Программирование. Объектно-ориентированные языки

Страницы сайтов - это файлы с текстом, размеченным на языке HTML. Эти файлы, будучи загруженными посетителем на его компьютер, обрабатываются браузером и выводятся на его средство отображения (монитор, экран КПК, принтер или синтезатор речи).

Проектируемый сайт будет выполнен на языке разметки гипертекста HTML с применением каскадных таблиц стилей CSS, серверного языка программирования PHP и языка программирования JavaScript.

Основное преимущество данного web-ресурса заключается в его мобильности, так как он будет доступен из любой точки планеты, где есть возможность подключиться к сети Internet, при этом конфигурация оборудования и программного обеспечения ни имеет значения.

Проектируемый web-ресурс будет выполнен преимущественно на языках программирования PHP и JavaScript. PHP (англ. PHP: Hypertext Preprocessor - «PHP: препроцессор гипертекста»; первоначально Personal Home Page Tools - «Инструменты для создания персональных веб-страниц») - скриптовый языкпрограммирования общего назначения, интенсивно применяемый для разработки веб-приложений. В настоящее время поддерживается подавляющим большинством хостинг-провайдеров и является одним из лидеров среди языков программирования, применяющихся для создания динамических веб-сайтов. Основное преимущество PHP-скрипов это то, что они выполняются на стороне сервера и их невозможно увидеть в окне браузера или исходном коде страницы.

1.3 Выбор языка программирования

Бурно развивающийся раздел программирования, ориентированный на разработку динамических Internet-приложений. Языки веб-программирования - это соответственно языки, которые в основном предназначены для работы с интернет-технологиями. Языки веб-программирования делятся на две группы: клиентские и серверные.

Клиентские языки. Как следует из названия, программы на клиентских языках обрабатываются на стороне пользователя, как правило их выполняет браузер. Это и создает главную проблему клиентских языков - результат выполнения программы (скрипта) зависит от браузера пользователя. То есть если пользователь запретил выполнять клиентские программы, то они исполняться не будут, как бы ни желал этого программист.

Серверные языки. Когда пользователь дает запрос на какую-либо страницу (переходит на неё по ссылке или вводит адрес в адресной строке своего браузера), то вызванная страница сначала обрабатывается на сервере, то есть выполняются все программы, связанные со страницей, и только потом возвращается к посетителю по сети в виде файла. Этот файл может иметь расширения: HTML, PHP, ASP, Perl, SSI, XML, DHTML, XHTML.

Работа программ уже полностью зависима от сервера, на котором расположен сайт, и от того, какая версия того или иного языка поддерживается. Список серверных языков программирования: PHP, Perl, Python, Ruby, Любой.NET язык программирования (технология ASP.NET), Java, Groovy.

Наиболее популярные языки веб-программирования представлены на рисунке 1.1

Рисунок 1.1 Наиболее популярные языки веб-программирования

PHP (Profeshional Hypertext Preprocessor)

Язык исполняемый на стороне веб-сервера, написанный на языке C++, поэтому содержит много общего. История PHP начинается с человека по имени Rasmus Lerdorf в 1995 году, когда он создаёт простую программу на Perl, которая представляет собой скрипт по подсчёту посещения его резюме. Завоевав большую популярность скрипт требовал своей доработки и тогда появляется первая версия PHP, написанная на С – PHP/FI (Personal Home Page / Forms Interpreter), это как бы модификация Perl для работы с формами. PHP/FI просуществовал до версии 2.0 (выпуск – 1997 г.). После этого на горизонте появились два студента Израильского университета: Andi Gutmans и Zeev Suraski, они начали детально изучать исходники (sources) языка PHP/FI и сочли его непригодным для создания больших проектов. Тогда они создали первую официальную (современную) версию PHP – PHP 3.0, вот он потомок PHP/FI. Тогда и появилось новое название PHP: Hypertext Preprocessor. Шёл 1998 год. Впоследствии появились новые задачи, с которыми 3.0 версия PHP не справлялась (достаточно посмотреть на количество новых функций, которые появились в PHP 4.0, без которых не представляется сегодня возможность эффективно работать с веб-приложениями). Разработчики начали усердно работать над ядром (kernel) PHP и вскоре появляется первая стабильная версия PHP – PHP 4.0 (сенсационная находка для веб-программистов, полностью переделанное ядро).

Perl (Practical Extraction and Report Language)

Язык Perl смело можно считать предком PHP. Действительно, при первом изучении языка в глаза бросается резкое сходство с PHP. Но это только в начале, т.к. разработчиков Perl не особо заботил вопрос об упрощении языка. В начале Perl разрабатывался для ОС семейства *nix. Отцом Perl считается Larry Wall, а разработал он язык, вначале как систему для отчётов в Unix в Usenet-конференциях в 1986 году. Пользователям понравилось, пользователи захотели больше возможностей, которыми Perl в то, время не обладал. Основная задача Perl – облегчение команд для shell, но т.к. мы обсуждаем создание веб-станиц, то мы будем говорить о применение Perl для создания веб-страниц. Вопрос же о том, какой язык выбрать: Perl или PHP настолько философский, как, к примеру, вопрос о возникновении человека на земле. Поэтому это сугубо индивидуально. Мне, например, нравятся оба языка, т.к. они по своему своеобразны, интересны, можно привести множество примеров но это уже выходит за рамки этой статьи.

Казалось бы мы рассмотрели все языки, с помощью которых можно создавать корпоративные и интерактивные веб-приложения, но стоит ещё отметить два интересных языка/систем для создания веб-страниц.

Для реализации системы выбран язык программирования PHP, который фактически стал стандартом для современных Интернет-приложений.

ASP (Active Server Pages)

Технология от Microsoft, позволяющая легко разрабатывать приложения для World Wide Web. ASP работает на платформе операционных систем линии Windows NT и на веб-сервере IIS. ASP не является языком программирования - это лишь технология предварительной обработки, позволяющая подключать программные модули во время процесса формирования Web-страницы. Относительная популярность ASP основана на простоте используемых языков сценариев (VBScript или JScript) и возможности использования внешних COM-компонент.

Технология ASP получила своё развитие в виде ASP.NET - новой технологии создания веб-приложений, основанной на платформе Microsoft .NET.

Интерпретируемый язык высокого уровня для быстрого и удобного объектно-ориентированного программирования. Язык обладает независимой от операционной системы реализацией многопоточности, строгой динамической типизацией, «сборщиком мусора» и многими другими возможностями. Руби близок по особенностям синтаксиса к языкам Перл и Эйфель, по объектно-ориентированному подходу к Smalltalk. Также некоторые черты языка взяты из Python, Лисп, Dylan и CLU.

Кроссплатформенная реализация интерпретатора языка является полностью свободной, распространяется с открытыми исходными текстами, возможностью копирования и модификации. Последней является версия 1.8.5, вышедшая 28 августа 2006.

Ruby on Rails - объектно-ориентированный программный каркас для создания веб-приложений, написанный на языке программирования Ruby. Ruby on Rails предоставляет каркас модель-представление-контроллер (Model-View-Controller) для веб-приложений, а также обеспечивает их интеграцию с веб-сервером и сервером базы данных.

Ruby on Rails является открытым программным обеспечением и распространяется под лицензией MIT.

Java - объектно-ориентированный язык программирования, разрабатываемый компанией Sun Microsystems с 1991 года и официально выпущенный 23 мая 1995 года. Изначально новый язык программирования назывался Oak (James Gosling) и разрабатывался для бытовой электроники, но впоследствии был переименован в Java и стал использоваться для написания апплетов, приложений и серверного программного обеспечения.

Программы на Java могут быть транслированы в байт-код, выполняемый на виртуальной джава-машине (JVM) - программе, обрабатывающей байтовый код и передающей инструкции оборудованию, как интерпретатор, но с тем отличием, что байтовый код в отличие от текста обрабатывается значительно быстрее.

Достоинство подобного способа выполнения программ - в полной независимости байт-кода от ОС и оборудования, что позволяет выполнять Java приложения на любом устройстве, которое поддерживает виртуальную машину. Другой важной особенностью технологии Java является гибкая система безопасности, благодаря тому, что исполнение программы полностью контролируется виртуальной машиной. Любые операции, которые превышают установленные полномочия программы (например, попытка несанкционированного доступа к данным или соединения с другим компьютером) вызывают немедленное прерывание. Это позволяет пользователям загружать программы, написанные на Java, на их компьютеры (или другие устройства, например, мобильные телефоны) из неизвестных источников, при этом не опасаясь заражения вирусами, пропажи ценной информации, и т. п.

Часто к недостаткам этого подхода относят то, что исполнение байт-кода виртуальной машиной может снижать производительность программ и алгоритмов, реализованных на языке Java. Данное утверждение справедливо для первых версий виртуальной машины Java, однако в последнее время оно практически потеряло актуальность. Этому способствовал ряд усовершенствований: применение технологии JITs (Just-In-Time compiler), позволяющей переводить байт-код в машинный код во время исполнения программы с возможностью сохранения версий класса в машинном коде, широкое использование native-кода в стандартных библиотеках, а также аппаратные средства, обеспечивающие ускоренную обработку байт-кода (например, технология Jazelle, поддерживаемая некоторыми процессорами фирмы ARM).

Внутри Java существуют 3 основных семейства технологий:

J2EE - Java Enterprise Editon, для создания программного обеспечения уровня предприятия;

J2SE - Java Standard Editon, для создания пользовательских приложений, в первую очередь - для настольных систем;

J2ME - Java Micro Edition, для использования в устройствах, ограниченных по вычислительной мощности, в том числе мобильных телефонах, PDA, встроенных системах

Парадигмы программирования

Объе́ктно-ориенти́рованное программи́рование (ООП) - методология программирования, основанная на представлении программы в виде совокупности объектов , каждый из которых является экземпляром определенного класса , а классы образуют иерархию наследования .

Идеологически ООП - подход к программированию как к моделированию информационных объектов, решающий на новом уровне основную задачу структурного программирования : структурирование информации с точки зрения управляемости , что существенно улучшает управляемость самим процессом моделирования, что в свою очередь особенно важно при реализации крупных проектов. Управляемость для иерархических систем предполагает минимизацию избыточности данных (аналогичную нормализации) и их целостность, поэтому созданное удобно управляемым - будет и удобно пониматься. Таким образом через тактическую задачу управляемости решается стратегическая задача - транслировать понимание задачи программистом в наиболее удобную для дальнейшего использования форму.
Основные принципы структурирования в случае ООП связаны с различными аспектами базового понимания предметной задачи, которое требуется для оптимального управления соответствующей моделью:
- абстрагирование для выделения в моделируемом предмете важного для решения конкретной задачи по предмету, в конечном счете - контекстное понимание предмета, формализуемое в виде класса;
- инкапсуляция для быстрой и безопасной организации собственно иерархической управляемости: чтобы было достаточно простой команды «что делать», без одновременного уточнения как именно делать, так как это уже другой уровень управления;
- наследование для быстрой и безопасной организации родственных понятий: чтобы было достаточно на каждом иерархическом шаге учитывать только изменения, не дублируя все остальное, учтенное на предыдущих шагах;
- полиморфизм для определения точки, в которой единое управление лучше распараллелить или наоборот - собрать воедино.
То есть фактически речь идет о прогрессирующей организации информации согласно первичным семантическим критериям: «важное/неважное», «ключевое/подробности», «родительское/дочернее», «единое/множественное». Прогрессирование, в частности, на последнем этапе дает возможность перехода на следующий уровень детализации, что замыкает общий процесс.
Обычный человеческий язык в целом отражает идеологию ООП, начиная с инкапсуляции представления о предмете в виде его имени и заканчивая полиморфизмом использования слова в переносном смысле, что в итоге развивает выражение представления через имя предмета до полноценного понятия-класса.

Энциклопедичный YouTube

    1 / 5

    ✪ Объектно ориентированное программирование в 2019

    ✪ Объектно-ориентированное проектирование, часть 1 - как проектируются классы

    ✪ Основные принципы объектно-ориентированного программирования. Что такое ООП и зачем оно нужно?

    ✪ Основы ООП в C++

    ✪ Объектно-ориентированное программирование. Классы и объекты. Урок 3

    Субтитры

Основные понятия

Абстракция данных Абстрагирование означает выделение значимой информации и исключение из рассмотрения незначимой. В ООП рассматривают лишь абстракцию данных (нередко называя её просто «абстракцией»), подразумевая набор значимых характеристик объекта, доступный остальной программе. Инкапсуляция Инкапсуляция - свойство системы, позволяющее объединить данные и методы, работающие с ними, в классе. Одни языки (например, С++ , Java или Ruby) отождествляют инкапсуляцию с сокрытием , но другие (Smalltalk , Eiffel , OCaml) различают эти понятия. Наследование Наследование - свойство системы, позволяющее описать новый класс на основе уже существующего с частично или полностью заимствующейся функциональностью. Класс, от которого производится наследование, называется базовым, родительским или суперклассом. Новый класс - потомком, наследником, дочерним или производным классом. Полиморфизм подтипов Полиморфизм подтипов (в ООП называемый просто «полиморфизмом») - свойство системы, позволяющее использовать объекты с одинаковым интерфейсом без информации о типе и внутренней структуре объекта. Другой вид полиморфизма - параметрический - в ООП называют обобщённым программированием . Класс Класс - универсальный, комплексный тип данных , состоящий из тематически единого набора «полей» (переменных более элементарных типов) и «методов» (функций для работы с этими полями), то есть он является моделью информационной сущности с внутренним и внешним интерфейсами для оперирования своим содержимым (значениями полей). В частности, в классах широко используются специальные блоки из одного или чаще двух спаренных методов, отвечающих за элементарные операции с определенным полем (интерфейс присваивания и считывания значения), которые имитируют непосредственный доступ к полю. Эти блоки называются «свойствами» и почти совпадают по конкретному имени со своим полем (например, имя поля может начинаться со строчной, а имя свойства - с заглавной буквы). Другим проявлением интерфейсной природы класса является то, что при копировании соответствующей переменной через присваивание, копируется только интерфейс, но не сами данные, то есть класс - ссылочный тип данных. Переменная-объект, относящаяся к заданному классом типу, называется экземпляром этого класса. При этом в некоторых исполняющих системах класс также может представляться некоторым объектом при выполнении программы посредством динамической идентификации типа данных . Обычно классы разрабатывают таким образом, чтобы обеспечить отвечающие природе объекта и решаемой задаче целостность данных объекта, а также удобный и простой интерфейс. В свою очередь, целостность предметной области объектов и их интерфейсов, а также удобство их проектирования, обеспечивается наследованием. Объект Сущность в адресном пространстве вычислительной системы, появляющаяся при создании экземпляра класса (например, после запуска результатов компиляции и связывания исходного кода на выполнение).

Классификация подвидов ООП

Лука Карделли и Мартин Абади построили теоретическое обоснование ООП и классификацию на основе этого обоснования . Они отмечают, что выделенные ими понятия и категории вместе встречаются далеко не во всех ОО-языках, большинство языков поддерживают лишь подмножества теории, а порой и своеобразные отклонения от неё.

Наиболее заметные отличия в проявлении показателей качества между языками разных видов:

  • В мейнстримных языках декларируемые принципы нацелены на повышение изначально низкого для императивного программирования коэффициента повторного использования кода . В полиморфно типизированных применение концепций ООП, напротив, означает очевидное его снижение из-за перехода от параметрического полиморфизма к ad hoc полиморфизму . В динамически типизированных языках (Smalltalk , Python , Ruby) эти принципы используются для логической организации программы, и их влияние на коэффициент повторного использования трудно спрогнозировать - он сильно зависит от дисциплины программиста. Например, в CLOS мультиметоды одновременно являются функциями первого класса , что позволяет рассматривать их одновременно и как связанно квантифицированные , и как обобщённые (истинно полиморфные).
  • Традиционные ОО-языки используют номинативную типизацию , то есть допустимость соиспользования объектов разных классов только при условии явного указания родственных отношений между классами. Для полиморфно типизированных языков характерна структурная типизация , то есть согласование классов между собой тем же механизмом, что и согласование числа 5 с типом int . Динамически типизированные языки также занимают здесь промежуточную позицию.

Обобщённое обоснование динамической диспетчеризации (включая множественную) в середине 1990-х годов построил Джузеппе Кастанья .

История

ООП возникло в результате развития идеологии процедурного программирования , где данные и подпрограммы (процедуры, функции) их обработки формально не связаны. Для дальнейшего развития объектно-ориентированного программирования часто большое значение имеют понятия события (так называемое событийно-ориентированное программирование) и компонента (компонентное программирование , КОП).

Взаимодействие объектов происходит посредством . Результатом дальнейшего развития ООП, по-видимому, будет агентно-ориентированое программирование , где агенты - независимые части кода на уровне выполнения. Взаимодействие агентов происходит посредством изменения среды , в которой они находятся.

Языковые конструкции, конструктивно не относящиеся непосредственно к объектам, но сопутствующие им для их безопасной (исключительные ситуации , проверки) и эффективной работы, инкапсулируются от них в аспекты (в аспектно-ориентированном программировании). Субъектно-ориентированное программирование расширяет понятие объекта посредством обеспечения более унифицированного и независимого взаимодействия объектов. Может являться переходной стадией между ООП и агентным программированием в части самостоятельного их взаимодействия.

Первым языком программирования, в котором были предложены основные понятия, впоследствии сложившиеся в парадигму, была Симула , но термин «объектная ориентированность» не использовался в контексте использования этого языка. В момент его появления в 1967 году в нём были предложены революционные идеи: объекты, классы, виртуальные методы и др., однако это всё не было воспринято современниками как нечто грандиозное. Фактически, Симула была «Алголом с классами», упрощающим выражение в процедурном программировании многих сложных концепций. Понятие класса в Симуле может быть полностью определено через композицию конструкций Алгола (то есть класс в Симуле - это нечто сложное, описываемое посредством примитивов).

Взгляд на программирование «под новым углом» (отличным от процедурного) предложили Алан Кэй и Дэн Ингаллс в языке Smalltalk . Здесь понятие класса стало основообразующей идеей для всех остальных конструкций языка (то есть класс в Смолтоке является примитивом, посредством которого описаны более сложные конструкции). Именно он стал первым широко распространённым объектно-ориентированным языком программирования .

В настоящее время количество прикладных языков программирования (список языков), реализующих объектно-ориентированную парадигму, является наибольшим по отношению к другим парадигмам. Наиболее распространённые в промышленности языки (С++, Delphi, C#, Java и др.) воплощают объектную модель Симулы. Примерами языков, опирающихся на модель Смолтока, являются Objective-C, Python, Ruby.

Определение ООП и его основные концепции

В центре ООП находится понятие объекта. Объект - это сущность, которой можно посылать сообщения и которая может на них реагировать, используя свои данные. Объект - это экземпляр класса. Данные объекта скрыты от остальной программы. Сокрытие данных называется инкапсуляцией .

Наличие инкапсуляции достаточно для объектности языка программирования, но ещё не означает его объектной ориентированности - для этого требуется наличие наследования .

Но даже наличие инкапсуляции и наследования не делает язык программирования в полной мере объектным с точки зрения ООП. Основные преимущества ООП проявляются только в том случае, когда в языке программирования реализован полиморфизм подтипов - возможность единообразно обрабатывать объекты с различной реализацией при условии наличия общего интерфейса.

Сложности определения

ООП имеет уже более чем сорокалетнюю историю, но, несмотря на это, до сих пор не существует чёткого общепринятого определения данной технологии . Основные принципы, заложенные в первые объектные языки и системы, подверглись существенному изменению (или искажению) и дополнению при многочисленных реализациях последующего времени. Кроме того, примерно с середины 1980-х годов термин «объектно-ориентированный» стал модным , в результате с ним произошло то же самое, что несколько раньше с термином «структурный» (ставшим модным после распространения технологии структурного программирования) - его стали искусственно «прикреплять» к любым новым разработкам, чтобы обеспечить им привлекательность. Бьёрн Страуструп в 1988 году писал, что обоснование «объектной ориентированности» чего-либо, в большинстве случаев, сводится к ложному силлогизму : «X - это хорошо. Объектная ориентированность - это хорошо. Следовательно , X является объектно-ориентированным».

Роджер Кинг аргументированно настаивал, что его кот является объектно-ориентированным. Кроме прочих своих достоинств, кот демонстрирует характерное поведение, реагирует на сообщения, наделён унаследованными реакциями и управляет своим, вполне независимым, внутренним состоянием.

Однако общность механизма обмена сообщениями имеет и другую сторону - «полноценная» передача сообщений требует дополнительных накладных расходов, что не всегда приемлемо. Поэтому во многих современных объектно-ориентированных языках программирования используется концепция «отправка сообщения как вызов метода» - объекты имеют доступные извне методы, вызовами которых и обеспечивается взаимодействие объектов. Данный подход реализован в огромном количестве языков программирования, в том числе C++ , Object Pascal , Java , Oberon-2 . Однако, это приводит к тому, что сообщения уже не являются самостоятельными объектами, и, как следствие, не имеют атрибутов, что сужает возможности программирования. Некоторые языки используют гибридное представление, демонстрируя преимущества одновременно обоих подходов - например, CLOS , Python .

Концепция виртуальных методов , поддерживаемая этими и другими современными языками, появилась как средство обеспечить выполнение нужных методов при использовании полиморфных переменных, то есть, по сути, как попытка расширить возможности вызова методов для реализации части функциональности, обеспечиваемой механизмом обработки сообщений.

Особенности реализации

Как уже говорилось выше, в современных объектно-ориентированных языках программирования каждый объект является значением, относящимся к определённому классу . Класс представляет собой объявленный программистом составной тип данных , имеющий в составе:

Поля данных Параметры объекта (конечно, не все, а только необходимые в программе), задающие его состояние (свойства объекта предметной области). Иногда поля данных объекта называют свойствами объекта, из-за чего возможна путаница. Фактически поля представляют собой значения (переменные, константы), объявленные как принадлежащие классу. Методы Процедуры и функции, связанные с классом. Они определяют действия, которые можно выполнять над объектом такого типа, и которые сам объект может выполнять.

Классы могут наследоваться друг от друга. Класс-потомок получает все поля и методы класса-родителя, но может дополнять их собственными либо переопределять уже имеющиеся. Большинство языков программирования поддерживает только единичное наследование (класс может иметь только один класс-родитель), лишь в некоторых допускается множественное наследование - порождение класса от двух или более классов-родителей. Множественное наследование создаёт целый ряд проблем, как логических, так и чисто реализационных, поэтому в полном объёме его поддержка не распространена. Вместо этого в 1990-е годы появилось и стало активно вводиться в объектно-ориентированные языки понятие интерфейса . Интерфейс - это класс без полей и без реализации, включающий только заголовки методов. Если некий класс наследует (или, как говорят, реализует) интерфейс, он должен реализовать все входящие в него методы. Использование интерфейсов предоставляет относительно дешёвую альтернативу множественному наследованию.

Взаимодействие объектов в абсолютном большинстве случаев обеспечивается вызовом ими методов друг друга.

Инкапсуляция обеспечивается следующими средствами:

Контроль доступа Поскольку методы класса могут быть как чисто внутренними, обеспечивающими логику функционирования объекта, так и внешними, с помощью которых взаимодействуют объекты, необходимо обеспечить скрытость первых при доступности извне вторых. Для этого в языки вводятся специальные синтаксические конструкции, явно задающие область видимости каждого члена класса. Традиционно это модификаторы public, protected и private, обозначающие, соответственно, открытые члены класса, члены класса, доступные внутри класса и из классов-потомков, и скрытые, доступные только внутри класса. Конкретная номенклатура модификаторов и их точный смысл различаются в разных языках. Методы доступа Поля класса в общем случае не должны быть доступны извне, поскольку такой доступ позволил бы произвольным образом менять внутреннее состояние объектов. Поэтому поля обычно объявляются скрытыми (либо язык в принципе не позволяет обращаться к полям класса извне), а для доступа к находящимся в полях данным используются специальные методы, называемые методами доступа. Такие методы либо возвращают значение того или иного поля, либо производят запись в это поле нового значения. При записи метод доступа может проконтролировать допустимость записываемого значения и, при необходимости, произвести другие манипуляции с данными объекта, чтобы они остались корректными (внутренне согласованными). Методы доступа называют ещё аксессорами (от англ. access - доступ), а по отдельности - геттерами (англ. get - чтение) и сеттерами (англ. set - запись) . Свойства объекта Псевдополя, доступные для чтения и/или записи. Свойства внешне выглядят как поля и используются аналогично доступным полям (с некоторыми исключениями), однако фактически при обращении к ним происходит вызов методов доступа. Таким образом, свойства можно рассматривать как «умные» поля данных, сопровождающие доступ к внутренним данным объекта какими-либо дополнительными действиями (например, когда изменение координаты объекта сопровождается его перерисовкой на новом месте). Свойства, по сути, не более чем синтаксический сахар , поскольку никаких новых возможностей они не добавляют, а лишь скрывают вызов методов доступа. Конкретная языковая реализация свойств может быть разной. Например, в объявление свойства непосредственно содержит код методов доступа, который вызывается только при работе со свойствами, то есть не требует отдельных методов доступа, доступных для непосредственного вызова. В Delphi объявление свойства содержит лишь имена методов доступа, которые должны вызываться при обращении к полю. Сами методы доступа представляют собой обычные методы с некоторыми дополнительными требованиями к сигнатуре .

Полиморфизм реализуется путём введения в язык правил, согласно которым переменной типа «класс» может быть присвоен объект любого класса-потомка её класса.

Проектирование программ в целом

ООП ориентировано на разработку крупных программных комплексов, разрабатываемых командой программистов (возможно, достаточно большой). Проектирование системы в целом, создание отдельных компонентов и их объединение в конечный продукт при этом часто выполняется разными людьми, и нет ни одного специалиста, который знал бы о проекте всё.

Объектно-ориентированное проектирование ориентируется на описание структуры проектируемой системы (приоритетно по отношению к описанию её поведения, в отличие от функционального программирования), то есть, фактически, в ответе на два основных вопроса:

  • Из каких частей состоит система ;
  • В чём состоит ответственность каждой из ее частей .

Выделение частей производится таким образом, чтобы каждая имела минимальный по объёму и точно определённый набор выполняемых функций (обязанностей), и при этом взаимодействовала с другими частями как можно меньше.

Дальнейшее уточнение приводит к выделению более мелких фрагментов описания. По мере детализации описания и определения ответственности выявляются данные, которые необходимо хранить, наличие близких по поведению агентов, которые становятся кандидатами на реализацию в виде классов с общими предками. После выделения компонентов и определения интерфейсов между ними реализация каждого компонента может проводиться практически независимо от остальных (разумеется, при соблюдении соответствующей технологической дисциплины).

Большое значение имеет правильное построение иерархии классов. Одна из известных проблем больших систем, построенных по ООП-технологии - так называемая проблема хрупкости базового класса . Она состоит в том, что на поздних этапах разработки, когда иерархия классов построена и на её основе разработано большое количество кода, оказывается трудно или даже невозможно внести какие-либо изменения в код базовых классов иерархии (от которых порождены все или многие работающие в системе классы). Даже если вносимые изменения не затронут интерфейс базового класса, изменение его поведения может непредсказуемым образом отразиться на классах-потомках. В случае крупной системы разработчик базового класса просто не в состоянии предугадать последствия изменений, он даже не знает о том, как именно базовый класс используется и от каких особенностей его поведения зависит корректность работы классов-потомков.

Различные ООП-методологии

Компонентное программирование - следующий этап развития ООП; прототип- и класс-ориентированное программирование - разные подходы к созданию программы, которые могут комбинироваться, имеющие свои преимущества и недостатки.

Компонентное программирование

Компонентно-ориентированное программирование - это своеобразная «надстройка» над ООП, набор правил и ограничений, направленных на построение крупных развивающихся программных систем с большим временем жизни. Программная система в этой методологии представляет собой набор компонентов с хорошо определёнными интерфейсами. Изменения в существующую систему вносятся путём создания новых компонентов в дополнение или в качестве замены ранее существующих. При создании новых компонентов на основе ранее созданных запрещено использование наследования реализации - новый компонент может наследовать лишь интерфейсы базового. Таким образом компонентное программирование обходит проблему хрупкости базового класса.

Прототипное программирование

Прототипное программирование , сохранив часть черт ООП, отказалось от базовых понятий - класса и наследования.

  • Прототип - это объект-образец, по образу и подобию которого создаются другие объекты. Объекты-копии могут сохранять связь с родительским объектом, автоматически наследуя изменения в прототипе; эта особенность определяется в рамках конкретного языка .
  • Вместо механизма описания классов и порождения экземпляров, язык предоставляет механизм создания объекта (путём задания набора полей и методов, которые объект должен иметь) и механизм клонирования объектов.
  • Каждый вновь созданный объект является «экземпляром без класса». Каждый объект может стать прототипом - быть использован для создания нового объекта с помощью операции клонирования . После клонирования новый объект может быть изменён, в частности, дополнен новыми полями и методами.
  • Клонированный объект либо становится полной копией прототипа, хранящей все значения его полей и дублирующей его методы, либо сохраняет ссылку на прототип, не включая в себя клонированных полей и методов до тех пор, пока они не будут изменены. В последнем случае среда исполнения обеспечивает механизм делегирования - если при обращении к объекту он сам не содержит нужного метода или поля данных, вызов передаётся прототипу, от него, при необходимости - дальше по цепочке.

Класс-ориентированное программирование

Класс-ориентированное программирование - это программирование, сфокусированное на данных, причём данные и поведение неразрывно связаны между собой. Вместе данные и поведение представляют собой класс. Соответственно в языках, основанных на понятии «класс», все объекты разделены на два основных типа - классы и экземпляры. Класс определяет структуру и функциональность (поведение), одинаковую для всех экземпляров данного класса. Экземпляр является носителем данных - то есть обладает состоянием, меняющимся в соответствии с поведением, заданным классом. В класс-ориентированных языках новый экземпляр создаётся через вызов конструктора класса (возможно, с набором параметров). Получившийся экземпляр имеет структуру и поведение, жёстко заданные его классом.

Производительность объектных программ

Гради Буч указывает на следующие причины, приводящие к снижению производительности программ из-за использования объектно-ориентированных средств:

Динамическое связывание методов Обеспечение полиморфного поведения объектов приводит к необходимости связывать методы, вызываемые программой (то есть определять, какой конкретно метод будет вызываться) не на этапе компиляции, а в процессе исполнения программы, на что тратится дополнительное время. При этом реально динамическое связывание требуется не более чем для 20 % вызовов, но некоторые ООП-языки используют его постоянно. Значительная глубина абстракции ООП-разработка часто приводит к созданию «многослойных» приложений, где выполнение объектом требуемого действия сводится к множеству обращений к объектам более низкого уровня. В таком приложении происходит очень много вызовов методов и возвратов из методов, что, естественно, сказывается на производительности. Наследование «размывает» код Код, относящийся к «конечным» классам иерархии наследования, которые обычно и используются программой непосредственно, находится не только в самих этих классах, но и в их классах-предках. Относящиеся к одному классу методы фактически описываются в разных классах. Это приводит к двум неприятным моментам:

  • Снижается скорость трансляции, так как компоновщику приходится подгружать описания всех классов иерархии.
  • Снижается производительность программы в системе со страничной памятью - поскольку методы одного класса физически находятся в разных местах кода, далеко друг от друга, при работе фрагментов программы, активно обращающихся к унаследованным методам, система вынуждена производить частые переключения страниц.
Инкапсуляция снижает скорость доступа к данным Запрет на прямой доступ к полям класса извне приводит к необходимости создания и использования методов доступа. И написание, и компиляция, и исполнение методов доступа сопряжены с дополнительными расходами. Динамическое создание и уничтожение объектов Динамически создаваемые объекты, как правило, размещаются в куче , что менее эффективно, чем размещение их на стеке и, тем более, статическое выделение памяти под них на этапе компиляции.

Несмотря на отмеченные недостатки, Буч утверждает, что выгоды от использования ООП более весомы. Кроме того, повышение производительности за счёт лучшей организации ООП-кода, по его словам, в некоторых случаях компенсирует дополнительные накладные расходы на организацию функционирования программы. Можно также заметить, что многие эффекты снижения производительности могут сглаживаться или даже полностью устраняться за счёт качественной оптимизации кода компилятором. Например, упомянутое выше снижение скорости доступа к полям класса из-за использования методов доступа устраняется, если компилятор вместо вызова метода доступа использует инлайн-подстановку (современные компиляторы делают это вполне уверенно).

Критика ООП

Несмотря на отдельные критические замечания в адрес ООП, в настоящее время именно эта парадигма используется в подавляющем большинстве промышленных проектов. Однако нельзя считать, что ООП является наилучшей из методик программирования во всех случаях.

Критические высказывания в адрес ООП:

  • Было показано отсутствие значимой разницы в продуктивности разработки программного обеспечения между ООП и процедурным подходом .
  • Кристофер Дэйт указывает на невозможность сравнения ООП и других технологий во многом из-за отсутствия строгого и общепризнанного определения ООП .
  • Александр Степанов в одном из своих интервью указывал, что ООП «методологически неправильно» и что «…ООП практически такая же мистификация, как и искусственный интеллект…» .
  • Фредерик Брукс указывает, что наиболее сложной частью создания программного обеспечения является «…спецификация, дизайн и тестирование концептуальных конструкций, а отнюдь не работа по выражению этих концептуальных конструкций…». ООП (наряду с такими технологиями как искусственный интеллект , верификация программ, автоматическое программирование, графическое программирование , экспертные системы и др.), по его мнению, не является «серебряной пулей», которая могла бы на порядок величины снизить сложность разработки программных систем. Согласно Бруксу, «…ООП позволяет сократить только привнесённую сложность в выражение дизайна. Дизайн остаётся сложным по своей природе…» .
  • Эдсгер Дейкстра указывал: «…то, о чём общество в большинстве случаев просит - это эликсир от всех болезней. Естественно, "эликсир" имеет очень впечатляющие названия, иначе будет очень трудно что-то продать: „Структурный анализ и Дизайн“, „Программная инженерия“, „Модели зрелости“, „Управляющие информационные системы“ (Management Information Systems), „Интегрированные среды поддержки проектов“, „Объектная ориентированность“, „Реинжиниринг бизнес-процессов “…» .
  • Никлаус Вирт считает, что ООП - не более чем тривиальная надстройка над структурным программированием, и преувеличение её значимости, выражающееся, в том числе, во включении в языки программирования всё новых модных «объектно-ориентированных» средств, вредит качеству разрабатываемого программного обеспечения.
  • Патрик Киллелиа в своей книге «Тюнинг веб-сервера» писал: «…ООП предоставляет вам множество способов замедлить работу ваших программ…».
  • Известная обзорная статья проблем современного ООП-программирования перечисляет некоторые типичные проблемы ООП [ ] .
  • В программистском фольклоре получила широкое распространение критика объектно-ориентированного подхода в сравнении с функциональным подходом с использованием метафоры «Королевства Существительных » из эссе Стива Йегги .

Если попытаться классифицировать критические высказывания в адрес ООП, можно выделить несколько аспектов критики данного подхода к программированию.

Критика рекламы ООП Критикуется явно высказываемое или подразумеваемое в работах некоторых пропагандистов ООП, а также в рекламных материалах «объектно-ориентированных» средств разработки представление об объектном программировании как о некоем всемогущем подходе, который магическим образом устраняет сложность программирования. Как замечали многие, в том числе упомянутые выше Брукс и Дейкстра, «серебряной пули не существует» - независимо от того, какой парадигмы программирования придерживается разработчик, создание нетривиальной сложной программной системы всегда сопряжено со значительными затратами интеллектуальных ресурсов и времени. Из наиболее квалифицированных специалистов в области ООП никто, как правило, не отрицает справедливость критики этого типа. Оспаривание эффективности разработки методами ООП Критики оспаривают тезис о том, что разработка объектно-ориентированных программ требует меньше ресурсов или приводит к созданию более качественного ПО. Проводится сравнение затрат на разработку разными методами, на основании которого делается вывод об отсутствии у ООП преимуществ в данном направлении. Учитывая крайнюю сложность объективного сравнения различных разработок, подобные сопоставления, как минимум, спорны. С другой стороны, получается, что ровно так же спорны и утверждения об эффективности ООП. Производительность объектно-ориентированных программ Указывается на то, что целый ряд «врождённых особенностей» ООП-технологии делает построенные на её основе программы технически менее эффективными, по сравнению с аналогичными необъектными программами. Не отрицая действительно имеющихся дополнительных накладных расходов на организацию работы ООП-программ (см. раздел «Производительность» выше), нужно, однако, отметить, что значение снижения производительности часто преувеличивается критиками. В современных условиях, когда технические возможности компьютеров чрезвычайно велики и постоянно растут, для большинства прикладных программ техническая эффективность оказывается менее существенна, чем функциональность, скорость разработки и сопровождаемость. Лишь для некоторого, очень ограниченного класса программ (ПО встроенных систем, драйверы устройств, низкоуровневая часть системного ПО, научное ПО) производительность остаётся критическим фактором. Критика отдельных технологических решений в ООП-языках и библиотеках Эта критика многочисленна, но затрагивает она не ООП как таковое, а приемлемость и применимость в конкретных случаях тех или иных реализаций её механизмов. Одним из излюбленных объектов критики является язык C++, входящий в число наиболее распространённых промышленных ООП-языков.

Объектно-ориентированные языки

Многие современные языки специально созданы для облегчения объектно-ориентированного программирования. Однако следует отметить, что можно применять техники ООП и для не-объектно-ориентированного языка и наоборот, применение объектно-ориентированного языка вовсе не означает, что код автоматически становится объектно-ориентированным.

Как правило, объектно-ориентированный язык (ООЯ) содержит следующий набор элементов:

  • Объявление классов с полями (данными - членами класса) и методами (функциями - членами класса).
  • Механизм расширения класса (наследования) - порождение нового класса от существующего с автоматическим включением всех особенностей реализации класса-предка в состав класса-потомка. Большинство ООЯ поддерживают только единичное наследование.
  • Полиморфные переменные и параметры функций (методов), позволяющие присваивать одной и той же переменной экземпляры различных классов.
  • Полиморфное поведение экземпляров классов за счёт использования виртуальных методов. В некоторых ООЯ все методы классов являются виртуальными.

Некоторые языки добавляют к указанному минимальному набору те или иные дополнительные средства. В их числе.

По мере развития вычислительной техники создавались новые подходы, помогающие справляться с растущим усложнением программ. Использование структурного программирования при написании умеренно сложных программ принесло свои результаты, однако оказалось несамостоятельным тогда, когда программа достигала определенной длины. Чтобы писать более сложные программы, были разработаны принципы объектно-ориентированного программирования. Объектно-ориентированное программирование - это подход к разработке программного обеспечения, основанный на объектах, а не на процедурах. Этот подход позволяет максимизировать принципы модульности и «сокрытия информации». Объектно-ориентированное программирование базируется на связывании или инкапсуляции структур данных и процедуры, которая работает с данными в структуре, с модулем.

Объектно-ориентированное программирование позволяет разложить проблему на составные части. В этом случае вся процедура упрощается, и появляется возможность оперировать с гораздо более объемными программами. Каждая составляющая становится самостоятельным объектом, содержащим свои собственные коды и данные, относящиеся к нему.

Объект - это замкнутая независимая сущность, взаимодействующая с внешним миром через строго определенный интерфейс в виде принимаемых сообщений. Объекты обладают определенным набором свойств, методов и способностью реагировать на события (нажатие кнопок мыши, интервалы времени и т. д.). в отличие от процедурного программирования, где порядок выполнения операторов программы определяется порядком их следования и командами управления в объектно-ориентированном программировании порядок выполнения процедур и функций определяется событиями. Объекты с одинаковыми свойствами и поведением объединяются в классы. Программа на объектно-ориентированном языке представляет собой совокупность описаний классов. Классы в свою очередь, представляют собой описания свойств и поведения составляющих их объектов. Свойства представляются другими, более простыми объектами. Поведение описывается обменивающимися сообщениями объектов.

В применении к объектно-ориентированным языкам программирования понятие объекта и класса конкретизируется следующими понятиями:

  • - объект - обладающий именем набора данных (полей объекта), физически находящихся в памяти компьютера, и методов, имеющих доступ к ним. Имя используется для доступа к полям и методам, составляющим объект. В предельных случаях объект может не содержать полей и методов, а также не иметь имени;
  • - любой объект относится к определенному классу. Класс содержит описание данных и операций над ними. В классе дается обобщенное описание некоторого набора родственных, реально существующих объектов. Объект- конкретный экземпляр класса.

Объектно-ориентированное программирование основано на следующих принципах:

  • - абстрагирования данных;
  • - инкапсуляции;
  • - наследования;
  • - полиморфизма;
  • - «позднего связывания».

Абстрагирование является одним из основных методов, используемых для решения сложных задач. Хоар считает, что «абстрагирование проявляется в нахождении сходств между определенными объектами, ситуациями или процессами реального мира, и в принятии решений на основе этих сходств, отвлекаясь на время от имеющихся различий» . Шоу определила это понятие так: «Упрощенное описание или изложение системы, при котором одни свойства и детали выделяются, а другие опускаются. Хорошей является такая абстракция, которая подчеркивает детали, существенные для рассмотрения и использования, и отпускает те, которые на данный момент несущественны» . Берзинс, Грей и Науман рекомендовали, чтобы «идея квалифицировалась как абстракция только, если она может быть изложена, понята и проанализирована независимо от механизма, который будет в дальнейшем принят для ее реализации» . Суммирую эти разные точки зрения, получается следующее определение абстракции: Абстракция выделяет существенные характеристики некоторого объекта, отличающие его от всех других видов объектов и, таким образом, четко определяет его концептуальные границы с точки зрения наблюдателя.

Инкапсуляция (encapsulation) - это принцип, объединяющий данные и код, манипулирующий этими данными, а также защищающий в первую очередь данные от прямого внешнего доступа и неправильного использования. Другими словами, доступ к данным класса возможен только посредством методов этого же класса.

Наследование (inheritance) - это процесс, посредством которого один объект может приобретать свойства другого. То есть, объект может наследовать основные свойства другого объекта и добавлять к ним свойства и методы, характерные только для него.

Наследование делится на два вида:

  • 1. одиночное наследование - класс (он же подкласс) имеет один и только один суперкласс (предок) ;
  • 2. множественное наследование - класс может иметь любое количество предков (в Java запрещено).

Полиморфизм (polymorphism) - это механизм, использующий одно и то же имя метода для решения двух или более похожих, но несколько отличающихся задач.

Целью полиморфизма применительно к объектно-ориентированному программированию является использование одного имени для задания общих для класса действий. Концепцией полиморфизма является идея «один интерфейс, множество методов».

Механизм «позднего связывания» в процессе выполнения программы определяет принадлежность объекта конкретному классу и производит вызов метода, относящегося к классу, объект которого был использован.

Краеугольным камнем наследования и полиморфизма предстает следующая парадигма: «объект подкласса может использоваться всюду, где используется объект суперкласса».

При вызове метода класса он ищется в самом классе. Если метод существует, то он вызывается. Если же метод в текущем классе отсутствует, то обращение происходит к родительскому классу и вызываемый метод ищется у него. Если поиск неудачен, то он продолжается вверх по иерархическому дереву вплоть до корня (верхнего класса) иерархии.

Объектно-ориентированная технология основывается на так называемой объектной модели. Основными ее принципами являются, как уже отмечено выше: абстрагирование, инкапсуляция, модульность, иерархичность, типизация, параллелизм и сохраняемость. Каждый из этих принципов сам по себе нов, но в объектной модели они впервые применены в совокупности.

Объектно-ориентированный анализ и проектирование принципиально отличаются от традиционных подходов структурного проектирования: процесс декомпозиции представляется по другому, а архитектура получающегося программного продукта в значительной степени выходит за рамки представлений, традиционных для структурного программирования. Отличия обусловлены тем, что структурное проектирование основано на структурном программировании, тогда как в основе объектно-ориентированного программирования лежит методология объектно-ориентированного программирования.

Основываясь на истории развития программирования, можно отметить следующие две сменяющие друг друга тенденции:

  • - смещение акцентов от программирования отдельных деталей к программированию более крупных компонент;
  • - развитие и совершенствование языков программирования высокого уровня.

Большинство современных коммерческих программных систем больше и существенно сложнее, чем были их предшественники даже несколько лет тому назад. Этот рост сложности вызвал большое число прикладных исследований по методологии проектирования, особенно, по декомпозиции, абстрагированию и иерархиям. Создание более выразительных языков программирования пополнило достижения в этой области. Возникла тенденция перехода от языков, указывающих компьютеру, что делать (императивные языки). К языкам, описывающим ключевые абстракции проблемной области (декларативные языки).

Из огромного числа языков программирования, появившихся за период развития информационных технологий, лишь наиболее удобные и совершенные были приняты обществом разработчиков и отстояли свое право на существование. Анализируя языки программирования и обстоятельства, сопутствующие их появлению, можно обнаружить множество общих черт. Это позволяет сгруппировать языки по основным используемым принципам и выделить поколения в их развитии. Романова Ю. Д. приводит следующую классификацию:

  • 1. Первое поколение (1954-1958) :
    • - FORTRAN I - математические формулы;
    • - ALGOL -58 -математические формулы;
    • - FLOWMATIC - математические формулы;
    • - IPL V - математические формулы.
  • 2. Второе поколение (1959-1961) :
    • - FORTRAN II - подпрограммы, раздельная компиляция%
    • - ALGOL-60 - блочные структуры, типы данных;
    • - COBOL - описание данных, работа с файлами.
  • 3. Третье поколение (1962-1970) :
    • - PL/1 FORTRAN+ALGOL+COBOL;
    • - ALGOL-68 более строгий преемник ALGOL-60;
    • - PASCAL - более простой преемник ALGOL-60;
    • - SIMULA - классы, абстрактные данные.

Многие идеи, лежащие в основе современных языков программирования, появились в том или ином виде уже к 1970 году. Все последующие языки являются потомками или результатом обобщения и развития вышеперечисленных языков. Этому во многом способствовало как широкое распространение мини и микро ЭВМ и связанный с ним рост числа разработчиков программного обеспечения, так и многообразие операционных систем и различных сфер применения информационных технологий.

Первое поколение языков программирования были ограничены следующими особенностями:

  • - малым объемом оперативной памяти;
  • - несовершенством системы ввода-вывода.

Ввиду данных ограничений, а также малого количества и дороговизны этих машин, на них работали исключительно высококвалифицированные специалисты, способные управлять ими непосредственно на уровне двоичных кодов. Для облегчения процесса программирования вскоре были созданы языки первого поколения. Это были первые языки, которые приближали программирование к предметной области и отдаляли его от конкретной машины. Их словарь практически полностью был математическим.

Программы, реализованные на языках первого и начала второго поколение, имели относительно простую структуру, состоящую из подпрограмм и данных, лежащих в глобальной области видимости. Механизмы языков не поддерживали разделения разнотипных данных, что сильно осложняло написание больших программ.

На момент своего появления, подпрограммы расценивались лишь как средство облегчающее процесс написания программ. Будучи минимальными единицами пере использования, они стали «кирпичиками» для построения первых библиотек. Постепенно они стали играть фундаментальную роль в декомпозиции программных систем.

Выделение подпрограмм, как механизма абстрагирования, имело следующие важные последствия. Были разработаны различные механизмы передачи параметров. Были заложены основания для структурного программирования, что выражалось в появлении языковой поддержки механизмов вложенности подпрограмм и научной разработке структур управления и областей видимости. Возникли методы структурного проектирования, основой которых служило использование процедур или подпрограмм в качестве отдельных строительных блоков.

Первоначально языки программирования не имели достаточно развитых механизмов защиты данных одного модуля от использования их процедурами другого. Во многом эта задача ложилась на коллективы разработчиков. Появившиеся различные подходы в разработке программных систем благоприятствовали возникновению огромного количества языков, имеющих те или иные сильные и слабые стороны в реализации этих принципов. Одним из наиболее развитых представителей языков третьего поколения стал язык ALGOL-68. Будучи универсальным и реализуя почти все разработанные к тому времени механизмы в алгоритмических языках, он был достаточно труден для первоначального освоения, однако позволял разрабатывать системы корпоративного масштабы для больших ЭВМ.

Процедурно-ориентированные языки мало подходят для написания программных систем, где центральное место занимают данные, а не алгоритмы. С определенного момента возникла острая необходимость в языковой поддержке описания произвольных объектов окружающего мира. Вводятся абстрактные типы данных.

Первым языком, в котором нашли свое выражение идеи построения программ на основе данных и объектов стал язык Simula 67. Концепции, заложенные в языке Simula получили свое развитие в серии языков Smaltalk-72, -74, -76, -80, а также в языках C++ и Objective C. При внесении объектно-ориентированного подхода в язык Pascal появился язык Object Pascal. В 90-х годах компания Sun представила миру язык Java, как воплощение идеи платформенной независимости и наиболее полную реализацию концепций объектно-ориентированного программирования, положенных в основу языков Simula 67, Smalltalk, C++.

Объектно-ориентированные системы предъявляют повышенные требования к аппаратуре. Практика использования ТМООП на IBM PC/AT показала замедление скорости выполнения программ в 5-7 раз по сравнению с аналогичными программами на Си или Паскале. При этом время получения готовой программы сократилось в 2-3 раза, программы стали выглядеть яснее, лучше приспособлены для повторного использования. Далее рассматриваются примеры технологий создания программных обеспечений различных компаний-поставщиков.


Программирование-это теоретическая и практическая деятельность по созданию и сопровождению программы. Программа-описание алгоритма на языке, понятном ЭВМ.

Принято выделять два этапа программирования: понимание задачи и планирование решения. Программисту приходится возвращаться назад в решении задачи и задавать дополнительные вопросы лицу, которое формулирует условие задачи.

Задача каждого программиста - создать хорошую программу, т.е. программу, которая:

А) надежна, т.е. зависит только от своих действий;

Б) универсальна, т.е. ее можно легко изменить, когда нужна переделка;

В) совместима, т.е. ее можно перенести с одного компьютера на другой с минимальными изменениями;

Г) удобочитаема, т.е. хорошо понимаема пользователем;

Д) эффективна, т.е. реализует наиболее эффективный способ решения задачи.

Целями программирования названы точность, эффективность и творческий подход при реализации. Точность остается первостепенной целью программирования; однако, удобство сопровождения (простота фиксации ошибок), модифицируемость (простота при внесении изменений) и читабельность (понятность программы) сместили эффективность и неясность и стали желаемыми характеристиками программы.


  1. ^ Области языков программирования. Научные приложения.
Первые цифровые компьютеры, появившиеся в 1940-х годах, использовались и фактически изобретались для научных целей. Обычно научные приложения имеют дело с простыми структурами данных и значительным количеством арифметических вычислений, выполняемых над числами с плавающей точкой. Наиболее часто употребляемыми структурами данных являются массивы и матрицы; из управляющих структур чаще других используются циклы со счетчиком и условные операторы. Первым языком, созданным для научных приложений, был язык FORTRAN. Язык ALGOL и большинство его потомков также предназначались для подобных целей. Однако для научных приложений особо важна эффективность, а ни один из созданных языков не оказался лучше языка FORTRAN. Также Matlab, R.

Требования: 1. Высокая скорость работы. 2. Поддержка различный математических типов 3. Векторные и матричные вычисления. 4. Большое кол-во математических функций.


  1. Области языков программирования. Коммерческие приложения.

Использование компьютеров в области коммерции началось в 1950-х годах. Первым удачным языком высокого уровня для коммерческих целей был COBOL,появившийся в 1960 году и по сегодняшний день являющийся в этой области самым широко используемым языком. Деловые языки программирования отличаются возможностями генерации подробных отчетов, точными способами описания и хранения десятичных чисел и символьных данных, а также возможностью определять арифметические действия с десятичными числами.

Для коммерческих целей были разработаны два специальных инструмента, широко используемых сейчас в малых компьютерах: системы крупноформатных электронных таблиц и системы баз данных. Кроме языка COBOL, существует лишь несколько языков программирования, ориентированных на коммерческую сферу применения.

Также RPG. Требования: 1. Поддержка обработки текста 2. Подд. Формирования отчётов 3. Точное описание числовых типов


  1. Области языков программирования. Искусственный интеллект.
Искусственный интеллект (ИИ) - обширная область применения компьютеров, отличающаяся использованием символьных, а не числовых вычислений. Под символьными вычислениями подразумевается манипулирование не с числами, а с символами. Кроме того, символьные вычисления удобнее производить с использованием связных списков данных, а не массивов. Символьные вычисления иногда требуют большей гибкости, чем другие области программирования. Например, в некоторых приложениях искусственного интеллекта очень удобно иметь возможность создавать и реализовывать фрагменты программы в процессе ее выполнения. Первым широко используемым языком программирования, созданным для применения в области искусственного интеллекта, был язык функционального программирования LISP, появившийся в 1959 году. Большинство программ в этой области были написаны именно на языке LISP или на одном из родственных языков. Однако в начале 1970-х годов возник альтернативный подход к решению этих задач - язык логического программирования Prolog (1997). Требования: 1. Неалгоритмический способ решения 2. Оперирование с символьными данными

  1. Области языков программирования. Системное программирование.
Операционные системы и все инструменты программной поддержки компьютерных систем называются системным программным обеспечением (system software). Оно используется практически повсеместно и, следовательно, должно эффективно функционировать. В связи с этим языки программирования, применяемые в этой области, должны обеспечивать быстрое выполнение программ. Более того, они должны иметь низкоуровневые свойства, позволяющие писать программы, осуществляющие взаимодействие с внешними устройствами. PL/S, BLISS- находящийся всего на один уровень выше языка ассемблера; Extended ALGOL. Некоторые характерные черты языка С способствуют его использованию в системном программировании. Он низкоуровневый, эффективно функционирует и не обременяет пользователя большим количеством ограничений. Тем не менее, некоторые считают язык С слишком опасным для использования в больших и важных системах программного обеспечения. Требование – скорость.

  1. ^ Области языков программирования. Языки сценариев.
Языки подготовки сценариев развивались постепенно в течение последних 25 лет. Программы на этих языках представляют собой исполняемые файлы, называемые сценариями, которые содержат перечень команд. Первым из таких языков был язык sh (сокр. от англ. shell - оболочка), первоначально состоявший из небольшого набора команд, интерпретируемых как вызовы системных подпрограмм, выполнявших служебные функции, например, управление файлами и их простую фильтрацию. Одни из наиболее мощных и широко известных языков подготовки сценариев - ksh, awk, tcl. Разработанный Ларри Уоллом (Larry Wall) язык Perl сначала представлял собой комбинацию языков sh и awk. После этого он получил значительное развитие и сейчас является мощным, хотя и несколько примитивным, языком программирования.

Требование: 1. Обработка текстовых данных 2. Широкая возможность интеграции программ.


  1. Области языков программирования. Web-программирование.
Веб-программирование - раздел программирования, ориентированный на разработку веб-приложений (программ, обеспечивающих функционирование динамических сайтов Всемирной паутины). Языки веб-программирования - это языки, которые в основном предназначены для работы с веб-технологиями. Языки веб-программирования можно условно разделить на две пересекающиеся группы: клиентские(JavaScript и VBScript)и серверные(PHP, SQL, Perl, JAVA).

Веб-программирование это:

Простой способ обновления и пополнения информации на сайте.

Возможность разнообразить сайт, добавив на него динамические разделы и интерактивные элементы: голосования, гостевые книги, форумы, игры,

Возможность работать с защищенной базой данных, в которой можно хранить: статистические данные, прайсы, описания товаров, отзывы посетителей, фотоальбомы.

Инструмент для решения любых задач по расширению функциональности сайта.

Требования: безопасность и обработка текстовой информации.


  1. ^ Уровни языков программирования. Машинные языки (история возникновения, отличительные особенности, пример языков). Вычислительные машины, служат для одной цели - для переработки информации, которая в них поступает. Переработку информации машина может произвести только тогда, когда четко изложена задача - что машина должна делать, и точно дан метод ее решения - как машина должна поступать. Она требует однозначности, конкретности, точности. И задачи переводят с человеческого языка на машинный.
МАШИННЫЙ ЯЗЫК - язык программирования для представления программ в форме, допускающей их непосредственную реализацию аппаратными средствами конкретной ЭВМ. Программа на машинном языке представляет собой последовательность машинных команд. Символами машинного языка являются двоичные цифры (0,1). Машинный код можно рассматривать как примитивный язык программирования или как самый низкий уровень представления скомпилированных или ассемблированных компьютерных программ. Хотя вполне возможно создавать программы прямо в машинном коде, сейчас это делается редко в силу громоздкости кода. Эффективность решения различных задач на ЦВМ в значительной степени зависит от того, насколько М. я. приспособлен для реализации заданных алгоритмов.

Особенности:

Для каждого процессора свой машинный язык

Выполняется непосредственно машиной

Минимальная (плохая) читаемость кода

Программисты почти не используют

^ 9. Уровни языков программирования. Языки ассемблера(история возникновения, отличительные особенности, пример языков).

Язык ассе́мблера - машинно-ориентированный язык низкого уровня с командами, обычно соответствующими командам машины, который может обеспечить дополнительные возможности вроде макрокоманд.

Чтобы упростить общение человека с компьютером, были разработаны языки программирования типа Ассемблер, в которых переменные величины стали изображаться символическими именами, а числовые коды операций были заменены на словесные обозначения, которые легче запомнить. Язык программирования приблизился к человеческому языку, но удалился от языка машинных команд. Поэтому чтобы компьютер мог работать на языке Ассемблера, понадобился транслятор – программа, переводящая текст программы на Ассемблере в эквивалентные машинные команды. Языки типа Ассемблер являются машино-ориентированными, потому что они настроены на структуру машинных команд конкретного компьютера. Разные компьютеры с разными типами процессоров имеют разный Ассемблер.Особенности:

Набор команд языков ассемблера соответствует набору команд процессора

Более удобен для восприятия и кодирования

Компилируются/транслируются в машинный код.

^ 10. Уровни языков программирования. Языки высокого уровня(история возникновения, отличительные особенности, пример языков).

Язык высокого уровня - язык программирования, понятия и структура которого удобны для восприятия человеком.

Языки высокого уровня отражают потребности программиста, но не возможности системы обработки данных. Программисты всеми силами пытались изобрести язык программирования, который по своей структуре будет схож с человеческим языком. Так появились языки программирования С, BASIC, Pascal, COBOL, FORTRAN и др. Эти языки обладали более простым кодом, поэтому создавать программы на них было легче и быстрее. Особенности:

Более понятны человеку

1 команда на языке высокого уровня – несколько машинных команд

Требуется перевести в машинный код

Проще писать сложную программу

11. Методы реализации программ. Компиляция (схема получения результата из исходного кода, преимущества и недостатки, сравнительная таблица).

Компиляция - трансляция программы, составленной на исходном языке высокого уровня, в эквивалентную программу на низкоуровневом языке, близком машинному коду (абсолютный код, объектный модуль, иногда на язык ассемблера). Язык, на котором представлена входная программа, называется исходным языком, а сама программа - исходным кодом. Выходной язык называется целевым языком или объектным кодом. Большинство компиляторов переводит программу с некоторого высокоуровневого языка программирования в машинный код, который может быть непосредственно выполнен процессором. Результат компиляции - исполнимый модуль - обладает максимальной возможной производительностью, однако привязан к определённой операционной системе и процессору (и не будет работать на других). Для каждой целевой машины (IBM, Apple, Sun и т. д.) и каждой операционной системы или семейства операционных систем, работающих на целевой машине, требуется написание своего компилятора.


Критерий

Компиляция

Смешанная реализация

Интерпретация

Скорость исполнения

наивысшая

средняя

низкая


плохая

отличная

отличная


низкое

среднее

высокое


неудобно

терпимо

очень удобно

Примеры

Pascal, c, c++

Java, VB

Python, VBA, PHP

12. Методы реализации программ. Интерпретация (схема получения результата из исходного кода, преимущества и недостатки, сравнительная таблица).

Интерпретация – выполнение исходного текста программы. Достоинства : Бо́льшая переносимость интерпретируемых программ - программа будет работать на любой платформе, на которой есть соответствующий интерпретатор. Упрощение отладки исходных кодов программ. Меньшие размеры кода по сравнению с машинным кодом, полученным после обычных компиляторов. Недостатки: Интерпретируемая программа не может выполняться отдельно без программы-интерпретатора. Сам интерпретатор при этом может быть очень компактным. Интерпретируемая программа выполняется медленнее, поскольку промежуточный анализ исходного кода и планирование его выполнения требуют дополнительного времени в сравнении с непосредственным исполнением машинного кода, в который мог бы быть скомпилирован исходный код.

Алгоритм работы простого интерпретатора


  • прочитать инструкцию;

  • проанализировать инструкцию и определить соответствующие действия;

  • выполнить соответствующие действия;

  • если не достигнуто условие завершения программы, прочитать следующую инструкцию и перейти к пункту 2.

Критерий

Компиляция

Смешанная реализация

Интерпретация

Скорость исполнения

наивысшая

средняя

низкая

Переносимость (кросс-платформеность)

плохая

отличная

отличная

Использование ресурсов (оперативная память, жесткий диск)

низкое

среднее

высокое

Удобство разработки и сопровождения (поиск ошибок)

неудобно

терпимо

очень удобно

Примеры

Pascal, c, c++

Java, VB

Python, VBA, PHP

13. Методы реализации программ. Смешанная реализация (схема получения результата из исходного кода, преимущества и недостатки, сравнительная таблица). Смешанная реализация – программа переводится в промежуточный код (с помощью транслятора), а затем выполняется с помощью интепретатора промежуточного кода.

Примером смешанной реализации языка может служить Perl . Этот подход сочетает как достоинства компилятора и интерпретатора (бо́льшая скорость исполнения и удобство использования), так и недостатки (для трансляции и хранения программы на промежуточном языке требуются дополнительные ресурсы; для исполнения программы на целевой машине должен быть представлен интерпретатор). Также, как и в случае компилятора, смешанная реализация требует, чтобы перед исполнением исходный код не содержал ошибок (лексических, синтаксических и семантических).


Критерий

Компиляция

Смешанная реализация

Интерпретация

Скорость исполнения

наивысшая

средняя

низкая

Переносимость (кросс-платформеность)

плохая

отличная

отличная

Использование ресурсов (оперативная память, жесткий диск)

низкое

среднее

высокое

Удобство разработки и сопровождения (поиск ошибок)

неудобно

терпимо

очень удобно

Примеры

Pascal, c, c++

Java, VB

Python, VBA, PHP

14. Методы реализации программ. Трансляция (схема получения результата из исходного кода, преимущества и недостатки, сравнительная таблица).

Траснляция – перевод текста программы с одного языка на другой.

1.Лексический анализ. На этом этапе последовательность символов исходного файла преобразуется в последовательность лексем.

2.Синтаксический (грамматический) анализ. Последовательность лексем преобразуется в дерево разбора.

3.Семантический анализ. Дерево разбора обрабатывается с целью установления его семантики (смысла) - например, привязка идентификаторов к их декларациям, типам, проверка совместимости, определение типов выражений и т. д. Результат обычно называется «промежуточным представлением/кодом», и может быть дополненным деревом разбора, новым деревом, абстрактным набором команд или чем-то ещё, удобным для дальнейшей обработки.

4.Оптимизация. Выполняется удаление излишних конструкций и упрощение кода с сохранением его смысла. Оптимизация может быть на разных уровнях и этапах - например, над промежуточным кодом или над конечным машинным кодом.

5.Генерация кода. Из промежуточного представления порождается код на целевом языке.

^ 15. Критерии качества программ:

Количественные:

1)Размер программы;

А) В исходном коде LOC(~30,50);

Б) В откомпилированном виде;

Потребляемые ресурсы;

Время выполнения;

Качественные:

Корректность (программа должна выполнять поставленную задачу);

Удобство;

Читабельность (Читаемость кода);

Сопровождение (расширяемость);

Переносимость;

Надежность;

16. Алгоритм:

Алгоритм - заранее заданное понятное и точное предписание возможному исполнителю совершить определенную последовательность действий для получения решения задачи за конечное число шагов. Исполнитель алгоритма - это некоторая абстрактная или реальная (техническая, биологическая или биотехническая) система, способная выполнить действия, предписываемые алгоритмом.

Основные свойства алгоритмов следующие:

1. Понятность для исполнителя - исполнитель алгоритма должен понимать, как его выполнять. Иными словами, имея алгоритм и произвольный вариант исходных данных, исполнитель должен знать, как надо действовать для выполнения этого алгоритма.

2. Дискретность (прерывность, раздельность) - алгоpитм должен пpедставлять процесс решения задачи как последовательное выполнение пpостых (или pанее определённых) шагов (этапов).

3. Опpеделенность - каждое пpавило алгоpитма должно быть четким, однозначным и не оставлять места для пpоизвола. Благодаpя этому свойству выполнение алгоpитма носит механический хаpактеp и не тpебует никаких дополнительных указаний или сведений о pешаемой задаче.

4. Pезультативность (или конечность) состоит в том, что за конечное число шагов алгоpитм либо должен пpиводить к pешению задачи, либо после конечного числа шагов останавливаться из-за невозможности получить решение с выдачей соответствующего сообщения, либо неограниченно продолжаться в течение времени, отведенного для исполнения алгоритма, с выдачей промежуточных результатов.

5. Массовость означает, что алгоpитм pешения задачи pазpабатывается в общем виде, т.е. он должен быть пpименим для некотоpого класса задач, pазличающихся лишь исходными данными. Пpи этом исходные данные могут выбиpаться из некотоpой области, котоpая называется областью пpименимости алгоpитма.

^ 17. Способы записи алгоритма. Блок-схемы.

Графический способ представления алгоритмов является более компактным и наглядным по сравнению со словесным.

При графическом представлении алгоритм изображается в виде последовательности

Связанных между собой функциональных блоков, каждый из которых соответствует

Выполнению одного или нескольких действий.

Такое графическое представление называется схемой алгоритма или блок-схемой. В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий. Блок "процесс" применяется для обозначения действия или последовательности действий, изменяющих значение, форму представления или размещения данных. Для улучшения наглядности схемы несколько отдельных блоков обработки можно объединять в один блок. Представление отдельных операций достаточно свободно.

Блок "решение" используется для обозначения переходов управления по условию. В каждом блоке "решение" должны быть указаны вопрос, условие или сравнение, которые он определяет.

Блок "модификация" используется для организации циклических конструкций. (Слово модификация означает видоизменение, преобразование). Внутри блока записывается параметр цикла, для которого указываются его начальное значение, граничное условие и шаг изменения значения параметра для каждого повторения.

Блок "предопределенный процесс" используется для указания обращений к вспомогательным алгоритмам, существующим автономно в виде некоторых самостоятельных модулей, и для обращений к библиотечным подпрограммам.

^ 18. Способы записи алгоритма. Псевдокод.

Псевдокод представляет собой систему обозначений и правил, предназначенную для единообразной записи алгоритмов.

Псевдокод занимает промежуточное место между естественным и формальным языками. С одной стороны, он близок к обычному естественному языку, поэтому алгоритмы могут на нем записываться и читаться как обычный текст. С другой стороны, в псевдокоде используются некоторые формальные конструкции и математическая символика, что приближает запись алгоритма к общепринятой математической записи.

В псевдокоде не приняты строгие синтаксические правила для записи команд, присущие формальным языкам, что облегчает запись алгоритма на стадии его проектирования и дает возможность использовать более широкий набор команд, рассчитанный на абстрактного исполнителя.

Однако в псевдокоде обычно имеются некоторые конструкции, присущие формальным языкам, что облегчает переход от записи на псевдокоде к записи алгоритма на формальном языке. В частности, в псевдокоде, так же, как и в формальных языках, есть служебные слова, смысл которых определен раз и навсегда. Они выделяются в печатном тексте жирным шрифтом, а в рукописном тексте подчеркиваются.

Единого или формального определения псевдокода не существует, поэтому возможны различные псевдокоды, отличающиеся набором служебных слов и основных (базовых) конструкций.

^ 19. Способы записи алгоритма. Сравнение различных подходов:

Графический способ представления алгоритмов является более компактным и наглядным по сравнению со псевдокодом. При графическом представлении алгоритм изображается в виде последовательности связанных между собой функциональных блоков. Графическое описание алгоритма, называется блок-схемой. Этот способ имеет ряд преимуществ благодаря наглядности, обеспечивающей, в частности, высокую «читаемость» алгоритма и явное отображение управления в нем. В блок-схеме каждому типу действий (вводу исходных данных, вычислению значений выражений, проверке условий, управлению повторением действий, окончанию обработки и т.п.) соответствует геометрическая фигура, представленная в виде блочного символа. Блочные символы соединяются линиями переходов, определяющими очередность выполнения действий. В таблице №1 приведены обозначения, наиболее часто используемые в блок-схемах. Сначала определим понятие блок-схемы. Блок-схема - это ориентированный граф, указывающий порядок исполнения команд алгоритма. Вершины такого графа могут быть одного из трех типов: функциональная вершина (F), имеющая один вход и один выход; предикатная вершина (Р), имеющая один вход и два выхода, в этом случае функция Р передает управление по одной из ветвей в зависимости от значения Р (t, т. е. true, означает «истина»,f, т. е. false, - «ложь»); объединяющая вершина (вершина «слияния») (U), обеспечивающая передачу управления от одного из двух входов к выходу. Иногда вместо t пишут «да» (либо знак «+»), вместо f - «нет» (либо знак «-»). Из данных элементарных блок-схем можно построить четыре блок-схемы, имеющих особое значение для практики алгоритмизации: композиция, или следование альтернатива, или ветвление; итерация, или цикл, с предусловием или постусловием. Блок-схема альтернатива может иметь и сокращенную форму, в которой отсутствует ветвь F2. Развитием блок-схемы типа альтернатива является блок-схема выбор.

08.02.2018, Чт, 10:42, Мск , Текст: Игорь Королев

Программа «Цифровая экономика» предполагает ряд разработок в сфере промышленного интернета: облачной системы, киберфизической системы интеллектуального мониторинга энергоснабжения, беспроводной сенсорной сети, объектно-ориентированного языка программирования с защитой данных и промышленной базы данных реального времени.

Облачная система промышленного интернета

План мероприятий написанной по распоряжению Президента России Владимира Путина программы «Цифровая экономика» по разделу «Формирование исследовательских компетенций и технологических заделов» предполагает проведение исследований и разработок в области промышленного интернета.

Документ был одобрен правительственной комиссией по использованию информационных технологий для улучшения качества жизни граждан и условий предпринимательской деятельности.

В первую очередь предполагается создание облачной платформы для промышленного интерента «Платформа промышленного интернета вещей». В том числе будут выработаны технические требования к аппаратной архитектуре данной платформы и стекам программных технологий на цифровой платформе.

Будущая платформа сможет обеспечить возможности предсказательной аналитики и интеллектуального обслуживания оборудования; мониторинг и поддержание заданных условий производства (например, в сельском хозяйстве); новые стандарты промышленной безопасности, предполагающие постоянный мониторинг физического и психологического состояния сотрудников; автоматическую обработку возникающих событий на оборудовании.

Объектно-ориентированный язык программирования с защитой данных

Запланировано создание нового объектно-ориентированного языка программирования, обеспечивающего межмодульную защиту данных. Будущий язык будет обеспечивать в процессе работы модули безопасности и контролируемый доступ к данным.

Среди направлений «Цифровой экономики» в сфере промышленного интернета
есть разработка российского объектно-ориентированного языка программирования с защитой данных

В результате реализации данного проекта будут получены: вычислительный кластер интернет вещей; вычислений центр для научных и инженерных расчетов; вычислительный центр для обработки данных государственного сектора; вычислительные центры для управления городской инфраструктурой. Новый язык программирования станет необходимым элементов интернета вещей, в том числе с точки зрения обеспечения безопасности используемых данных.

Киберфизическая система интеллектуального мониторинга энергоснабжения

Также будет разработана киберфизическая система интеллектуального мониторинга энергоснабжения «умного города» на основе технологии беспроводных сенсорных сетей. В том числе будет создана функциональная структура и математическая модель такой системы. Будущая система позволит кратно повысить эффективность использования энергоресурсов и станет ключевым ядром «умной фабрики» и отчасти «умного города».

Запланировано и создание системы оптимального управления производственными активами энергетических предприятий с учетом рисков выхода из строя в режиме реального времени. В том числе появится методология оптимального управления производственными активами на основе показателей надежности и эффективности и разработана математическая модель подсистемы расчета рисков выхода из строя и показателей эффективности обслуживания энергетического оборудования.

В результате будет создана «умная» система мониторинга энергетических предприятий, снижающая аварийность и повышающая в целом безопасность объекта энергетического хозяйства.

Беспроводная сенсорная сеть

Документ предполагает разработку программно-технического комплекса мониторинга инфраструктуры энергетических систем на основе технологий «интернета вещей». В том числе будет разработан протокол беспроводной сенсорной сети, позволяющий передавать и принимать данные от датчиков мониторинга протяженного линейного линейного объекта.

Также будут промоделированы и разработаны алгоритм функционирования распределенных узлов сети мониторинга в различных режимах для достижения заданных характеристик по протяженности контролируемого участка и алгоритм маршрутизации пакетов данных в шине данных с линейной избыточной топологией с поддержкой приоретизации.

В результате должна появиться «умная» система мониторинга инфраструктуры энергетических объектов, которая сможет использоваться в качестве прототипа для создания решений промышленного интернета для «умного производства» с большим количеством филиалов.

Защита информации на промышленных объектах

Будут созданы инженерно-технические решения для высокотехнологического производства инновационных программно-аппаратных средств защиты информации на базе перспективных высокоскоростных интерфейсов информационного взаимодействия.

Также запланировано разработка и создание высокотехнологического производства квантово-криптографической аппаратуры защиты информации.

Оба вышеназванных направления станут необходимыми элементами любого из возможных решений «умной фабрики» или «умного производства», обеспечивающей защиту от несанкционированного воздействия на объект.

Документ предполагает создание M2M/IoT-платформы, состоящей из аппаратной части (носимый телеметрический модуль) для сбора информации о сотруднике и окружающей среде, и программной части для ее последующей обработки. В результате должна получиться бизнес-платформа для интернета-вещей, которая при использовании для большого количества объектов будет применима и для использования в рамках «умного производства».

Промышленная база данных реального времени

Другое запланированное мероприятие - создание промышленной объектной базы данных реального времени с поддержкой хранения временных (хронологических) данных и распределенных вычислений. Будущая база данных будет обеспечивать оперативное хранение и регистрацию изменений данных, поддержание актуального состояния данных в информационных системах, хранение и обработку сложных, меняющихся структур даных, и работу в системах «365/24», не допускающих остановки.

База данных реального времени будет использоваться в энергетике, промышленности, медицине, системах управления движущимися объектами, обработки экологических и метеорологических данных, а также создании площадок интернета вещей. База данных станет необходимым элементов устойчивого функционирования систем «промышленного интернета вещей», резко повышающих отказоустойчивость всей системы.

Запланирована разработка средств оперативной блокировки на бесконтактном принципе работы. Будет создан алгоритм работы комплекса оперативных блокировок подстанции, учитывающий повышенные требования надежности и специфику работы системы оперативных блокировок. В результате должен появиться принципиально новый комплекс оперативных блокировок на подстанциях (35-100 кВ), обладающий высокой надежностью и обеспечивающий минимальное количество проводных соединений.

Программная платформа повышения эффективности производства

Будет создана программная платформа повышения эффективности производства. Речь идет о доработке систем поддержки принятия решений (СППР), гибкого управления производством и управления распределенными производством. В том числе будут разработаны системы управления офисными процессами и управления жизненным циклом сложных инженерных систем.

«Будущий сервис позволит управляющим компаниями, ресурсоснабжающим организациям и участникам рынка ЖКХ без капитальных затрат в кратчайшие сроки организовать сбор, хранение и анализ данных с разнородных как по типу ресурса, так и по производителю, приборов учета энергоресурсов, что может экономить до 30% расходов на энергоресурсы», - говорится в документе.

Будет создана и система учета и контроля за ходом сельскохозяйственных работ, которая позволит наблюдать за процессом посева и сбора урожая в режиме реального времени, оперативно вмешиваться в эти процессы, повышая производительность труда и качество урожая. В том числе будет разработана экспертная система для планирования посевов, с помощью которой можно рассчитать будущую экономику и выбирать нужный тип культур, спланировать и проконтролировать ход.

Автоматизация снабжения строительных организаций

Также будет создана система автоматизации отдела снабжения строительных организаций. В рамках данного мероприятия будет произведена доработка модуля для отдела закупкой: индивидуальная настройка уведомлений, инструмент формирования отчетов, приемка ТМЦ с подгрузкой документов, модуль интеграции с «1С» оприходования ТМЦ.

Кроме того, будет осуществлена доработка модуля бюджетирования - автоматизирование планирования по статьям затрат, планирование во времени - а также разработка складского модуля (базовые функции, учет инструмента). Авторы документа рассчитывают, что создание указанной за счет автоматизации рутинных операций позволит снизить ошибки, повысить прозрачность процесса закупки, а также даст инструмент для эффективного мониторинга закупочной деятельности (рентабельность строительных проектов повысится на 5-10%).

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.