Рациональный дизайн белковых молекул. Белковая инженерия

БЕЛКОВАЯ ИНЖЕНЕРИЯ, направление молекулярной биологии и биоинженерии, в задачи которого входят целенаправленное изменение структуры природных белков и получение новых белков с заданными свойствами. Белковая инженерия возникла в начале 1980-х годов, когда были разработаны методы генетической инженерии, позволившие получать различные природные белки с помощью бактерий или дрожжей, а также определённым образом изменять структуру генов и, соответственно, аминокислотную последовательность (первичную структуру) кодируемых ими белков. Исходя из принципов организации белковых молекул, взаимосвязи структуры и функции белков, белковая инженерия создаёт научно обоснованную технологию направленного изменения их структуры. С помощью белковой инженерии удаётся повышать термостабильность белков, их устойчивость к денатурирующим воздействиям, органическим растворителям, изменять лигандсвязывающие свойства. Белковая инженерия позволяет путём замены аминокислот улучшать работу ферментов и их специфичность, изменять оптимальные значения pH, при которых работает фермент, исключать нежелательные побочные активности, устранять участки молекул, ингибирующие ферментативные реакции, повышать эффективность белковых лекарственных препаратов и так далее. Например, замена лишь одного остатка треонина на остаток аланина или пролина позволила в 50 раз повысить активность фермента тирозилтРНК-синтетазы, а благодаря замене 8 аминокислотных остатков так называемая термолизин-подобная протеаза из Bacillus stearothermophilus приобрела способность сохранять активность при 120 °С в течение нескольких часов. К белковой инженерии можно отнести также работы по направленному изменению свойств белков с помощью химических модификаций, например введение фотоактивируемых соединений, изменяющих свойства молекулы под действием света, соединений-меток, позволяющих отслеживать пути перемещения белка в клетке или направлять его к различным компонентам клетки, и тому подобное. Такие работы проводятся преимущественно на рекомбинантных белках, получаемых с помощью генно-инженерных методов.

В белковой инженерии можно выделить два направления: рациональный дизайн и направленная молекулярная эволюция белков. Первое подразумевает использование информации о структурно-функциональных отношениях в белках, получаемой с помощью физико-химических и биологических методов, а также компьютерного молекулярного моделирования, для того чтобы определить, какие именно изменения в первичной структуре должны привести к желаемому результату. Так, для повышения термостабильности белка необходимо определить его пространственную структуру, выявить «слабые» участки (например, аминокислоты, недостаточно сильно связанные со своим окружением), подобрать для них наилучшие варианты замен на другие аминокислоты с помощью молекулярного моделирования и оптимизации энергетических параметров молекулы; после этого подвергнуть мутации соответствующий ген, а затем получить и исследовать мутантный белок. Если этот белок не удовлетворяет заданным параметрам, проводят новый анализ и повторяют описанный цикл. Такой подход наиболее часто используется в случае конструирования искусственных белков (белков de novo) с заданными свойствами, когда на входе имеется новая аминокислотная последовательность, в основном или полностью заданная человеком, а на выходе - белковая молекула с желаемыми характеристиками. Пока, однако, таким образом удаётся получать только небольшие белки de novo с несложной пространственной структурой и вводить в них простые функциональные активности, например металлсвязывающие участки или короткие пептидные фрагменты, несущие какие-либо биологические функции.

При направленной молекулярной эволюции белков с помощью генно-инженерных методов получают большой набор различных мутантных генов целевого белка, которые затем экспрессируют специальным образом, в частности на поверхности фагов («фаговый дисплей») или в бактериальных клетках, с тем, чтобы сделать возможным отбор мутантов с лучшими характеристиками. С этой целью, например, гены нужного белка или его частей встраиваются в геном фага - в состав гена, кодирующего белок, расположенный на поверхности фаговой частицы. При этом каждый индивидуальный фаг несёт свой мутантный белок, обладающий определёнными свойствами, по которым делается отбор. Мутантные гены получают путём «перемешивания» набора генов сходных природных белков различных организмов, как правило, с помощью метода полимеразной цепной реакции, так что каждый получаемый мутантный белок может включать в себя фрагменты многих «родительских» белков. По сути, этот подход имитирует природную эволюцию белков, но только существенно более быстрыми темпами. Основная задача белкового инженера в данном случае заключается в разработке эффективной селектирующей системы, которая позволит отбирать лучшие мутантные варианты белков с нужными параметрами. В случае вышеупомянутой задачи — повысить термостабильность белка - отбор можно вести, например, путём выращивания клеток, содержащих мутантные гены, при повышенной температуре (при условии, что присутствие в клетке мутантного белка увеличивает её термическую устойчивость).

Оба названных направления белковой инженерии имеют одну цель и дополняют друг друга. Так, исследование получаемых с помощью методов молекулярной эволюции мутантных вариантов белков позволяет лучше понять структурно-функциональную организацию белковых молекул и использовать полученные знания для целенаправленного рационального дизайна новых белков. Дальнейшее развитие белковой инженерии даёт возможность решать многие практические задачи по улучшению природных и получению новых белков для нужд медицины, сельского хозяйства, биотехнологии. В будущем возможно создание белков, обладающих функциями, неизвестными в живой природе.

Лит.: Brannigan J.А., Wilkinson А.J. Protein engineering 20 years on // Nature Reviews. Molecular Cell Biology. 2002. Vol. 3. № 12; Патрушев Л. И. Искусственные генетические системы. М., 2004. Т. 1: Генная и белковая инженерия.

Белок в химическом отношении представляет собой однотипную молекулу, которая является полиаминокислотной цепочкой или полимером. Составлен он из аминокислотных последовательностей 20 типов. Узнав строение белков, люди задались вопросом: можно ли спроектировать абсолютно новые аминокислотные последовательности, чтобы они выполняли нужные человеку функции гораздо лучше, чем обычные белки? Для данной дерзкой идее лучше всего подошло название белковая инженерия .

О такой инженерии стали задумываться ещё в 50-е годы XX столетия. Случилось это сразу же после расшифровки первых белковых аминокислотных последовательностей. Во многих лабораториях мира начали делать попытки дублировать природу и синтезировать химическим путём заданные абсолютно произвольно полиаминокислотные последовательности.

Больше всех в этом преуспел химик Б. Меррифилд. Этому американцу удалось разработать чрезвычайно эффективный метод синтеза полиаминокислотных цепей. За это Меррифилду в 1984 году присудили Нобелевскую премию по химии.

Американец начал синтезировать короткие пептиды, включая гормоны. При этом построил автомат - «химического робота» - в задачу которого входило производит искусственные белки. Робот вызвал сенсацию в научных кругах. Однако скоро выяснилось, что его продукция не может конкурировать с тем, что производит природа.

Робот не мог в точности воспроизводить аминокислотные последовательности, то есть ошибался. Он синтезировал одну цепь с одной последовательностью, а другую уже с чуть-чуть другой. В клетке же все молекулы одного белка идеально похожи друг на друга, то есть их последовательности абсолютно одинаковые.

Была и ещё одна проблема. Даже те молекулы, которые робот синтезировал правильно, не принимали ту пространственную форму, которая необходима для функционирования фермента. Таким образом, попытка подменить природу обычными методами органической химии привела к весьма скромному успеху.

Учёным оставалось учиться у природы, выискивая нужные модификации белков. Тут дело в том, что в природе постоянно идут мутации, ведущие к изменению аминокислотных последовательностей белков.

Если отобрать мутантов с необходимыми свойствами, скажем более эффективно перерабатывающих тот или иной субстрат, то можно выделить из такого мутанта измененный фермент, благодаря которому клетка приобретает новые свойства. Но данный процесс занимает очень большой период времени.

Все изменилось тогда, когда появилась генная инженерия . Благодаря ей, стали создавать искусственные гены с любой последовательностью нуклеотидов. Эти гены встраивали в приготовленные молекулы-векторы и внедряли эти ДНК в бактерии или дрожжи. Там с искусственного гена снималась копия РНК. В результате этого вырабатывался нужный белок. Ошибки в его синтезе исключались. Главное, надо было подобрать нужную последовательность ДНК, а дальше уже ферментная система клетки сама безупречно делала своё дело.

Таким образом, можно заключить, что генная инженерия открыла путь белковой инженерии в самой радикальной форме. К примеру, мы выбрали белок и захотели заменить в нём один аминокислотный остаток на другой.

Прежде чем начать работу по замене, необходимо приготовить ДНК-вектор. Это вирусная или плазмидная ДНК со встроенным в неё геном того белка, который нас интересует. Нужно также знать нуклеотидную последовательность гена и аминокислотную последовательность кодируемого белка. Последняя определяется из первой при помощи таблицы генетического кода.

С помощью таблицы также легко установить, какие минимальные изменения следует произвести в составе гена, чтобы он начал кодировать не исходный, а изменённый по нашему желанию белок. Допустим, в середине гена нужно гуанин заменить на тимин.

Из-за такой мелочи не нужно заново синтезировать весь ген. Синтезируется лишь небольшой фрагмент нуклеотидов, комплементарный участку, в середине которого располагается выбранный для замены нуклеотид гуанин.

Полученный фрагмент смешиваем с ДНК-вектором (кольцевая ДНК), в которой содержится нужный нам ген. Кольцо ДНК и синтезированный фрагмент создают участок уотсон-криковской двойной спирали. В нём центральная пара «выпихивается» из двойной спирали, так как она образована взаимно некомплементарными нуклеотидами.

Добавляем в раствор четыре дНТФ и ДНК-полимеразу. Последняя, используя налипший на одиночное кольцо фрагмент, достраивает его до полного кольца в полном соответствии с принципом комплементарности.

В результате у нас получается почти нормальная векторная ДНК. Её можно ввести в дрожжевую или бактериальную клетку для размножения. Единственное, эта ДНК отличается от исходного вектора некомплементарной парой. Иными словами, спираль ДНК-вектора совершенна не полностью.

При первом же акте удвоения полученного вектора вместе с несущей его бактерией, каждая из дочерних молекул ДНК станет совершенной двойной спиралью на всём своём протяжении. Однако одна из дочерних молекул несёт в себе исходную нуклеотидную пару, а у другой в этом месте находится мутантный вектор, на основе которого и получается интересующий нас мутантный белок.

Таким образом, белковая инженерия создаёт смесь клеток. Одни из них несут исходный вектор с немутантным геном, а другие клетки несут мутантный ген. Остаётся отобрать из этой смеси именно те клетки, в которых находится мутантный ген .




Словарь Элюция Элюция – метод извлечения вещества (вируса) из твердого носителя вымыванием Методдисплея Метод дисплея – метод представления гетерологичных белков/ пептидов на поверхности вирусов, клеток или бесклеточных культур для отбора белков или пептидов с требуемыми свойствами Биосенсор Биосенсор – аналитическая система (биологический материал + преобразователь), позволяющая обнаруживать вещества в исследуемой пробе и оценивать их концентрации Элюция Элюция – метод извлечения вещества (вируса) из твердого носителя вымыванием Методдисплея Метод дисплея – метод представления гетерологичных белков/ пептидов на поверхности вирусов, клеток или бесклеточных культур для отбора белков или пептидов с требуемыми свойствами Биосенсор Биосенсор – аналитическая система (биологический материал + преобразователь), позволяющая обнаруживать вещества в исследуемой пробе и оценивать их концентрации


Белковая инженерия 4 Комплекс методов и подходов по изучению белков и получению белков с новыми свойствами ОСНОВНЫЕ ЗАДАЧИ Создать клонотеку нуклеотидных и аминокислотных последовательностей Исследовать влияния одиночных замен аминокислотных остатков на фолдинг и функции белка Разработать методы эффективной модификации белков для придания им необходимых свойств Разработать методы и подходы для скрининга и отбора белков с требуемыми свойствами




Рациональныйдизайн Рациональный дизайн Необходимость знаний о пространственной организации белка Необходимость знаний о внутри- и межмолекулярных взаимодействиях Несовершенство методик и аппаратуры направление, нацеленное на создание новых белков de novo путем их пространственного конструирования


Направленная эволюция белковых молекул направление, нацеленное на создание новых белков, посредством селекции 1 получение клонотек случайных аминокислотных последовательностей 2 отбор полипептидных цепей, обладающих хотя бы в небольшой степени требуемыми свойствами 3 с использованием случайного мутагенеза получение новых клонотек белков, которые применяют в следующем раунде селекции или с использованием генно-инженерных конструкций, экспрессирующих новые белки


Направленная эволюция белковых молекул (варианты) рациональный редизайн с помощью направленного мутагенеза заменяют конкретные аминокислотные остатки в активном центре фермента инженерия белковых поверхностей с помощью мутаций изменяют участки полипептидной цепи в окрестностях аминокислотных остатков, сближенных на поверхности белковой глобулы, но находящихся в полипептидной цепи на значительном расстоянии друг от друга


Скрининг и отбор белков с заданными свойствами случайный скрининг улучшенный скрининг отбор каждый белок исследуется на наличие требуемых свойств; выбор белков из клонотеки происходит случайно каждый белок исследуется на наличие требуемых свойств; выбор белков из клонотеки происходит случайно возможен, если объекты, составляющие клонотеку, различаются фенотипически (например, по наличию ферментативной активности) создаются условия для избирательного сохранения компонентов клонотеки, которые обладают определенными свойствами (фаговый, клеточный дисплей) создаются условия для избирательного сохранения компонентов клонотеки, которые обладают определенными свойствами (фаговый, клеточный дисплей) обнаружение белка с требуемыми свойствами среди большого числа макромолекул, составляющих полученную клонотеку




Фаговый дисплей Цель – экспонировать чужеродные белки на поверхности фага Метод был разработан в 1985 г. для нитчатого бактериофага М13. (гены pIII и pVIII являются пригодными сайтами мишенями для вставки чужеродного кДНК фрагмента) Цель – экспонировать чужеродные белки на поверхности фага Метод был разработан в 1985 г. для нитчатого бактериофага М13. (гены pIII и pVIII являются пригодными сайтами мишенями для вставки чужеродного кДНК фрагмента) конструируют гибридный ген, состоящий из кодирующих последовательностей целевого белка и одного из белков оболочки фага бактериофагом инфицируют E.coli в ходе сборки фага гибридные белки включаются в фаговую частицу


Фагмида Фаг-помощник Геном фага Инфицирование E.coli фагом-помощником клетки E.coli, трансформированные плазмидной библиотекой / фагмидой, инфицируют хелперным фагом для получения фаговых частиц, на поверхности которых экспонированы различные варианты целевого белка клетки E.coli, трансформированные плазмидной библиотекой / фагмидой, инфицируют хелперным фагом для получения фаговых частиц, на поверхности которых экспонированы различные варианты целевого белка



Перспективы практического использования белковой инженерии Медицина: *для получения новых лекарственных препаратов; для создания диагностических средств и производства вакцин; *для исследование механизмов иммунного ответа, а также заболеваний иммунной системы Экология: *для получение биокатализаторов в виде целых клеток с иммобилизованными на их поверхности ферментами; *для получения биосенсоров с целью диагностики и мониторинга окружающей среды; *для создание био адсорбентов с целью удаления из окружающей среды токсических веществ и ионов тяжелых металлов






Измерение глюкозы с помощью ферментного электрода (схематическое представление опыта Л. Кларка). Окисление глюкозы ферментом глюкозооксидазой в присутствии кислорода: глюкоза + О 2 Н 2 О 2 + глюконо-1,5-лактон. Н 2 О 2 восстанавливается на платиновом электроде при потенциале +700 мВ; протекающий в цепи ток пропорционален концентрации пероксида водорода (т.е., косвенно, глюкозы).




Словарь Иммобилизация Иммобилизация – это ограничение подвижности молекул и их конфирмационных перестроек Аэротенк Аэротенк – система очистки стоков, резервуары в которых происходит перемешивание СВ, микробного ила и воздуха Метантенк Метантенк – резервуар для биологической переработки органических загрязнителей с помощью бактерий в анаэробных условиях Биоремедиация Биоремедиация – комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов – растений, грибов, насекомых, червей и других организмов Иммобилизация Иммобилизация – это ограничение подвижности молекул и их конфирмационных перестроек Аэротенк Аэротенк – система очистки стоков, резервуары в которых происходит перемешивание СВ, микробного ила и воздуха Метантенк Метантенк – резервуар для биологической переработки органических загрязнителей с помощью бактерий в анаэробных условиях Биоремедиация Биоремедиация – комплекс методов очистки вод, грунтов и атмосферы с использованием метаболического потенциала биологических объектов – растений, грибов, насекомых, червей и других организмов




Классификация ферментов Класс Катализируемые реакции Примеры ферментов Оксидо- редуктазы Восстановительные и окислительные реакции Известно более 200 ферментов. Каталаза, глюкооксидаза Трансфе- разы Обратимый перенос групп атомов от доноров к акцепторам. Известно более 450 ферментов. Пируваткиназа, протеинкиназа Гидролазы Реакции гидролиза Известно более 200 гидролаз. Протеаза, амилаза, целлюлаза Лиазы Негидролитического отщепления от субстрата групп атомов с образованием двойных связей Известно более 100 лиаз. Аспартаза, фумараза Изомеразы Внутримолекулярные реакции перестройки органических соединений Известно более 50 ферментов. Глюкозоимераза Лигазы Реакции присоединения друг к другу двух различных молекул Известно более 100. ДНК-лигаза, триптофан-синтетаза




Микроорганизмы Источники ферментов Бациллы – био синтезаторы рибонуклеаз, дезоксирибонуклеаз и протеаз, а дрожжи – глюкоамилаз, инвертаз и кислой фос-фатазы растения Амилазы выделяют из ячменя, кислую фосфатазу из картофеля, пероксидазу из хрена животные Из сердца КРС выделяют лактатдегидрогеназу, из желудка – щелочную фосфатазу. Желудок свиней используют для получения пепсина Из сердца КРС выделяют лактатдегидрогеназу, из желудка – щелочную фосфатазу. Желудок свиней используют для получения пепсина




Методы иммобилизации Физические методы Химические методы адсорбция на нерастворимом носителе, включение в поры геля, пространственное отделение с помощью полупроницаемой мембраны и другие основывается на создании новых ковалентных связей между ферментом и носителем


Преимущества иммобилизованных ферментов отделять ферменты от реакционной среды, останавливать реакцию в нужный момент и получать продукт не загрязненный ферментом; проводить процесс в непрерывном режиме и регулировать скорость реакции; изменять свойства катализатора, его специфичность, зависимость от условий реакции и чувствительность к денатурирующим воздействиям; регулировать каталитическую активность фермента посредством воздействия на носитель


Ферменты в биотехнологическом производстве Фермент Источник, метод иммобилизации Биотехнология Ацетилнейтраминат -9-фосфатсинтаза Фермент E. coli. Включение в полиакриламидный гель. Синтез сиаловых кислот. Пероксидаза Фермент из хрена. Сополимеризация и включение в гель альгината. Окисление фенола в сточных водах. 3-Кетостероид- дегидрогеназа Клетки Mycobacterium globiformis. Включение в полиакриламидный гель. Трасформация гидрокортизона в преднизолон




Лавряшина М.Б. КемГУ Методы экологической биотехнологии Биологическая очистка сточных вод Био(фито)ремедиация Созданиебиобезопасныхинсектицидови гербицидов Создание биобезопасных инсектицидов и гербицидов Получение экологически чистой энергии Создание сельскохозяйственных растений устойчивых к болезням Бактериальное выщелачивания металлов Клонирование исчезающих и вымерших видов животных


Методы очистки сточных вод Механические (отстаивание, фильтрация)Механические Химические (воздействие реагентами)Химические Физико- химические Биологические (биохимическое самоочищение))Биологические Важнейшая проблема биотехнологии – очистка сточных вод





Аэротенки работают в комплексе с усреднителем, отстойниками, регенератором ила и уплотнителем ила (пресс). Аэротенк Аэротенк (от аэро и англ. tank бак, цистерна) отстойник усреднитель АЭРОТЕНК регенератор ила пресс очищенные сточные воды активный ил сточные воды метантенк


Метантенк Метантенк (от метан и англ. tank – бак, цистерна) Группы бактерий Исходные вещества Продукты ГИДРОЛИТИЧЕСКИЕ АЦЕТОГЕННЫЕ Органические загрязнители Высшие жирные кислоты ВОДОРОДОПРОДУЦИ- РУЮЩИЕ Высшие жирные кислоты Н 2,СО 2, СН 3 СООН МЕТАНОБРАЗУЮЩИЕ Н 2,СО 2, СН 3 СООН СН 4, СО 2


Фазы метанового брожения 1 биогидролиз полимеров и ацидогенез (органические вещества переходят в высшие жирные кислоты, ацетат и водород) 2 ацетогенез и дегидрогенизация (из высших жирных кислот образуется ацетат и водород) 3 Метаногенез (из ацетата образуется метан, водород и углекислый газ)


I фаза. ЦЕЛЛЮЛОЗОРАЗРУШАЮЩИЕ (Bacterioides ruminicola, Butyrivibrio fibriosolvens) ПРОТЕОЛИТИЧЕСКИЕ ПРОТЕОЛИТИЧЕСКИЕ (Clostridium, Petrococcus) II фаза. АЦЕТОГЕННЫЕ (Syntrophobacter wolinii) III фаза. МЕТАНООБРАЗУЮЩИЕ (Metanobacterium thermoautotrophicum, Metanococcus vannielii) Примеры микроорганизмов



БИОРЕМЕДИАЦИЯ В основе метода лежит способность микроорганизмов утилизировать сложные органические вещества с разложением их до простых «биологически безопасных» веществ Молекулярная биология и генетика Экология Инженерные науки Микро- биологияБИОРЕМЕДИАЦИЯ




Биоремедиация. Подходы. Использование активности природных «диких» микроорганизмов Использование активности природных «диких» микроорганизмов (требуется интенсификатор, например О 2) Использование активных штаммов, внесенных в виде биопрепаратов в места интенсивных загрязнений


Изучение биоразнообразия загрязненных территорий Выделение микрофлоры, способной к деструкции удаляемых загрязнителей Активизация местной микрофлоры (биостимуляция). Интродукция в загрязненные участки специальных микроорганизмов- деструкторов (биоремедиация) Биоремедиация. Этапы.


ЗАГРЯЗНЕНИЯ Химический анализ Инженерные технологии Биостимуляция (Природные микробные сообщества)Биостимуляция Биоремедиация (Искусственные микробные биопрепараты)Биоремедиация Мониторинг биоремедиации Биофиторемедиация (Сообщества растений и микроорганизмов)Биофиторемедиация


Конструирования трансгенных растений, устойчивых против насекомых вредителей 1. СИНТЕЗ СПЕЦИФИЧЕСКИХ ТОКСИНОВ 2. СИНТЕЗ ГИДРОЛИТИЧЕСКИХ ФЕРМЕНТОВ, ДЕЙСТВУЩИХ НА КЛЕТОЧНЫЕ СТЕНКИ ЛИЧИНОК НАСЕКОМЫХ И ДРУГИХ ВРЕДИТЕЛЕЙ И ПАТОГЕНОВ /ХИТИНАЗА, -1,3- ГЛЮКОНАЗЫ, РR-БЕЛКИ/ 3. СИНТЕЗ ИНГИБИТОРОВ ПРОТЕИНАЗ И ИНГИБИТОРОВ ФЕРМЕНТОВ, РАСЩЕПЛЯЮЩИХ ПОЛИСАХАРИДЫ РАСТЕНИЯ 4. МОДИФИКАЦИЯ ВТОРИЧНОГО МЕТАБОЛИЗМА РАСТЕНИЙ ДЛЯ: А) ЛИМИТИРОВАНИЯ НЕОБХОДИМЫХ ВЕЩЕСТВ Б) СИНТЕЗА НОВЫХ РЕПЕЛЛЕНТОВ И ТОКСИНОВ 5. РЕГУЛЯЦИЯ ЗАЩИТНОГО ОТВЕТА: А) ТКАНЕСПЕЦИФИЧЕСКАЯ ЭКСПРЕССИЯ ГЕНОВ Б) РЕГУЛЯЦИЯ ЭКСПРЕССИИ ГЕНОВ РАЗЛИЧНЫМИ ЕСТЕСТВЕННЫМИ И ИСКУССТВЕННЫМИ ФАКТОРАМИ Повышенная устойчивость трансгенных растенийк грибному патогену Phomopsis helianhi Повышенная устойчивость трансгенных растений к грибному патогену Phomopsis helianhi А B А - нетрансгенное растение В - трансгенное растение А - нетрансгенное растение В - трансгенное растение


Примерный список тем, входящий в тест на зачете 1. История биотехнологии. Характеристика исторических периодов. Наиболее значимые открытия, сыгравшие важную роль в становлении науки. 2. Общие понятия биотехнологии: биотехнологическая система, биотехнологический процесс, биотехнологический объект. 3. Биотехнологические объекты, определение, характеристика места биообъекта в биотехнологической системе, классификация, примеры практического применения. 4. Микроорганизмы как биообъекты. Примеры, практическое использование в биотехнологиях. 5. Культуры клеток и тканей как биообъекты. Примеры, практическое использование в биотехнологиях. 6. Биотехнологический процесс. Этапы. Краткая характеристика этапов биотехнологического процесса. 7. Характеристика микроорганизмов как объектов селекции. Селекция микроорганизмов в биотехнологии. 8. Мутагенез: определение, формы мутагенеза, мутагенные факторы. 9. Отбор мутантных микроорганизмов созданных в процессе селекции на подготовительной стадии биотехнологического процесса. 10. Селекция биообъектов. Этапы, подходы, методы.


11. Генетическая инженерия: цель, техника, биообъекты, примеры практического применения, современные достижения. 12. Ферменты генетической инженерии. Классификация, характеристика катализируемых реакций. 13. Методы получения гена в генетической инженерии. Краткая характеристика, достоинства и недостатки методов. 14. Вектора в генетической инженерии. Определение, классификации, требования, краткая характеристика векторов. 15. Рекомбинантная ДНК. Определение, назначение, методы получения рекомбинантной ДНК в генетической инженерии. 16. Методы введения рекомбинантной ДНК в клетку-реципиент и отбор модифицированных клеток в генетической инженерии. 17. Трансгенез растений. Вектора. Основные стратегии. Методы введения трансгенов и отбора трансгенных организмов. 18. Трансгенез животных. Вектора. Основные стратегии. Методы введения трансгенов и отбора трансгенных организмов. 19. Клеточная инженерия: цель, техника, биообъекты, примеры практического применения, современные достижения. 20. Методы культивирования клеток и тканей растений. Условия культивирования, классификация и краткая характеристика культур растений в клеточной инженерии


21. Соматические гибриды растений. Техника получения, современные достижения, примеры практического применения. 22. Протопласты: определение, использование в клеточной инженерии, методы и условия выделения протопластов. 23. Культивирование и слияние протопластов в клеточной инженерии. Методы, условия, фьюзогены. 24. Практическое использование культур клеток и тканей растений. Биосинтез и биотрансформация, микроразмножение, примеры трансгенных растений с ценными свойствами. 25. Клеточная инженерия животных. Методы, объекты, техника, современные достижения, практическое применение. 26. Клеточные и тканевые культуры животных. Классификации культур, условия культивирования, среды, методы получения соматических гибридов, практическое применение. 27. Стволовые клетки. Характеристика. Классификация. Перспективы применения. 28. Клонирование. Характеристика метода. Классификация. Перспективы применения. 29. Биотехнологический процесс. Стадия культивирования. Основные этапы, характеристика сред для микроорганизмов, клеток растений и животных. Аппаратура. 30. Биотехнологический процесс. Стадия культивирования. Режимы культивирования биообъектов. Стадии роста культуры в биореакторе, синтез целевого продукта.


31. Биотехнологический процесс. Стадия получения продукта. Основные этапы и методы отделения и очистки биотехнологического продукта. Примеры биотехнологических продуктов. 32. Экологическая биотехнология: цель, методы, биообъекты, примеры практического применения, современные достижения. 33. Экологическая биотехнология. Проблема питьевой воды. Аэробные методы очистки сточных вод. 34. Экологическая биотехнология. Проблема питьевой воды. Анаэробные методы очистки сточных вод. 35. Экологическая биотехнология. Биоремедиация, биофиторемедиация. 36. Биотехнология: цель, предмет, задачи, основные направления биотехнологии. Современные достижения в области биотехнологии. 37. Инженерная энзимология. Цель, проблемы. Перспективы. Источники ферментов. 38. Иммобилизованные ферменты. Преимущества, методы иммобилизации. 39. Иммобилизованные ферменты. Носители для иммобилизации, практическое использование. 40. Белковая инженерия. Направления, методы, перспективы.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Курсовая работа

по дисциплине: Сельскохозяйственная биотехнология

на тему: «Белковая инженерия»

  • Реферат
  • Введение
  • I. Белковая инженерия
    • 1.1 Понятие белковой инженерии. История развития
  • II. Примеры инженерных белков
    • 3.3 Некоторые достижения белковой инженерии.
  • Заключение
  • Список литературы

Тема работы: Белковая инженерия.

Ключевые слова: биотехнология, генная инженерия, белок, генетический код, ген, ДНК, РНК, АТФ, пептиды, эпитоп.

Цель курсовой работы: изучение понятия «белковая инженерия» и потенциальных возможностей её использования.

Потенциальные возможности белковой инженерии:

1. Изменив прочность связывания преобразуемого вещества - субстрата - с ферментом, можно повысить общую каталитическую эффективность ферментативной реакции.

2. Повысив стабильность белка в широком диапазоне температур и кислотности среды, можно использовать его в условиях, при которых исходный белок денатурирует и теряет свою активность.

3. Создав белки, способные функционировать в безводных растворителях, можно осуществлять каталитические реакции в нефизиологических условиях.

4. Изменив каталитический центр фермента, можно повысить его специфичность и уменьшить число нежелательных побочных реакций

5. Повысив устойчивость белка к расщепляющим его ферментам, можно упростить процедуру его очистки.

6. Изменив белок таким образом, чтобы он мог функционировать без обычного для него не аминокислотного компонента (витамина, атома металла и т.п.), можно использовать его в некоторых непрерывных технологических процессах.

7. Изменив структуру регуляторных участков фермента, можно уменьшить степень его торможения продуктом ферментативной реакции по типу отрицательной обратной связи и тем самым увеличить выход продукта.

8. Можно создать гибридный белок, обладающий функциями двух и более белков.

9. Можно создать гибридный белок, один из участков которого облегчает выход гибридного белка из культивируемой клетки или извлечение его из смеси.

Введение

С незапамятных времен биотехнология применялась преимущественно в пищевой и легкой промышленности: в виноделии, хлебопечении, сбраживании молочных продуктов, при обработке льна и кож, основанных на применении микроорганизмов. В последние десятилетия возможности биотехнологии необычайно расширились. Это связано с тем, что ее методы выгоднее обычных по той простой причине, что в живых организмах биохимические реакции, катализируемые ферментами, идут при оптимальных условиях (температуре и давлении), более производительны, экологически чисты и не требуют химических реактивов, отравляющих среду .

Объектами биотехнологии являются многочисленные представители групп живых организмов -- микроорганизмы (вирусы, бактерии, простейшие, дрожжевые грибы), растения, животные, а также изолированные из них клетки и субклеточные компоненты (органеллы) и даже ферменты. Биотехнология базируется на протекающих в живых системах физиолого-биохимических процессах, в результате которых осуществляются выделение энергии, синтез и расщепление продуктов метаболизма, формирование химических и структурных компонентов клетки.

Главным направлением биотехнологии является производство с помощью микроорганизмов и культивируемых эукариотических клеток биологически активных соединений (ферменты, витамины, гормоны), лекарственных препаратов (антибиотики, вакцины, сыворотки, высокоспецифичные антитела и др.), а также ценных соединений (кормовые добавки, например, незаменимые аминокислоты, кормовые белки и т. д.).

Методы генетической инженерии позволили осуществить синтез в промышленных количествах таких гормонов, как инсулин и соматотропин (гормон роста), которые необходимы для лечения генетических болезней человека.

Биотехнология решает не только конкретные задачи науки и производства. У нее есть более глобальная методологическая задача -- она расширяет и ускоряет масштабы воздействия человека на живую природу и способствует адаптации живых систем к условиям существования человека, т. е. к ноосфере. Биотехнология, таким образом, выступает в роли мощного фактора антропогенной адаптивной эволюции.

У биотехнологии, генетической и клеточной инженерии многообещающие перспективы. При появлении все новых и новых векторов человек с их помощью будет внедрять нужные гены в клетки растений, животных и человека. Это позволит постепенно избавиться от многих наследственных болезней человека, заставить клетки синтезировать необходимые лекарства и биологически активные соединения, а затем -- непосредственно белки и незаменимые аминокислоты, употребляемые в пищу. Используя методы, уже освоенные природой, биотехнологи надеются получать с помощью фотосинтеза водород -- самое экологически чистое топливо будущего, электроэнергию, превращать в аммиак атмосферный азот при обычных условиях .

Физические и химические свойства природных белков часто не удовлетворяют условиям, в которых эти белки будут использоваться человеком. Требуется изменение его первичной структуры, которое обеспечит формирование белка с иной, чем прежде, пространственной структурой и новыми физико-химическими свойствами, позволяющими и в иных условиях выполнять присущие природному белку функции. Конструированием белков занимается белковая инженерия .

Еще одной областью применения белковой инженерии является создание белков, способных нейтрализовать вещества и микроорганизмы, которые могут быть использованы для химических и биологических атак. Например, ферменты гидролазы способны обезвреживать как нервнопаралитические газы, так и используемые в сельском хозяйстве пестициды. При этом производство, хранение и использование ферментов не опасно для окружающей среды и здоровья людей.

Для получения измененного белка используют методы комбинаторной химии и осуществляют направленный мутагенез - внесение специфических изменений в кодирующие последовательности ДНК, приводящие к определенным изменениям в аминокислотных последовательностях. Для эффективного конструирования белка с заданными свойствами необходимо знать закономерности формирования пространственной структуры белка, от которой зависят его физико-химические свойства и функции, то есть необходимо знать, как первичная структура белка, каждый его аминокислотный остаток влияет на свойства и функции белка. К сожалению, для большинства белков неизвестна третичная структура, не всегда бывает известно, какую именно аминокислоту или последовательность аминокислот нужно изменить, чтобы получить белок с нужными свойствами. Уже сейчас ученые с помощью компьютерного анализа могут предсказывать свойства многих белков, исходя из последовательности их аминокислотных остатков. Подобный анализ значительно упростит процедуру создания нужных белков. Пока же для того, чтобы получить измененный белок с нужными свойствами, идут в основном иным путем: получают несколько мутантных генов и находят тот белковый продукт одного из них, который обладает нужными свойствами.

Для направленного мутагенеза используют разные экспериментальные подходы. Получив измененный ген, его встраивают в генетическую конструкцию и вводят ее в прокариотические или эукариотические клетки, осуществляющие синтез белка, кодируемого этой генетической конструкцией .

I. Белковая инженерия

1.1 Понятие белковой инженерии. История развития

Белковая инженерия (англ. Protein engineering) -- раздел биотехнологии, который занимается разработкой полезных или ценных белков. Это относительно новая дисциплина, которая направлена на исследование фолдинга белков и принципов модификации и создания белков.

Существуют две основные стратегии для белковой инженерии: направленная модификация белка и направленная эволюция. Эти методы не являются взаимоисключающими; исследователи часто применяют оба. В будущем, более детальное знание структуры и функции белков, а также достижения в области высоких технологий, может значительно расширить возможности белковой инженерии. В итоге, даже неприродные аминокислоты могут быть включены благодаря новому методу, который позволяет включать новые аминокислоты в генетический код .

Белковая инженерия зародилась на стыке физики и химии белка и генетической инженерии. Она решает задачу создания модифицированных или гибридных молекул белков с заданными характеристиками. Естественным путем реализации такой задачи является предсказание структуры гена, кодирующего измененный белок, осуществление его синтеза, клонирования и экспрессии в реципиентных клетках .

Первая контролируемая модификация белка была проведена в середине 60-х годов Кошландом и Бендером. Для замены гидроксильной группы на сульфгидрильную в активном центре протеазы -- субтилизина они применили метод химической модификации. Однако, как выяснилось, такой тиолсубтилизин не сохраняет протеазную активность.

Белок в химическом отношении представляет собой однотипную молекулу, которая является полиаминокислотной цепочкой или полимером. Составлен он из аминокислотных последовательностей 20 типов. Узнав строение белков, люди задались вопросом: можно ли спроектировать абсолютно новые аминокислотные последовательности, чтобы они выполняли нужные человеку функции гораздо лучше, чем обычные белки? Для данной идеи подошло название Белковая инженерия .

О такой инженерии стали задумываться ещё в 50-е годы XX столетия. Случилось это сразу же после расшифровки первых белковых аминокислотных последовательностей. Во многих лабораториях мира начали делать попытки дублировать природу и синтезировать химическим путём заданные абсолютно произвольно полиаминокислотные последовательности.

Больше всех в этом преуспел химик Б. Меррифилд. Этому американцу удалось разработать чрезвычайно эффективный метод синтеза полиаминокислотных цепей. За это Меррифилду в 1984 году присудили Нобелевскую премию по химии.

Рисунок 1. Схема функционирования белковой инженерии

Американец начал синтезировать короткие пептиды, включая гормоны. При этом построил автомат - «химического робота» - в задачу которого входило производит искусственные белки. Робот вызвал сенсацию в научных кругах. Однако скоро выяснилось, что его продукция не может конкурировать с тем, что производит природа.

Робот не мог в точности воспроизводить аминокислотные последовательности, то есть ошибался. Он синтезировал одну цепь с одной последовательностью, а другую уже с немного изменённой. В клетке же все молекулы одного белка идеально похожи друг на друга, то есть их последовательности абсолютно одинаковые.

Была и другая проблема. Даже те молекулы, которые робот синтезировал правильно, не принимали ту пространственную форму, которая необходима для функционирования фермента. Таким образом, попытка подменить природу обычными методами органической химии привела к весьма скромному успеху.

Учёным оставалось учиться у природы, выискивая нужные модификации белков. Тут дело в том, что в природе постоянно идут мутации, ведущие к изменению аминокислотных последовательностей белков. Если отобрать мутантов с необходимыми свойствами, более эффективно перерабатывающих тот или иной субстрат, то можно выделить из такого мутанта измененный фермент, благодаря которому клетка приобретает новые свойства. Но данный процесс занимает очень большой период времени.

Все изменилось тогда, когда появилась генная инженерия. Благодаря ей, стали создавать искусственные гены с любой последовательностью нуклеотидов. Эти гены встраивали в приготовленные молекулы-векторы и внедряли эти ДНК в бактерии или дрожжи. Там с искусственного гена снималась копия РНК. В результате этого вырабатывался нужный белок. Ошибки в его синтезе исключались. Главное, надо было подобрать нужную последовательность ДНК, а дальше уже ферментная система клетки сама безупречно делала своё дело. Таким образом, можно заключить, что генная инженерия открыла путь белковой инженерии в самой радикальной форме .

1.2 Стратегии белковой инженерии

Направленная модификация белка. При направленной модификации белка ученый использует детальное знание структуры и функции белка, чтобы внести нужные изменения. Как правило, этот метод имеет то преимущество, что он недорогой и технически несложный, так как техника сайт-направленного мутагенеза хорошо развита. Однако, его основным недостатком является то, что сведения о подробной структуре белка часто отсутствуют, и даже когда структура известна, может быть очень трудно предсказать влияние различных мутаций.

Программные алгоритмы модификации белка стремятся к выявлению новых аминокислотных последовательностей, которые требуют мало энергии для формирования предопределенной целевой структуры. В то время как последовательность, которая должно быть найдена, велика, наиболее сложным требованием для модификации белка является быстрый, но точный, способ для выявления и определения оптимальной последовательности, в отличие ее от аналогичных субоптимальных последовательностей .

Направленная эволюция. В направленной эволюции случайный мутагенез применяется к белку и селекция идет так, чтобы выбрать варианты, которые имеют определенные качества. Далее применяются еще раунды мутации и селекции. Этот метод имитирует естественную эволюцию и в целом позволяет получить превосходные результаты для направленной модификации.

Дополнительный метод, известный как ДНК-перетасовки, смешивает и выявляет части удачных вариантов для получения лучших результатов. Этот процесс имитирует рекомбинации, которые происходят естественно во время полового размножения. Преимуществом направленной эволюции является то, что она не требует предварительных знаний о структуре белка, да и не нужно, чтобы иметь возможность прогнозировать, какое влияние данная мутация будет иметь. В самом деле, результаты экспериментов направленной эволюции удивляют, поскольку желаемые изменения часто бывают вызваны мутациями, которые не должны были иметь такой эффект. Недостатком является то, что этот метод требует высокой пропускной способности, который не представляется возможным для всех белков. Большое количество рекомбинантной ДНК должно быть мутированным и необходимо провести скрининг продуктов на выявление желаемого качества. Огромное количество вариантов часто требует покупки робототехники для автоматизации процесса. Кроме того, не всегда легко провести скрининг на выявление всех интересующих качеств .

II. Примеры инженерных белков

Белковая инженерия может быть основана на химической модификации готового белка или на методах генетической инженерии, позволяющих получать модифицированные варианты природных белков .

Конструирование определенного биологического катализатора ведется с учетом как специфичности белка, так и каталитической активности металлоорганического комплекса. Вот примеры такой модификации, проведенной для получения «полусинтетических биоорганических комплексов». Миоглобин кашалота способен связывать кислород, но не обладает биокаталитической активностью. В результате объединения этой биомолекулы с тремя электрон-переносящими комплексами, содержащими рутений, которые связываются с остатками гистидина на поверхности молекул белка, образуется комплекс, способный восстанавливать кислород при одновременном окислении ряда органических субстратов, например аскорбата, со скоростью почти такой же, как для природной аскорбатоксидазы. В принципе белки можно модифицировать и другими способами. Рассмотрим, например, папаин. Он относится к числу хорошо изученных протеолитических ферментов, для которого определена трехмерная структура. Поблизости от остатка цистеина-25 на поверхности белковой молекулы располагается протяженный желобок, в котором протекает реакция протеолиза. Этот участок может быть алкилирован производным флавина без изменения доступности участка связывания потенциальных субстратов. Такие модифицированные флавопапаины использовались для окисления М-алкил-1,4-дигидроникотинамидов, и каталитическая активность некоторых из этих модифицированных белков была существенно выше, чем у природных флавопротеин-NADH-дегидрогеназ. Таким образом удалось создать очень эффективный полусинтетический фермент. Использование флавинов с высокоактивными, находящимися в определенном положении электрон-оттягивающими заместителями, возможно, позволит разработать эффективные катализаторы для восстановления никотин-амида.

Крупные успехи, достигнутые за последнее время в химическом синтезе ДНК, открыли перед белковой инженерией принципиально новые возможности: конструирование уникальных, не встречающихся в природе белков. Для этого необходимо и дальнейшее развитие технологии, так чтобы изменение генов методами генетической инженерии приводило к предсказуемым изменениям белков, к улучшению вполне определенных функциональных их характеристик: числа оборотов, Км для конкретного субстрата, термостабильности, температурного оптимума, стабильности и активности в неводных растворителях, субстратной и реакционной специфичности, потребности в кофакторах, оптимуме рН, устойчивости к протеазам, аллостерической регуляции, молекулярной массы и субъединичного строения. Обычно такого улучшения достигали с помощью мутагенеза и отбора, а в последнее время -- путем химической модификации и иммобилизации. Для успешного конструирования конкретного типа молекул белка необходимо выявить ряд основополагающих закономерностей, связывающих структурные особенности белков и их желаемые свойства. Так, зная точную кристаллическую структуру молекулы изучаемого белка, можно идентифицировать те ее участки, которые следует направленно модифицировать для увеличения его каталитической активности. Такая модификация может состоять в изменении аминокислотной последовательности белка .

Ещё одним примером может служить осуществление сайт-специфического мутагенеза. Он происходит следующим образом. Клонируют ген того белка, который интересует исследователя, и встраивают его в подходящий генетический носитель. Затем синтезируют олигонуклеотидную затравку с желаемой мутацией, последовательность которой из десяти -- пятнадцати нуклеотидов в достаточной степени гомологична определенному участку природного гена и поэтому способна образовывать с ним гибридную структуру. Эта синтетическая затравка используется полимеразами для начала синтеза комплементарной копии вектора, которую затем отделяют от оригинала и используют для контролируемого синтеза мутантного белка. Альтернативный подход основан на расщеплении цепи, удалении подлежащего изменению сайта и замещении его синтетическим аналогом с желаемой последовательностью нуклеотидов.

Тирозил-тРНК--синтетаза катализирует реакцию аминоацилирования тирозиновой тРНК, которая включает активирование тирозина с помощью АТР с образованием тирозиладенилата. Ген этого фермента, выделенный из Bacillus stearothermophilus, был встроен в бактериофаг М13. Затем каталитические свойства фермента, особенно его способность связывать субстрат, были изменены путем сайт-специфической модификации. Так, треонин-51 был заменен на аланин. Это привело к двукратному увеличению связывания субстрата, видимо, из-за невозможности образования водородной связи между этим остатком и тирозил-аденилатом. При замене аланина пролином нарушается конфигурация молекулы фермента, но способность к связыванию субстрата увеличивается в сто раз, так как облегчается его взаимодействие с гистидином-48. Сходные сайт-специфичные изменения, были получены в р-лактамазе, и обычно они сопровождались инактивацией фермента. Замена серина-70 на цистеин приводит к образованию р-тиоллактамазы, константа связывания у которой не отличается от таковой для природного фермента, но активность по отношению к пенициллину составляет всего 1-2%. Тем не менее активность этого мутантного фермента в отношении некоторых активированных цефалоспоринов не меньше исходной активности или даже превышает ее; эти белки также более устойчивы к действию протеаз.

Мутации, вызываемые путем сайт-специфичного воздействия, используют сегодня для проверки адекватности результатов структурных исследований. В некоторых случаях с их помощью удалось показать, что структурная стабильность белка и его каталитическая активность могут быть разобщены. Накопилось достаточное количество информации о взаимосвязи между стабильностью структуры белка и его функцией, мы, возможно, сумеем осуществлять тонкую регуляцию активности биологических катализаторов и создавать полностью синтетические их аналоги. Недавно появилась работа, в которой сообщалось о клонировании первого синтетического гена фермента, кодирующего активный фрагмент молекулы рибонуклеазы .

III. Применение белковой инженерии

Технология белковой инженерии используется (часто - в сочетании с методом рекомбинантных ДНК) для улучшения свойств существующих белков (ферментов, антител, клеточных рецепторов) и создания новых, не существующих в природе протеинов. Такие белки применяются для создания лекарственных препаратов, при обработке пищевых продуктов и в промышленном производстве .

В настоящее время наиболее популярной областью применения белковой инженерии является изменение каталитических свойств ферментов для разработки «экологически дружественных» промышленных процессов. С точки зрения охраны окружающей среды ферменты являются наиболее приемлемыми из всех катализаторов, используемых в промышленности. Это обеспечивается способностью биокатализаторов растворяться в воде и полноценно функционировать в среде с нейтральным рН и при сравнительно низких температурах. Кроме того, благодаря их высокой специфичности, в результате применения биокатализаторов образуется совсем немного нежелательных побочных продуктов производства. Экологически чистые и энергосберегающие промышленные процессы, использующие биокатализаторы, уже давно активно внедряются химической, текстильной, фармацевтической, целлюлозно-бумажной, пищевой, энергетической и других областях современной промышленности.

Однако некоторые характеристики биокатализаторов делают их использование в ряде случаев неприемлемым. Например, большинство ферментов распадается при повышении температуры. Ученые пытаются преодолеть подобные препятствия и увеличить стабильность ферментов в суровых условиях производства с помощью методов белковой инженерии .

Кроме промышленного применения, белковая инженерия нашла себе достойное место и в медицинских разработках. Исследователи синтезируют белки, способные связываться с вирусами и мутантными генами, вызывающими опухоли, и обезвреживать их; создают высокоэффективные вакцины и изучают белки-рецепторы клеточной поверхности, которые часто являются мишенями для фармацевтических препаратов. Ученые, занимающиеся усовершенствованием продуктов питания, используют белковую инженерию для улучшения качеств белков, обеспечивающих сохранность продуктов растительного происхождения, а также желирующих веществ или загустителей.

3.1 Библиотеки пептидов и эпитопов

В живом организме большинство биологических процессов управляется посредством специфических белок-белковых или белково-нуклеиновых взаимодействий. К таким процессам относятся, например регуляция транскрипции генов под действием различных белковых факторов, взаимодействие белковых лигандов с рецепторами на поверхности клеток, а также специфическое связывание антигенов соответствующими антителами. Понимание молекулярных механизмов взаимодействия белковых лигандов с рецепторами имеет большое фундаментальное и прикладное значение. В частности, разработка новых лекарственных препаратов белковой природы обычно начинается с идентификации исходной последовательности аминокислот, обладающей требуемой биологической активностью (так называемая "основная" (lead) последовательность). Однако пептиды с основной последовательностью аминокислот могут обладать и нежелательными биологическими свойствами: низкой активностью, токсичностью, малой стабильностью в организме и т.п.

До появления библиотек пептидов улучшение их биологических свойств осуществляли путем последовательного синтеза большого числа аналогов и проверкой их биологической активности, что требовало больших затрат времени и средств. В последние годы появилась возможность с помощью автоматических синтезаторов создавать за короткое время тысячи различных пептидов. Разработанные методы направленного мутагенеза также позволили резко расширить число белков, получаемых одновременно и последовательно тестируемых на биологическую активность. Однако только недавно разработанные подходы к созданию библиотек пептидов привели к получению миллионов последовательностей аминокислот, требуемых для проведения эффективного скрининга с целью выявления среди них пептидов, максимально удовлетворяющих предъявляемым критериям. Такие библиотеки используются для исследования взаимодействия антител с антигенами, получения новых ингибиторов ферментов и антимикробных агентов, конструирования молекул, обладающих требуемой биологической активностью, или придания новых свойств белкам, например антителам .

По способам получения библиотеки пептидов разделяются на три группы. К первой группе можно отнести библиотеки, полученные с использованием химического синтеза пептидов, в которых индивидуальные пептиды иммобилизованы на микроносителях. При таком подходе после присоединения очередных аминокислот в индивидуальных реакционных смесях к пептидам, иммобилизованным на микроносителях, содержимое всех реакционных смесей объединяют и разделяют на новые порции, которые используют на следующей стадии присоединения новых аминокислотных остатков. После проведения ряда таких этапов оказываются синтезированными пептиды, содержащие последовательности использованных в синтезе аминокислот во всевозможных случайных сочетаниях.

Библиотеки пептидов, иммобилизованных на микроносителях, обладают существенным недостатком: они требуют при скрининге использования очищенных рецепторов, находящихся в растворимой форме. В то же время в большинстве случаев при биологических испытаниях, проводящихся для фундаментальных и фармакологических исследований, чаще всего находят применение рецепторы, ассоциированные с мембранами. По второму способу библиотеки пептидов получают с помощью твердофазного синтеза пептидов, при котором на каждой стадии химического присоединения очередной аминокислоты к растущим пептидным цепям используют эквимолярные смеси всех или некоторых аминокислот-предшественников. На конечной стадии синтеза проводят отделение пептидов от носителя, т.е. перевод их в растворимую форму. Третий подход к конструированию библиотек пептидов, к описанию которого мы сейчас переходим, стал реальным именно благодаря развитию методов генной инженерии. Он прекрасно иллюстрирует возможности таких методов и, несомненно, является крупным достижением в их применении. В этой связи рассмотрим более подробно результаты использования библиотек пептидов в исследовании эпитопов (антигенных детерминант) белков .

Генно-инженерная технология получения гибридных белков позволила разработать эффективный метод наработки коротких пептидов для анализа их биологической активности. Как и в случае клонотек генов, библиотеки пептидов, полученные генно-инженерными методами, представляют собой большой (часто исчерпывающий) набор коротких пептидов. Два недавно сделанных наблюдения позволяют рассматривать библиотеку пептидов одновременно и в качестве библиотеки эпитопов белков. Во-первых, короткие пептиды могут включать все основные остатки аминокислот, играющие главную роль во взаимодействии с антителами, и они в состоянии имитировать крупные антигенные детерминанты белков. Во-вторых, в большинстве случаев нековалентные связи, образуемые между немногими наиболее важными остатками аминокислот белковых лигандов и их рецепторами, вносят основной вклад в общую энергию взаимодействия лиганд-рецептор. С учетом этого любой пептид можно рассматривать как потенциальный лиганд, гаптен или часть антигенной детерминанты более крупных полипептидов, а любую библиотеку пептидов - как библиотеку эпитопов белков или потенциальных лигандов для соответствующих белковых рецепторов.

Библиотека пептидов, полученная в результате реализации третьего подхода, в современном виде представляет собой набор десятков или даже сотен миллионов коротких различающихся последовательностей аминокислот, которые экспрессированы на поверхности вирионов бактериофагов в составе их собственных структурных белков. Это становится возможным благодаря введению методами генной инженерии в геном бактериофагов гибридных рекомбинантных генов, кодирующих измененные структурные белки его вирионов. (Данный метод известен под названием фагового дисплея.) В результате экспрессии таких генов образуются гибридные белки, на N- или С-концах которых присутствуют дополнительные последовательности аминокислот.

Библиотеки пептидов и эпитопов найдут свое применение и в исследованиях механизмов гуморального иммунного ответа, а также заболеваний иммунной системы. В частности, большинство аутоиммунных заболеваний сопровождается образованием аутоантител против антигенов собственного организма. Эти антитела во многих случаях служат специфическими маркерами того или иного аутоиммунного заболевания. С использованием библиотеки эпитопов, в принципе, можно получить пептидные маркеры, с помощью которых было бы возможно следить за специфичностью аутоантител во время развития патологического процесса как в индивидуальном организме, так и в группе пациентов и, кроме того, определять специфичность аутоантител при заболеваниях неизвестной этиологии.

Библиотеки пептидов и эпитопов потенциально могут быть использованы также для скрининга иммунных сывороток с целью выявления пептидов, специфически взаимодействующих с защитными антителами. Такие пептиды будут имитировать антигенные детерминанты патогенных организмов и служить мишенями для защитных антител организма. Это позволит использовать подобные пептиды для вакцинации пациентов, у которых отсутствуют антитела против соответствующих патогенов. Изучение эпитопов с помощью библиотек пептидов является частным случаем одного из многочисленных направлений их использования в прикладных и фундаментальных исследованиях взаимодействия лигандов и рецепторов. Дальнейшее усовершенствование этого подхода должно способствовать созданию новых лекарственных препаратов на основе коротких пептидов и быть полезным в фундаментальных исследованиях механизмов белок-белковых взаимодействий .

3.2 Белки-репортеры в гибридных белках

В другом случае гибридные белки применяют для получения высокого уровня экспрессии коротких пептидов в бактериальных клетках благодаря стабилизации этих пептидов в составе гибридных белков. Часто гибридные белки используют для идентификации и очистки трудноопределяемых рекомбинантных белков. Например, присоединив к С-концу исследуемого белка в качестве белка-репортера галактозидазу, можно производить очистку рекомбинантного белка по активности галактозидазы, определяя ее антигенные детерминанты иммунохимическими методами. Соединяя фрагменты ДНК, содержащие открытые рамки считывания (ОРС), с генами белков-репортеров, можно очистить такие гибридные белки по активности белка-репортера и использовать их для иммунизации лабораторных животных. Полученные антитела далее применяют для очистки нативного белка, в состав которого входит рекомбинантный полипептид, кодируемый ОРС, и тем самым идентифицируют клонированный фрагмент гена .

С помощью гибридных белков решают и обратную задачу клонирования неизвестного гена, к белковому продукту которого имеются антитела. В таком случае конструируют клонотеку последовательностей нуклеотидов, представляющих ОРС неизвестных генов, в векторах, которые позволяют соединять клонируемую ОРС в одной рамке считывания с геном-репортером. Образующиеся в результате экспрессии этих рекомбинантных генов гибридные белки идентифицируются с помощью антител иммуноферментными методами. Гибридные гены, объединяющие секретируемые белки и белки-репортеры, дают возможность по-новому исследовать механизмы секреции, а также локализацию и перемещение в тканях секретируемых белков .

3.3 Некоторые достижения белковой инженерии

1. Заменив несколько аминокислотных остатков лизоцима бактериофага Т4 на цистеин получен фермент с большим числом дисульфидных связей, благодаря чему этот фермент сохранил свою активность при более высокой температуре.

2. Замена остатка цистеина на остаток серина в молекуле р-интерферона человека, синтезируемого кишечной палочкой, предотвращала образование межмолекулярных комплексов, при котором примерно в 10 раз уменьшалась противовирусная активность этого лекарственного средства.

3. Замена остатка треонина на остаток пролина в молекуле фермента тирозил-тРНК-синтетазы повысило каталитическую активность этого фермента в десятки раз: он стал быстрее присоединять тирозин к тРНК, переносящей эту аминокислоту в рибосому в ходе трансляции.

4. Субтилизины - богатые серином ферменты, расщепляющие белки. Они секретируются многими бактериями и широко используются человеком для биодеградации. Они прочно связывают атомы кальция, повышающие их стабильность. Однако в промышленных процессах присутствуют химические соединения, которые связывают кальций, после чего субтилизины теряют свою активность. Изменив ген, ученые удалили из фермента аминокислоты, участвующие в связывании кальция, и заменили одну аминокислоту на другую с целью повышения стабильности субтилизина. Измененный фермент оказался стабильным и функционально активным в условиях, близких к промышленным.

5. Была показана возможность создания фермента, функционирующего по типу рестриктаз, расщепляющих ДНК в строго определенных местах. Ученые создали гибридный белок, один фрагмент которого узнавал определенную последовательность нуклеотидных остатков в молекуле ДНК, а другой расщеплял ДНК в этом участке.

6. Активатор тканевого плазминогена - фермент, который используют в клинике для растворения сгустков крови. К сожалению, он быстро выводится из системы кровообращения и его приходится вводить повторно или в больших дозах, что приводит к побочным эффектам. Внеся три направленные мутации в ген этого фермента, получили долгоживущий фермент, обладающий повышенным сродством к разрушаемому фибрину и с такой же фибринолитической активностью, как у исходного фермента.

7. Произведя замену одной аминокислоты в молекуле инсулина, ученые добились того, что при подкожном введении этого гормона больным, страдающим диабетом, изменение концентрации этого гормона в крови было близко к физиологическому, возникающему после приема пищи.

8. Существует три класса интерферонов, обладающих противовирусной и противораковой активностью, но проявляющих разную специфичность. Заманчиво было создать гибридный интерферон, обладающий свойствами интерферонов трех типов. Были созданы гибридные гены, включающие в себя фрагменты природных генов интерферонов нескольких типов. Часть этих генов, будучи встроенными в бактериальные клетки, обеспечивали синтез гибридных интерферонов с большей, чем у родительских молекул, противораковой активностью.

9. Природный гормон роста человека связывается не только с рецептором этого гормона, но и с рецептором другого гормона - пролактина. Для того, чтобы избежать нежелательных побочных эффектов в процессе лечения, ученые решили устранить возможность присоединения гормона роста к пролактиновому рецептору. Они добились этого, заменив некоторые аминокислоты в первичной структуре гормона роста с помощью генетической инженерии.

10. Разрабатывая средства против ВИЧ-инфекции, ученые получили гибридный белок, один фрагмент которого обеспечивал специфическое связывание этого белка только с пораженными вирусом лимфоцитами, другой фрагмент осуществлял проникновение гибридного белка внутрь пораженной клетки, а еще один фрагмент нарушал синтез белка в пораженной клетке, что приводило к ее гибели.

Белки являются основной мишенью для лекарственных средств. Сейчас известно около 500 мишеней для действия лекарств. В ближайшие годы их число возрастет до 10 000, что позволит создать новые, более эффективные и безопасные лекарства. В последнее время разрабатываются принципиально новые подходы поиска лекарственных средств: в качестве мишеней рассматриваются не одиночные белки, а их комплексы, белок -белковые взаимодействия и фолдинг белков .

Заключение

Технология белковой инженерии используется (часто - в сочетании с методом рекомбинантных ДНК) для улучшения свойств существующих белков (ферментов, антител, клеточных рецепторов) и создания новых, не существующих в природе протеинов. Такие белки применяются для создания лекарственных препаратов, при обработке пищевых продуктов и в промышленном производстве.

В настоящее время наиболее популярной областью применения белковой инженерии является изменение каталитических свойств ферментов для разработки «экологически дружественных» промышленных процессов. С точки зрения охраны окружающей среды ферменты являются наиболее приемлемыми из всех катализаторов, используемых в промышленности. Это обеспечивается способностью биокатализаторов растворяться в воде и полноценно функционировать в среде с нейтральным рН и при сравнительно низких температурах. Кроме того, благодаря их высокой специфичности, в результате применения биокатализаторов образуется совсем немного нежелательных побочных продуктов производства. Экологически чистые и энергосберегающие промышленные процессы, использующие биокатализаторы, уже давно активно внедряются химической, текстильной, фармацевтической, целлюлозно-бумажной, пищевой, энергетической и других областях современной промышленности.

Однако некоторые характеристики биокатализаторов делают их использование в ряде случаев неприемлемым. Например, большинство ферментов распадается при повышении температуры. Ученые пытаются преодолеть подобные препятствия и увеличить стабильность ферментов в суровых условиях производства с помощью методов белковой инженерии.

Кроме промышленного применения, белковая инженерия нашла себе достойное место и в медицинских разработках. Исследователи синтезируют белки, способные связываться с вирусами и мутантными генами, вызывающими опухоли, и обезвреживать их; создают высокоэффективные вакцины и изучают белки-рецепторы клеточной поверхности, которые часто являются мишенями для фармацевтических препаратов. Ученые, занимающиеся усовершенствованием продуктов питания, используют белковую инженерию для улучшения качеств белков, обеспечивающих сохранность продуктов растительного происхождения, а также желирующих веществ или загустителей.

Еще одной областью применения белковой инженерии является создание белков, способных нейтрализовать вещества и микроорганизмы, которые могут быть использованы для химических и биологических атак. Например, ферменты гидролазы способны обезвреживать как нервнопаралитические газы, так и используемые в сельском хозяйстве пестициды. При этом производство, хранение и использование ферментов не опасно для окружающей среды и здоровья людей .

белок инженерия мутагенез модифицированный

Список литературы

1. Белковая инженерия.

2. Белковая инженерия. Загадки генетики. /Вячеслав Маркин // Тайны, загадки, факты.

3. Белковая инженерия. // Большая Российская энциклопедия.

4. Белковая инженерия. // Справочник химика 21.

5. Белковая инженерия и эффективность лекарств.

6. Белковая инженерия. / А.И. Корнелюк // Biopolymers and Cell.

7. Белковая инженерия повысит эффективность лекарств. // Популярная механика.

8. Белковая инженерия. Получение инсулина. // Биофайл - научно-информационный журнал.

9. Биотехнология. Основные направления и достижения. // Биология для абитуриентов и учителей.

10. Богданов А.А., Медников Б.М. Власть над геном / А. А. Богданов, Б.М. Медников - М.: Просвещение, 1989 - с.208

11. Генная инженерия. // Здравие.

12. Гены и химики. // Генетика.

13. Глик Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение / Б. Глик, Дж. Пастернак. -- М.: Мир, 2002.

14. Другие области применения генной инженерии. / Л.В. Тимощенко, М.В. Чубик // Медицина - новости и технологии.

15. Егорова Т.А., Клунова С.М., Живухин Е.А. Основы биотехнологии. / Т.А. Егорова, С.М. Клунова, Е.А. Живухин -- М., 2003.

16. Инженерия белка. // Химия и биотехнология.

17. Патрушев Л.И. Экспрессия генов/ Л.И. Патрушев - М.: Наука, 2000. - 496с.

18. Патрушев Л.И. Искусственные генетические системы. Т. 1: Генная и белковая инженерия. /Л.И. Патрушев - М.: Наука, 2004. - 526 с.

19. Рыбчин В.Н. Основы генетической инженерии: Учебник для вузов/В.Н. Рыбчин - СПб.: Изд-во СПбГТУ, 2002. - 522 с.

20. Степанов В.М. Молекулярная биология. Структуры и функции белков. / В.М. Степанов -- М.: Высшая Школа, 1996.

21. Технологии биотехнологии: белковая инженерия, нанобиотехнология, биосенсоры и биочипы. / Евгения Рябцева // «Коммерческая биотехнология» - интернет-журнал.

22. Чернавский Д.С., Чернавская Н.М. Белок--машина. Биологические макромолекулярные конструкции. / Д.С. Чернавский, Н. М. Чернавская -- М.: Изд-во МГУ, 1999.

23. Шульц Г.Е., Ширмер Р.Х. Принципы структурной организации белков. / Г.Е. Шульц, Р.Х. Ширмер -- М.: Мир, 1982.

24. Brannigan J.А., Wilkinson А.J. Protein engineering 20 years on // Nature Reviews. Molecular Cell Biology. 2002. Vol. 3. № 12;

25. Protein engineering. // Wikipedia, the free encyclopedia.

Размещено на Allbest.ru

Подобные документы

    Суть и задачи генной инженерии, история ее развития. Цели создания генетически модифицированных организмов. Химическое загрязнение как следствие ГМО. Получение человеческого инсулина как важнейшее достижение в сфере генно-модифицированных организмов.

    реферат , добавлен 18.04.2013

    Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат , добавлен 23.07.2008

    Возможности генной инженерии растений. Создание гербицидоустойчивых растений. Повышение эффективности фотосинтеза, биологической азотфиксации. Улучшение качества запасных белков. Экологические, медицинские и социально-экономические риски генной инженерии.

    контрольная работа , добавлен 15.12.2011

    Сущность генетической инженерии, методы идентификации трансгенных организмов; получение и технология ГМО, отличие от традиционной селекции, преимущества и недостатки. Состояние и перспективны развития рынка генетически модифицированных товаров в мире.

    курсовая работа , добавлен 20.11.2010

    Генная инженерия - метод биотехнологии, который занимается исследованиями по перестройке генотипов. Возможности генной инженерии. Перспективы генной инженерии. Уменьшение риска, связанного с генными технологиями.

    реферат , добавлен 04.09.2007

    Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа , добавлен 11.07.2012

    Последовательность приемов генетической инженерии, используемая при создании генетически модифицированных организмов. Классификация основных типов рестриктаз, используемых для фрагментации ДНК. Ферменты, синтезирующие ДНК на матрице ДНК или РНК.

    презентация , добавлен 27.04.2014

    Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.

    презентация , добавлен 26.01.2014

    курсовая работа , добавлен 10.05.2011

    Основы и техника клонирования ДНК. Этапы генной инженерии бактерий. Развитие генетической инженерии растений. Генетическая трансформация и улучшение растений с помощью агробактерий, источники генов. Безопасность генетически модифицированных растений.

Технология белковой инженерии используется (часто - в сочетании с методом рекомбинантных ДНК) для улучшения свойств существующих белков (ферментов, антител, клеточных рецепторов) и создания новых, не существующих в природе протеинов. Такие белки применяются для создания лекарственных препаратов, при обработке пищевых продуктов и в промышленном производстве .

В настоящее время наиболее популярной областью применения белковой инженерии является изменение каталитических свойств ферментов для разработки «экологически дружественных» промышленных процессов. С точки зрения охраны окружающей среды ферменты являются наиболее приемлемыми из всех катализаторов, используемых в промышленности. Это обеспечивается способностью биокатализаторов растворяться в воде и полноценно функционировать в среде с нейтральным рН и при сравнительно низких температурах. Кроме того, благодаря их высокой специфичности, в результате применения биокатализаторов образуется совсем немного нежелательных побочных продуктов производства. Экологически чистые и энергосберегающие промышленные процессы, использующие биокатализаторы, уже давно активно внедряются химической, текстильной, фармацевтической, целлюлозно-бумажной, пищевой, энергетической и других областях современной промышленности.

Однако некоторые характеристики биокатализаторов делают их использование в ряде случаев неприемлемым. Например, большинство ферментов распадается при повышении температуры. Ученые пытаются преодолеть подобные препятствия и увеличить стабильность ферментов в суровых условиях производства с помощью методов белковой инженерии .

Кроме промышленного применения, белковая инженерия нашла себе достойное место и в медицинских разработках. Исследователи синтезируют белки, способные связываться с вирусами и мутантными генами, вызывающими опухоли, и обезвреживать их; создают высокоэффективные вакцины и изучают белки-рецепторы клеточной поверхности, которые часто являются мишенями для фармацевтических препаратов. Ученые, занимающиеся усовершенствованием продуктов питания, используют белковую инженерию для улучшения качеств белков, обеспечивающих сохранность продуктов растительного происхождения, а также желирующих веществ или загустителей.

Еще одной областью применения белковой инженерии является создание белков, способных нейтрализовать вещества и микроорганизмы, которые могут быть использованы для химических и биологических атак. Например, ферменты гидролазы способны обезвреживать как нервнопаралитические газы, так и используемые в сельском хозяйстве пестициды. При этом производство, хранение и использование ферментов не опасно для окружающей среды и здоровья людей .

Библиотеки пептидов и эпитопов

В живом организме большинство биологических процессов управляется посредством специфических белок-белковых или белково-нуклеиновых взаимодействий. К таким процессам относятся, например регуляция транскрипции генов под действием различных белковых факторов, взаимодействие белковых лигандов с рецепторами на поверхности клеток, а также специфическое связывание антигенов соответствующими антителами. Понимание молекулярных механизмов взаимодействия белковых лигандов с рецепторами имеет большое фундаментальное и прикладное значение. В частности, разработка новых лекарственных препаратов белковой природы обычно начинается с идентификации исходной последовательности аминокислот, обладающей требуемой биологической активностью (так называемая "основная" (lead) последовательность). Однако пептиды с основной последовательностью аминокислот могут обладать и нежелательными биологическими свойствами: низкой активностью, токсичностью, малой стабильностью в организме и т.п.

До появления библиотек пептидов улучшение их биологических свойств осуществляли путем последовательного синтеза большого числа аналогов и проверкой их биологической активности, что требовало больших затрат времени и средств. В последние годы появилась возможность с помощью автоматических синтезаторов создавать за короткое время тысячи различных пептидов. Разработанные методы направленного мутагенеза также позволили резко расширить число белков, получаемых одновременно и последовательно тестируемых на биологическую активность. Однако только недавно разработанные подходы к созданию библиотек пептидов привели к получению миллионов последовательностей аминокислот, требуемых для проведения эффективного скрининга с целью выявления среди них пептидов, максимально удовлетворяющих предъявляемым критериям. Такие библиотеки используются для исследования взаимодействия антител с антигенами, получения новых ингибиторов ферментов и антимикробных агентов, конструирования молекул, обладающих требуемой биологической активностью, или придания новых свойств белкам, например антителам .

По способам получения библиотеки пептидов разделяются на три группы. К первой группе можно отнести библиотеки, полученные с использованием химического синтеза пептидов, в которых индивидуальные пептиды иммобилизованы на микроносителях. При таком подходе после присоединения очередных аминокислот в индивидуальных реакционных смесях к пептидам, иммобилизованным на микроносителях, содержимое всех реакционных смесей объединяют и разделяют на новые порции, которые используют на следующей стадии присоединения новых аминокислотных остатков. После проведения ряда таких этапов оказываются синтезированными пептиды, содержащие последовательности использованных в синтезе аминокислот во всевозможных случайных сочетаниях.

Библиотеки пептидов, иммобилизованных на микроносителях, обладают существенным недостатком: они требуют при скрининге использования очищенных рецепторов, находящихся в растворимой форме. В то же время в большинстве случаев при биологических испытаниях, проводящихся для фундаментальных и фармакологических исследований, чаще всего находят применение рецепторы, ассоциированные с мембранами. По второму способу библиотеки пептидов получают с помощью твердофазного синтеза пептидов, при котором на каждой стадии химического присоединения очередной аминокислоты к растущим пептидным цепям используют эквимолярные смеси всех или некоторых аминокислот-предшественников. На конечной стадии синтеза проводят отделение пептидов от носителя, т.е. перевод их в растворимую форму. Третий подход к конструированию библиотек пептидов, к описанию которого мы сейчас переходим, стал реальным именно благодаря развитию методов генной инженерии. Он прекрасно иллюстрирует возможности таких методов и, несомненно, является крупным достижением в их применении. В этой связи рассмотрим более подробно результаты использования библиотек пептидов в исследовании эпитопов (антигенных детерминант) белков .

Генно-инженерная технология получения гибридных белков позволила разработать эффективный метод наработки коротких пептидов для анализа их биологической активности. Как и в случае клонотек генов, библиотеки пептидов, полученные генно-инженерными методами, представляют собой большой (часто исчерпывающий) набор коротких пептидов. Два недавно сделанных наблюдения позволяют рассматривать библиотеку пептидов одновременно и в качестве библиотеки эпитопов белков. Во-первых, короткие пептиды могут включать все основные остатки аминокислот, играющие главную роль во взаимодействии с антителами, и они в состоянии имитировать крупные антигенные детерминанты белков. Во-вторых, в большинстве случаев нековалентные связи, образуемые между немногими наиболее важными остатками аминокислот белковых лигандов и их рецепторами, вносят основной вклад в общую энергию взаимодействия лиганд-рецептор. С учетом этого любой пептид можно рассматривать как потенциальный лиганд, гаптен или часть антигенной детерминанты более крупных полипептидов, а любую библиотеку пептидов - как библиотеку эпитопов белков или потенциальных лигандов для соответствующих белковых рецепторов.

Библиотека пептидов, полученная в результате реализации третьего подхода, в современном виде представляет собой набор десятков или даже сотен миллионов коротких различающихся последовательностей аминокислот, которые экспрессированы на поверхности вирионов бактериофагов в составе их собственных структурных белков. Это становится возможным благодаря введению методами генной инженерии в геном бактериофагов гибридных рекомбинантных генов, кодирующих измененные структурные белки его вирионов. (Данный метод известен под названием фагового дисплея.) В результате экспрессии таких генов образуются гибридные белки, на N- или С-концах которых присутствуют дополнительные последовательности аминокислот.

Библиотеки пептидов и эпитопов найдут свое применение и в исследованиях механизмов гуморального иммунного ответа, а также заболеваний иммунной системы. В частности, большинство аутоиммунных заболеваний сопровождается образованием аутоантител против антигенов собственного организма. Эти антитела во многих случаях служат специфическими маркерами того или иного аутоиммунного заболевания. С использованием библиотеки эпитопов, в принципе, можно получить пептидные маркеры, с помощью которых было бы возможно следить за специфичностью аутоантител во время развития патологического процесса как в индивидуальном организме, так и в группе пациентов и, кроме того, определять специфичность аутоантител при заболеваниях неизвестной этиологии.

Библиотеки пептидов и эпитопов потенциально могут быть использованы также для скрининга иммунных сывороток с целью выявления пептидов, специфически взаимодействующих с защитными антителами. Такие пептиды будут имитировать антигенные детерминанты патогенных организмов и служить мишенями для защитных антител организма. Это позволит использовать подобные пептиды для вакцинации пациентов, у которых отсутствуют антитела против соответствующих патогенов. Изучение эпитопов с помощью библиотек пептидов является частным случаем одного из многочисленных направлений их использования в прикладных и фундаментальных исследованиях взаимодействия лигандов и рецепторов. Дальнейшее усовершенствование этого подхода должно способствовать созданию новых лекарственных препаратов на основе коротких пептидов и быть полезным в фундаментальных исследованиях механизмов белок-белковых взаимодействий .

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.