и при вычислении синуса угла А:

BC 3 1
cos B = -- = - = -
AB 6 2

В итоге получается:
sin A = cos B = 1/2.

sin 30º = cos 60º = 1/2.

Из этого следует, что в прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла – и наоборот. Именно это и означают наши две формулы:
sin (90° – α) = cos α
cos (90° – α) = sin α

Убедимся в этом еще раз:

1) Пусть α = 60º. Подставив значение α в формулу синуса, получим:
sin (90º – 60º) = cos 60º.
sin 30º = cos 60º.

2) Пусть α = 30º. Подставив значение α в формулу косинуса, получим:
cos (90° – 30º) = sin 30º.
cos 60° = sin 30º.

(Подробнее о тригонометрии - см.раздел Алгебра)

Изначально синус и косинус возникли из-за необходимости рассчитывать величины в прямоугольных треугольниках. Было замечено, что если значение градусной меры углов в прямоугольном треугольнике не менять, то соотношение сторон, насколько бы эти стороны ни изменялись в длине, остается всегда одинаковым.

Именно так и были введены понятия синуса и косинуса. Синус острого угла в прямоугольном треугольнике – это отношение противолежащего катета к гипотенузе, а косинус – прилежащего к гипотенузе.

Теоремы косинусов и синусов

Но косинусы и синусы могут применяться не только в прямоугольных треугольниках. Чтобы найти значение тупого или острого угла, стороны любого треугольника, достаточно применить теорему косинусов и синусов.

Теорема косинусов довольно проста: «Квадрат стороны треугольника равен сумме квадратов двух других сторон за вычетом удвоенного произведения этих сторон на косинус угла между ними».

Существует две трактовки теоремы синусов: малая и расширенная. Согласно малой: «В треугольнике углы пропорциональны противолежащим сторонам». Данную теорему часто расширяют за счет свойства описанной около треугольника окружности: «В треугольнике углы пропорциональны противолежащим сторонам, а их отношение равно диаметру описанной окружности».

Производные

Производная - математический инструмент, показывающий, как быстро меняется функция относительно изменения ее аргумента. Производные используются , геометрии, и , ряде технических дисциплин.

При решении задач требуется знать табличные значения производных тригонометрических функций: синуса и косинуса. Производной синуса является косинус, а косинуса - синус, но со знаком «минус».

Применение в математике

Особенно часто синусы и косинусы используются при решении прямоугольных треугольников и задач, связанных с ними.

Удобство синусов и косинусов нашло свое отражение и в технике. Углы и стороны было просто оценивать по теоремам косинусов и синусов, разбивая сложные фигуры и объекты на «простые» треугольники. Инженеры и , часто имеющие дело с расчетами соотношения сторон и градусных мер, тратили немало времени и усилий для вычисления косинусов и синусов не табличных углов.

Тогда «на подмогу» пришли таблицы Брадиса, содержащие тысячи значений синусов, косинусов, тангенсов и котангенсов разных углов. В советское время некоторые преподаватели заставляли своих подопечных страницы таблиц Брадиса наизусть.

Радиан - угловая величина дуги, по длине равной радиусу или 57,295779513° градусов.

Градус (в геометрии) - 1/360-я часть окружности или 1/90-я часть прямого угла.

π = 3.141592653589793238462… (приблизительное значение числа Пи).

Учителя считают, что каждый школьник должен уметь проводить расчёты, знать тригонометрические формулы, но далеко не каждый преподаватель объясняет, что такое синус и косинус. Каков их смысл, где они используются? Почему мы говорим про треугольники, а в учебнике нарисована окружность? Попробуем связать все факты воедино.

Школьный предмет

Изучение тригонометрии начинается обычно в 7-8 классе средней школы. В это время учащимся объясняют, что такое синус и косинус, предлагают решать геометрические задачи с применением этих функций. Позже появляются более сложные формулы и выражения, которые требуется алгебраическим способом преобразовывать (формулы двойного и половинного угла, степенные функции), проводится работа с тригонометрической окружностью.

Однако учителя далеко не всегда могут доходчиво объяснить смысл используемых понятий и применимость формул. Поэтому ученик зачастую не видит смысла в данном предмете, а заученная информация быстро забывается. Однако стоит один раз объяснить старшекласснику, например, связь между функцией и колебательным движением, и логическая связь запомнится на многие годы, а шутки на тему бесполезности предмета уйдут в прошлое.

Использование

Заглянем ради любопытства в различные разделы физики. Хотите определить дальность полёта снаряда? Или высчитываете силу трения между объектом и некой поверхностью? Раскачиваете маятник, следите за лучами, проходящими сквозь стекло, высчитываете индукцию? Практически в любой формуле фигурируют тригонометрические понятия. Так что такое синус и косинус?

Определения

Синус угла представляет собой отношение противолежащего катета к гипотенузе, косинус - прилежащего катета всё к той же гипотенузе. Здесь нет совершенно ничего сложного. Возможно, учеников обычно смущают значения, которые они видят в тригонометрической таблице, ведь там фигурируют квадратные корни. Да, получать из них десятичные дроби не очень удобно, но кто сказал, что все числа в математике должны быть ровными?

На самом деле в задачниках по тригонометрии можно найти забавную подсказку: большинство ответов здесь ровные и в худшем случае содержат корень из двух или из трёх. Вывод прост: если у вас в ответе получилась «многоэтажная» дробь, перепроверьте решение на предмет ошибок в расчётах или в рассуждениях. И вы их, скорее всего, найдете.

Что нужно запомнить

Как и в любой науке, в тригонометрии есть такие данные, которые необходимо выучить.

Во-первых, следует запомнить числовые значения для синусов, косинусов прямоугольного треугольника 0 и 90, а также 30, 45 и 60 градусов. Эти показатели встречаются в девяти из десяти школьных задач. Подглядывая эти значения в учебнике, вы потеряете много времени, а на контрольной или экзамене посмотреть и вовсе будет негде.

Нужно помнить, что значение обеих функций не может превышать единицу. Если где-либо в расчетах вы получите значение, выходящее за пределы диапазона 0-1, остановитесь и решите задачу заново.

Сумма квадратов синуса и косинуса равна единице. Если вы уже нашли одно из значений, воспользуйтесь этой формулой для нахождения оставшегося.

Теоремы

В базовой тригонометрии существует две основные теоремы: синусов и косинусов.

Первая гласит, что отношение каждой стороны треугольника к синусу противолежащего угла одинаково. Вторая - что квадрат любой стороны можно получить, если сложить квадраты двух оставшихся сторон и вычесть удвоенное их произведение, умноженное на косинус лежащего между ними угла.

Таким образом, если в теорему косинусов подставить значение угла в 90 градусов, мы получим… теорему Пифагора. Теперь, если требуется высчитать площадь фигуры, не являющейся прямоугольным треугольником, можно больше не переживать - две рассмотренные теоремы существенно упростят решение задачи.

Цели и задачи

Изучение тригонометрии значительно упростится, когда вы осознаете один простой факт: все выполняемые вами действия направлены на достижения всего одной цели. Любые параметры треугольника могут быть найдены, если вы знаете о нём самый минимум информации - это может быть величина одного угла и длины двух сторон или, например, три стороны.

Для определения синуса, косинуса, тангенса любого угла этих данных достаточно, с их же помощью можно легко высчитать площадь фигуры. Практически всегда в качестве ответа требуется привести одно из упомянутых значений, а найти их можно по одним и тем же формулам.

Нестыковки при изучении тригонометрии

Одним из непонятных вопросов, которых школьники предпочитают избегать, является обнаружение связи между различными понятиями в тригонометрии. Казалось бы, для изучения синусов и косинусов углов используются треугольники, но обозначения почему-то часто встречаются на рисунке с окружностью. Кроме того, существует и вовсе непонятный волнообразный график под названием синусоида, не имеющий никакого внешнего сходства ни с окружностью, ни с треугольниками.

Более того, углы измеряются то в градусах, то в радианах, а число Пи, записывающееся просто как 3,14 (без единиц измерения), почему-то фигурирует в формулах, соответствуя 180 градусам. Как всё это связано между собой?

Единицы измерения

Почему число Пи равняется именно 3,14? Помните ли вы, что это за значение? Это количество радиусов, умещающихся в дуге на половине окружности. Если диаметр круга - 2 сантиметра, длина окружности составит 3,14*2, или 6,28.

Второй момент: возможно, вы замечали сходство слов «радиан» и «радиус». Дело в том, что один радиан численно равен величине угла, отложенного из центра окружности на дугу длиной в один радиус.

Теперь совместим полученные знания и поймем, почему сверху на оси координат в тригонометрии пишется «Пи пополам», а слева - «Пи». Это угловая величина, измеренная в радианах, ведь полукруг - это 180 градусов, или 3,14 радиана. А там, где есть градусы, есть синусы и косинусы. Треугольник же легко провести от нужной точки, отложив отрезки к центру и на ось координат.

Заглянем в будущее

Тригонометрия, изучаемая в школе, имеет дело с прямолинейной системой координат, где, как бы это странно ни звучало, прямая - это прямая.

Но есть и более сложные способы работы с пространством: сумма углов треугольника здесь будет больше 180 градусов, а прямая в нашем представлении будет выглядеть как самая настоящая дуга.

Перейдем от слов к делу! Возьмите яблоко. Сделайте ножом три надреза, чтобы при взгляде сверху получался треугольник. Выньте получившийся кусок яблока и посмотрите на «рёбра», где заканчивается кожура. Они вовсе не прямые. Фрукт в ваших руках условно можно назвать круглым, а теперь представьте, какими сложными должны быть формулы, с помощью которых можно найти площадь вырезанного куска. А ведь некоторые специалисты решают такие задачи ежедневно.

Тригонометрические функции в жизни

Обращали ли вы внимание, что самый короткий маршрут самолёта из точки А в точку Б на поверхности нашей планеты имеет ярко выраженную форму дуги? Причина проста: Земля имеет форму шара, а значит, с помощью треугольников многого не вычислишь - здесь приходится использовать более сложные формулы.

Не обойтись без синуса/косинуса острого угла в любых вопросах, связанных с космосом. Интересно, что здесь сходится целое множество факторов: тригонометрические функции требуются при расчётах движения планет по окружностям, эллипсам и различным траекториям более сложных форм; процесса запуска ракет, спутников, шаттлов, отстыковки исследовательских аппаратов; наблюдении за далёкими звёздами и изучении галактик, до которых человек в обозримом будущем добраться не сможет.

В целом поле для деятельности человека, владеющего тригонометрией, очень широко и, по-видимому, со временем будет только расширяться.

Заключение

Сегодня мы узнали или, во всяком случае, повторили, что такое синус и косинус. Это понятия, которых не нужно бояться - стоит захотеть, и вы поймете их смысл. Помните, что тригонометрия - это не цель, а лишь инструмент, который можно использовать для удовлетворения реальных человеческих потребностей: строить дома, обеспечивать безопасность движения, даже осваивать просторы вселенной.

Действительно, сама по себе наука может казаться скучной, но как только вы найдете в ней способ достижения собственных целей, самореализации, процесс обучения станет интересным, а ваша личная мотивация возрастёт.

В качестве домашнего задания попробуйте найти способы применить тригонометрические функции в той сфере деятельности, которая интересна лично вам. Пофантазируйте, включите воображение, и тогда наверняка окажется, что новые знания пригодятся вам в будущем. Да и кроме того, математика полезна для общего развития мышления.

Косинус – одна из основных тригонометрических функций. Косинус ом острого угла в прямоугольном треугольнике именуется отношение прилежащего катета к гипотенузе. Определение косинуса привязано к прямоугольному треугольнику, но нередко угол, косинус которого нужно определить, в прямоугольном треугольнике не размещен. Как обнаружить значение косинуса всякого угла ?

Инструкция

1. угла в прямоугольном треугольнике, нужно воспользоваться определением косинуса и обнаружить отношение прилежащего катета к гипотенузе:cos? = a/c, где а – длина катета, с – длина гипотенузы.

2. Если нужно обнаружить косинус угла в произвольном треугольнике, нужно воспользоваться теоремой косинусов:если угол острый: cos? = (a2 + b2 – c2)/(2ab);если угол тупой: cos? = (с2 – a2 – b2)/(2ab), где а, b – длины сторон прилежащих к углу, с – длина стороны противолежащей углу.

3. Если нужно обнаружить косинус угла в произвольной геометрической фигуре, нужно определить величину угла в градусах либо радианах, а косинус угла обнаружить по его величине с поддержкой инженерного калькулятора, таблиц Брадиса либо всякого иного математического приложения.

Косинус – это базовая тригонометрическая функция угла. Знание определять косинус сгодится в векторной алгебре при определении проекций векторов на разные оси.

Инструкция

1. Косинус ом угла называют отношение прилежащего к углу катета к гипотенузе. Значит, в прямоугольном треугольнике ABC (ABC – прямой угол) косинус угла BAC равен отношению AB к AC. Для угла ACB: cos ACB = BC/AC.

2. Но не неизменно угол принадлежит треугольнику, помимо того бывают тупые углы, которые заведомо не могут быть в составе прямоугольного треугольника. Разглядим случай, когда угол задан лучами. Дабы в этом случае вычислить косинус угла, поступают дальнейшим образом. К углу привязывают систему координат, предисловие координат считается от вершины угла, ось X идет по одной стороне угла, ось Y строится перпендикулярно оси X. После этого строят окружность единичного радиуса с центром в вершине угла. Вторая сторона угла пересекает окружность в точке A. Опустите перпендикуляр из точки A на ось X, обозначьте точку пересечения перпендикуляра с осью Ax. Тогда получится прямоугольный треугольник AAxO, и косинус угла равен AAx/AO. От того что окружность единичного радиуса, то AO = 1 и косинус угла равен примитивно AAx.

3. В случае тупого угла проводят все те же самые построения. Косинус тупого угла негативный, но он также равен Ax.

Видео по теме

Обратите внимание!
Косинусы некоторых углов представлены в таблицах Брадиса.

Такие представления как синус, косинус, тангенс вряд ли кому-то зачастую встречаются в повседневной жизни. Впрочем, если вы сели решать математические задачки с сыном-старшеклассником, хорошо было бы припомнить, что же это за представления, и как обнаружить, скажем, косинус.

Инструкция

Видео по теме

Частенько в геометрических (тригонометрических) задачах требуется обнаружить косинус угла в треугольнике , так как косинус угла разрешает однозначно определить величину самого угла.

Инструкция

1. Дабы обнаружить косинус угла в треугольнике , длины сторон которого знамениты, дозволено воспользоваться теоремой косинус ов. Согласно этой теореме, квадрат длины стороны произвольного треугольника равняется сумме квадратов 2-х его других сторон без удвоенного произведения длин этих сторон на косинус угла между ними:а?=b?+c?-2*b*c*соs?, где:а, b, с – стороны треугольника (вернее их длины),? – угол, противоположный стороне а (его величина).Из приведенного равенства легко находится соs?:соs?=(b?+c?-а?)/(2*b*c)Пример 1.Имеется треугольник со сторонами а, b, с, равными 3, 4, 5 мм, соответственно.Обнаружить косинус угла, заключенного между крупными сторонами.Решение:По условию задачи имеем:а=3,b=4,с=5.Обозначим противоположный стороне а угол через?, тогда, согласно выведенной выше формуле, имеем:соs?=(b?+c?-а?)/(2*b*c)=(4?+5?-3?)/(2*4*5)=(16+25-9)/40=32/40=0,8Ответ: 0,8.

2. Если треугольник прямоугольный, то для нахождения косинус а угла довольно знать длины каждого 2-х всяких сторон (косинус прямого угла равен 0).Пускай имеется прямоугольный треугольник со сторонами а, b, с, где с – гипотенуза.Разглядим все варианты:Пример 2.Обнаружить соs?, если знамениты длины сторон а и b (катеты треугольника)Воспользуемся добавочно теоремой Пифагора:c?=b?+а?,с=v(b?+а?)соs?=(b?+c?-а?)/(2*b*c)=(b?+b?+а?-а?)/(2*b*v(b?+а?))=(2*b?)/(2*b*v(b?+а?))=b/v(b?+а?)Дабы проверить правильность полученной формулы, подставим в нее значения из примера 1, т.е.а=3,b=4.Проделав элементарные вычисления, получаем:соs?=0,8.

3. Подобно находится косинус в прямоугольном треугольнике в остальных случаях:Пример 3.Знамениты а и с (гипотенуза и противолежащий катет), обнаружить соs?b?=с?-а?,b=v(c?-а?)соs?=(b?+c?-а?)/(2*b*c)=(с?-а?+с?-а?)/(2*с*v(с?-а?))=(2*с?-2*а?)/(2*с*v(с?-а?))=v(с?-а?)/с.Подставляя значения а=3 и с=5 из первого примера, получаем:соs?=0,8.

4. Пример 4.Вестимы b и с (гипотенуза и прилежащий катет).Обнаружить соs?Произведя схожие (показанные в примерах 2 и 3 реформирования), получим, что в этом случае косинус в треугольнике вычисляется по дюже легкой формуле:соs?=b/с.Простота выведенной формулы объясняется элементарно: реально, прилежащий к углу? катет является проекцией гипотенузы, следственно его длина равна длине гипотенузы, умноженной на соs?.Подставляя значения b=4 и с=5 из первого примера, получим:соs?=0,8Значит, все наши формулы правильны.

Совет 5: Как обнаружить острый угол в прямоугольном треугольнике

Прямоугольный треугольник, видимо, – одна из самых знаменитых, с исторической точки зрения, геометрических фигур. Пифагоровым “штанам” конкуренцию может составить лишь “Эврика!” Архимеда.

Вам понадобится

  • – чертеж треугольника;
  • – линейка;
  • – транспортир.

Инструкция

1. Как водится, вершины углов треугольника обозначаются заглавными латинскими буквами (A, B, C), а противоположные им стороны маленькими латинскими буквами (a, b, c) либо по наименованиям вершин треугольника, образующих эту сторону (AC, BC, AB).

2. Сумма углов треугольника составляет 180 градусов. В прямоугольном треугольнике один угол (прямой) неизменно будет 90 градусов, а остальные острыми, т.е. поменьше 90 градусов весь. Дабы определить, какой угол в прямоугольном треугольнике является прямым, измерьте с поддержкой линейки стороны треугольника и определите крупнейшую. Она именуется гипотенуза (AB) и располагается наоборот прямого угла (C). Остальные две стороны образуют прямой угол и именуются катетами (AC, BC).

3. Когда определили, какой угол является острым, вы можете либо измерить величину угла при помощи транспортира, либо рассчитать с поддержкой математических формул.

4. Дабы определить величину угла с подмогой транспортира, совместите его вершину (обозначим ее буквой А) с особой отметкой на линейке в центре транспортира, катет АС должен совпадать с ее верхним краем. Подметьте на полукруглой части транспортира точку, через которую проходит гипотенуза AB. Значение в этой точке соответствует величине угла в градусах. Если на транспортире указаны 2 величины, то для острого угла необходимо выбирать меньшую, для тупого – крупную.

6. Полученное значение обнаружьте в справочных таблицах Брадиса и определите какому углу соответствует полученное числовое значение. Этим способом пользовались наши бабушки.

7. В наше время довольно взять калькулятор с функцией вычисления тригонометрических формул. Скажем, встроенный калькулятор Windows. Запустите приложение “Калькулятор”, в пункте меню “Вид” предпочтете пункт “Инженерный”. Вычислите синус желанного угла, скажем, sin (A) = BC/AB = 2/4 = 0.5

8. Переключите калькулятор в режим обратных функций, кликнув по кнопке INV на табло калькулятора, после этого кликните по кнопке расчета функции арксинуса (на табло обозначена, как sin в минус первой степени). В окошке расчета появится дальнейшая надпись: asind (0.5) = 30. Т.е. значение желанного угла – 30 градусов.

Теорема косинусов в математике почаще каждого применяется в том случае, когда нужно обнаружить третью сторону по углу и двум сторонам. Впрочем, изредка условие задачи поставлено напротив: требуется обнаружить угол при заданных 3 сторонах.

Инструкция

1. Представьте себе, что дан треугольник, у которого вестимы длины 2-х сторон и значение одного угла. Все углы этого треугольника не равны друг другу, а его стороны также являются разными по величине. Угол? лежит наоборот стороны треугольника, обозначенной, как AB, которая является основанием этой фигуры. Через данный угол, а также через оставшиеся стороны AC и BC дозволено обнаружить ту сторону треугольника, которая неведома, по теореме косинусов, выведя на ее основе представленную ниже формулу:a^2=b^2+c^2-2bc*cos?, где a=BC, b=AB, c=ACТеорему косинусов напротив называют обобщенной теоремой Пифагора.

2. Сейчас представьте себе, что даны все три стороны фигуры, но при этом ее угол? неведом. Зная, что формула имеет вид a^2=b^2+c^2-2bc*cos?, преобразуйте данное выражение таким образом, дабы желанной величиной стал угол?: b^2+c^2=2bc*cos?+a^2.После этого приведите показанное выше уравнение к несколько другому виду: b^2+c^2-a^2=2bc*cos?.После этого данное выражение следует преобразовать в представленное ниже: cos?=?b^2+c^2-a^2/2bc.Осталось подставить в формулу числа и осуществить вычисления.

3. Дабы обнаружить косинус угла треугольника, обозначенного как?, его нужно выразить через обратную тригонометрическую функцию, называемую арккосинусом. Арккосинусом числа m именуется такое значение угла?, для которого косинус угла? равен m. Функция y=arccos m является убывающей. Представьте себе, скажем, что косинус угла? равен одной 2-й. Тогда угол? может быть определен через арккосинус дальнейшим образом:? = arccos, m = arccos 1/2 = 60°, где m = 1/2.Аналогичным образом дозволено обнаружить и остальные углы треугольника при 2-х других неведомых его сторонах.

4. В случае, если углы представлены в радианах, переведите их в градусы, применяя следующее соотношение:? радиан = 180 градусов.Помните, что подавляющее множество инженерных калькуляторов снабжено вероятностью переключения единиц измерения углов.

Синус и косинус – две тригонометрические функции, которые называют «прямыми». Именно их доводится вычислять почаще других и для решения этой задачи сегодня всякий из нас имеет большой выбор вариантов. Ниже приведено несколько особенно примитивных методов.

Инструкция

1. Используйте транспортир, карандаш и лист бумаги, если других средств вычисления нет под рукой. Одно из определений косинуса дается через острые углы в прямоугольном треугольнике – его значение равно соотношению между длиной катета, лежащего наоборот этого угла и длиной гипотенузы. Нарисуйте треугольник, в котором один из углов будет прямым (90°), а иной равен углу, косинус которого требуется вычислить. Длина сторон при этом не имеет значения – нарисуйте их такими, которые вам комфортнее измерять. Измерьте длину надобного катета и гипотенузы и поделите первое на второе любым комфортным методом.

2. Воспользуйтесь вероятностью определять значения тригонометрических функций с поддержкой калькулятора, встроенного в поисковую систему Nigma, если у вас есть доступ в интернет. Скажем, если требуется вычислить косинус угла в 20°, то загрузив основную страницу обслуживания http://nigma.ru наберите в поле поискового запроса «косинус 20 градусов» и нажмите кнопку «Обнаружить!». Дозволено слово «градусов» опустить, а слово «косинус» заменить на cos – в любом случае поисковик покажет итог с точностью до 15 знаков позже запятой (0,939692620785908).

3. Откройте стандартную программу-калькулятор, устанавливаемую совместно с операционной системой Windows, если нет доступа к интернету. Сделать это дозволено, скажем, единовременно нажав клавиши win и r, после этого введя команду calc и щелкнув по кнопке OK. Для вычисления тригонометрических функций тут предуготовлен интерфейс, с наименованием «инженерный» либо «ученый» (в зависимости от версии ОС) – выберите необходимый пункт в разделе «Вид» меню калькулятора. Позже этого введите величину угла в градусах и щелкните по кнопке cos в интерфейсе программы.

Видео по теме

Совет 8: Как определить углы в прямоугольном треугольнике

Прямоугольный треугольник характеризуется определенными соотношениями между углами и сторонами. Зная значения одних из них, дозволено вычислять другие. Для этого применяются формулы, основанные, в свою очередь, на аксиомах и теоремах геометрии.

Инструкция

1. Из самого наименования прямоугольного треугольника ясно, что один из его углов является прямым. Самостоятельно от того, является прямоугольный треугольник равнобедренным либо нет, в нем неизменно имеется один угол, равный 90 градусам. Если дан прямоугольный треугольник, являющийся единовременно и равнобедренным, то, исходя из того, что в фигуре имеется прямой угол, обнаружьте два угла при его основании. Эти углы равны между собой, следственно всякий из них имеет значение, равное:?=180°- 90°/2=45°

2. Помимо рассмотренного выше, допустим также иной случай, когда треугольник является прямоугольным, но не является равнобедренным. Во многих задачах угол треугольника равен 30°, а иной 60°, от того что сумма всех углов в треугольнике должна быть равной 180°. Если дана гипотенуза прямоугольного треугольника и его катет, то угол дозволено обнаружить из соответствия этих 2-х сторон:sin ?=a/c, где a – катет, противолежащий к гипотенузе треугольника, с – гипотенуза треугольникаСоответственно, ?=arcsin(a/c)Также угол дозволено обнаружить и по формуле нахождения косинуса:cos ?=b/c, где b – прилежащий катет к гипотенузе треугольника

3. Если вестимы только два катета, то угол? дозволено обнаружить по формуле тангенса. Тангенс этого угла равен отношению противолежащего катета к прилежащему:tg ?=a/bИз этого следует, что?=arctg(a/b)Когда даны прямой угол и один из углов, обнаруженных вышеуказанным методом, 2-й находится дальнейшим образом:?=180°-(90°+?)

Словом «косинус» называют одну из тригонометрических функций, которая при написании обозначается как cos. Особенно зачастую иметь с ней дело доводится при решении задач на нахождение параметров верных фигур в геометрии. В таких задачах величины углов в вершинах многоугольников обозначаются, как водится, прописными буквами греческого алфавита. Если речь при этом идет о прямоугольном треугольнике, то по одной этой букве изредка дозволено узнать, тот, что из углов имеется в виду.

Инструкция

1. Если величина угла, обозначенная буквой?, знаменита из условий задачи, то для нахождения значения, соответствующего косинусу альфа, дозволено воспользоваться стандартным калькулятором ОС Windows. Запускается он через основное меню операционной системы – нажмите кнопку Win, раскройте в меню раздел «Все программы», перейдите в подраздел «Типовые», а после этого в секцию «Служебные». Там и обнаружите строку «Калькулятор» – кликните ее для запуска приложения.

2. Нажмите сочетание клавиш Alt + 2, дабы переключить интерфейс приложения в «инженерный» (в иных версиях ОС – «ученый») вариант. После этого введите величину угла? и щелкните указателем мыши кнопку, обозначенную буквами cos – калькулятор произведет вычисление функции и отобразит итог.

3. Если вычислить косинус угла? необходимо в прямоугольном треугольнике, то, вероятно, это один из 2-х острых углов. При верном обозначении сторон такого треугольника гипотенузу (самую длинную сторону) обозначают буквой c, а лежащий наоборот нее прямой угол – греческой буквой?. Две другие стороны (катеты) обозначают буквами a и b, а лежащие наоборот них острые углы – ? и?. Для величин острых углов прямоугольного треугольника существуют соотношения, которые дозволят вычислять косинус, даже не зная величины самого угла.

4. Если в прямоугольном треугольнике вестимы длины сторон b (катета, прилежащего к углу?) и c (гипотенузы), то для вычисления косинуса? поделите длину этого катета на длину гипотенузы: cos(?)=b/c.

5. В произвольном треугольнике значение косинуса угла? незнакомой величины дозволено вычислить, если в условиях даны длины всех сторон. Для этого вначале возведите в квадрат длины всех сторон, потом полученные значения для 2-х сторон, прилежащих к углу? сложите, а полученное значение для противолежащей стороны отнимите от итога. После этого полученную величину поделите на удвоенное произведение длин прилегающих к углу? сторон – это и будет желанный косинус угла?: cos(?)=(b?+c?-a?)/(2*b*c). Это решение вытекает из теоремы косинусов.

Полезный совет
Математическое обозначение косинуса – cos. Значение косинуса не может быть огромнее 1 и поменьше -1.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.