Получение сероводорода. Получение сернистого газа сжиганием серы, сероводорода и других видов сырья Сероводород сернистый газ

Альмурзинова Завриш Бисембаевна , учитель биологии и химии МБОУ «Совхозная основная общеобразовательная школа Адамовского района Оренбургской области.

Предмет - химия, класс – 9.

УМК: «Неорганическая химия», авторы: Г.Е. Рудзитис, Ф.Г. Фельдман, Москва, «Просвещение», 2014 год.

Уровень обучения – базовый.

Тема : «Сероводород. Сульфиды. Сернистый газ. Сернистая кислота и её соли». Количество часов по теме – 1.

Урок № 4 в системе уроков по теме « Кислород и сера ».

Цель : На основании знаний о строении сероводорода, оксидов серы рассмотреть их свойства и получение, познакомить учащихся со способами распознавания сульфидов и сульфитов.

Задачи:

1. Образовательная – изучить особенности строения и свойства соединений серы (II ) и( IV ); ознакомиться с качественными реакциями на сульфид и сульфит - ионы.

2. Развивающая – развивать у учащихся умения проводить эксперимент, наблюдать за результатами, анализировать и делать выводы.

3. Воспитательная развитию интереса к изучаемому привить навыкы отношения к природе.

Планируемые результаты : уметь описывать физические и химические свойства сероводорода, сероводородной кислоты и её солей; знать способы получения сернистого газа и сернистой кислоты, объяснить свойства соединений серы (II ) и(IV ) на основе представлений об окислительно-восстановительных процессах; иметь представления о влиянии сернистого газа на появление кислотных дождей.

Оборудование : На демонстрационном столе: сера, сульфид натрия, сульфид железа, раствор лакмуса, раствор серной кислоты, раствор нитрата свинца, хлор в цилиндре, закрытом пробкой, прибор для получения сероводорода и испытания его свойств, оксид серы(VI ), газометр с кислородом, стакан вместимостью 500 мл., ложечка для сжигания веществ.

Ход урока :

    Организационный момент .

    Проводим беседу по повторению свойств серы:

1) чем объясняется наличие нескольких аллотропных видоизменений серы?

2) что происходит с молекулами: А) при охлаждении парообразной серы. Б) при длительном хранении пластической серы, в) при выпадении кристаллов из раствора серы в органических растворителях, например в толуоле?

3) на чем основан флотационный способ очистки серы от примесей, например от речного песка?

Вызываем двух учащихся: 1) изобразите схемы молекул различных аллотропных видоизменений серы и расскажите об их физических свойствах. 2) составьте уравнения реакций, характеризующих свойства кислорода, и рассмотрите их с точки зрения окисления -восстановления.

Остальные учащиеся решают задачу, какова масса сульфида цинка, образующегося при реакции соединения цинка с серой, взятой количеством вещества 2,5 моль?

    Совместно с учащимися формулируем задачу урока : познакомиться со свойствами соединений серы со степенью окисления -2 и +4.

    Новая тема : Учащиеся называют известные им соединения, в которых сера проявляет эти степени окисления. На доске и в тетрадях пишут химические, электронные и структурные формулы сероводорода, оксида серы (IV ), сернистой кислоты.

Как можно получить сероводород? Учащиеся записывают уравнение реакции соединения серы с водородом и объясняют её с точки зрения окисления-восстановления. Затем рассматривают другой способ получения сероводорода: реакцию обмена кислот с сульфидами металлов. Сравниваем этот способ со способами получения галогеноводородов. Отмечаем, что степень окисления серы в реакциях обмена не меняется.

Какими свойствами обладает сероводород? В беседе выясняем физические свойства, отмечаем физиологическое действие. Химические свойства выясняем на опыте горения сероводорода в воздухе при различных условиях. Что может образоваться в качестве продуктов реакции? Рассматриваем реакции с точки зрения окисления-восстановления:

2 Н 2 S + 3O 2 = 2H 2 O + 2SO 2

2H 2 S + O 2 =2H 2 O + 2S

Обращаем внимание учащихся на то, что при полном сгорании происходит более полное окисление (S -2 - 6 e - = S +4 ), чем во втором случае (S -2 - 2 e - = S 0 ).

Обсуждаем, как пройдет процесс, если в качестве окислителя будет взят хлор. Демонстрируем опыт смешивания газов в двух цилиндрах, верхний из которых заранее наполнен хлором, нижний - сероводородом. Хлор обесцвечивается, образуется хлороводород. Сера оседает на стенках цилиндра. После этого рассматриваем сущность реакции разложения сероводорода и подводим учащихся к выводу о кислотном характере сероводорода, подтверждая опытом с лакмусом. Затем проводим качественную реакцию на сульфид ион и составляем уравнение реакции:

Na 2 S +Pb(NO 3 ) 2 =2NaNO 3 +PbS ↓

Совместно с учащимися формулируем вывод: сероводород является только восстановителем в окислительно- восстановительных реакциях, имеет кислотный характер, раствор его в воде кислота.

S 0 →S -2 ; S -2 →S 0 ; S 0 →S +4 ; S -2 →S +4 ; S 0 →H 2 S -2 → S +4 О 2.

Подводим учащихся к выводу о существовании генетической связи между соединениями серы и начинаем разговор о соединениях S +4 . Демонстрируем опыты: 1) получение оксида серы(IV ), 2) обесцвечивание раствора фуксина, 3) растворение оксида серы(IV ) в воде, 4)обнаружение кислоты. Составляем уравнения реакций выполненных опытов и разбираем сущность реакций:

2S О 2 + О 2 =2 S О 3 ; S О 2 +2H 2 S=3S+2H 2 О .

Сернистая кислота – неустойчивое соединение, легко распадается на оксид серы(IV ) и воду, поэтому существует только в водных растворах. Эта кислота средней силы. Она образует два ряда солей: средние - сульфиты(S О 3 -2 ), кислые – гидросульфиты(HS О 3 -1 ).

Демонстрируем опыт: качественное определение сульфитов, взаимодействие сульфитов с сильной кислотой, при этом выделяется газ S О 2 резким запахом:

К 2 S О 3 + Н 2 S О 4 → К 2 S О 4 + Н 2 О + S О 2

    Закрепление. Работа по двум вариантам составить схемы применения 1 вариант сероводорода, второй вариант оксида серы(IV )

    Рефлексия . Подводим итоги работы:

О каких соединениях мы сегодня говорили?

Какие свойства проявляют соединения серы(II ) и ( IV ).

Назовите области применения этих соединений

VII . Домашнее задание: §11,12, упр.3-5 (с.34)

, , 21 , , ,
, 25-26 , 27-28 , , 30, , , , , , , , , , , , /2003;
, , , , , , , , , , , , , /2004

§ 8.1. Окислительно-восстановительные реакции

ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ
(продолжение)

2. Озон – окислитель.

Озон – важнейшее для природы и человека вещество.

Озон создает вокруг Земли на высоте от 10 до 50 км озоносферу с максимумом содержания озона на высоте 20–25 км. Находясь в верхних слоях атмосферы, озон не пропускает к поверхности Земли большую часть ультрафиолетовых лучей Солнца, губительно действующих на человека, животный и растительный мир. В последние годы обнаружены участки озоносферы с сильно пониженным содержанием озона, так называемые озоновые дыры. Неизвестно, образовывались ли озоновые дыры раньше. Также непонятны и причины их возникновения. Предполагают, что хлорсодержащие фреоны холодильников и парфюмерных баллончиков под действием ультрафиолетового излучения Солнца выделяют атомы хлора, которые реагируют с озоном и тем самым уменьшают его концентрацию в верхних слоях атмосферы. Опасность озоновых дыр в атмосфере крайне беспокоит ученых.
В нижних слоях атмосферы озон образуется в результате ряда последовательных реакций между кислородом воздуха и оксидами азота, выбрасываемыми плохо отрегулированными двигателями автомобилей и создающимися разрядами высоковольтных линий электропередач. Озон очень вреден для дыхания – он разрушает ткани бронхов и легких. Озон чрезвычайно ядовит (сильнее угарного газа). Предельно допустимая концентрация в воздухе – 10 –5 %.
Таким образом, озон в верхних и в нижних слоях атмосферы оказывает противоположное по своим результатам воздействие на человека и животный мир.
Озон наряду с хлором используют для обработки воды, чтобы разрушить органические примеси и уничтожить бактерии. Однако как хлорирование, так и озонирование воды имеет свои преимущества и недостатки. При хлорировании воды уничтожаются практически полностью бактерии, но образуются вредные для здоровья органические вещества канцерогенного характера (способствуют развитию раковых опухолей) – диоксины и подобные им соединения. При озонировании воды такие вещества не образуются, но озон убивает не все бактерии, и оставшиеся живыми бактерии через некоторое время обильно размножаются, поглощая остатки убитых бактерий, и вода становится даже более загрязненной бактериальной флорой. Поэтому озонирование питьевой воды лучше применять при ее быстром использовании. Очень эффективно озонирование воды в бассейнах, когда вода непрерывно циркулирует через озонатор. Озон применяют также и для очистки воздуха. Он относится к числу экологически чистых окислителей, не оставляющих вредных продуктов своего распада.
Озон окисляет почти все металлы, кроме золота и металлов платиновой группы.

Химические способы получения озона неэффективны или слишком опасны. Поэтому советуем вам получить озон в смеси с воздухом в озонаторе (действие слабого электрического разряда на кислород), имеющемся в школьной физической лаборатории.

Озон чаще всего получают действием на газообразный кислород тихого электрического разряда (без свечения и искр), который происходит между стенками внутреннего и внешнего сосудов озонатора. Простейший озонатор нетрудно изготовить из стеклянных трубок с пробками. Как это сделать, вы поймете из рис. 8.4. Внутренний электрод – металлический стержень (длинный гвоздь), наружный электрод – проволочная спираль. Воздух можно продувать воздушным насосом для аквариума или резиновой грушей от пульверизатора. На рис. 8.4 внутренний электрод находится в стеклянной трубке (как вы думаете, почему? ), но можно собрать озонатор и без нее. Резиновые пробки быстро разъедаются озоном.

Высокое напряжение удобно получить от индукционной катушки системы зажигания автомобиля, непрерывно размыкая соединение с источником низкого напряжения (аккумулятор или выпрямитель тока на 12 В).
Выход озона – несколько процентов.

Качественно обнаружить озон можно при помощи крахмального раствора йодида калия. Этим раствором можно пропитать полоску фильтровальной бумаги или раствор добавить в озонированную воду, а воздух с озоном пропускать через раствор в пробирке. Кислород в реакцию с йодид-ионом не вступает.
Уравнение реакции:

2I – + О 3 + Н 2 О = I 2 + O 2 + 2ОН – .

Напишите уравнения реакций приема и отдачи электронов.
Поднесите к озонатору полоску фильтровальной бумаги, смоченную этим раствором. (Зачем раствор йодида калия должен содержать крахмал?) Определению озона этим способом мешает пероксид водорода (почему?) .
Рассчитайте ЭДС реакции, используя электродные потенциалы:

3. Восстановительные свойства сероводорода и сульфид-иона.

Сероводород – бесцветный газ с запахом тухлых яиц (в состав некоторых белков входит сера).
Для проведения опытов с сероводородом можно пользоваться газообразным сероводородом, пропуская его через раствор с изучаемым веществом, или приливать к исследуемым растворам заранее приготовленную сероводородную воду (это удобнее). Многие реакции можно проводить с раствором сульфида натрия (реакции на сульфид-ион S 2–).
Работать с сероводородом только под тягой! Смеси сероводорода с воздухом сгорают со взрывом.

Сероводород обычно получают в аппарате Киппа, действуя 25%-й серной (разбавленной 1:4) или 20%-й соляной (разбавленной 1:1) кислотой на сульфид железа в виде кусочков размером 1–2 см. Уравнение реакции:

FeS (кр.) + 2Н + = Fe 2+ + H 2 S (г.).

Небольшие количества сероводорода можно получить, поместив кристаллический сульфид натрия в колбу с пробкой, через которую пропущены капельная воронка с краном и отводная трубка. Медленно приливая из воронки 5–10%-ю соляную кислоту (почему не серную?) , колбу постоянно встряхивают покачиванием, чтобы избежать местного скопления непрореагировавшей кислоты. Если этого не делать, неожиданное смешение компонентов может привести к бурной реакции, выталкиванию пробки и разрушению колбы.
Равномерный ток сероводорода получается при нагревании с серой богатых водородом органических соединений, например парафина (1 часть парафина на 1 часть серы, 300 °С).
Для получения сероводородной воды через дистиллированную воду (или прокипяченную) пропускают сероводород. В одном объеме воды растворяется около трех объемов газообразного сероводорода. При стоянии на воздухе сероводородная вода постепенно мутнеет (почему?) .
Сероводород – сильный восстановитель: галогены восстанавливаются им до галогеноводородов, серная кислота – до диоксида серы и серы.
Сероводород ядовит. Предельно допустимая концентрация в воздухе 0,01 мг/л. Даже при незначительных концентрациях сероводород раздражает глаза и дыхательные пути, вызывает головную боль. Концентрации выше 0,5 мг/л опасны для жизни. При более высоких концентрациях поражается нервная система. При вдохе сероводорода возможна остановка сердца и дыхания. Иногда сероводород скапливается в пещерах и канализационных колодцах, и попавший туда человек мгновенно теряет сознание и погибает.
В то же время сероводородные ванны оказывают лечебное действие на организм человека.

3а. Реакция сероводорода с пероксидом водорода.

Изучите действие раствора пероксида водорода на сероводородную воду или раствор сульфида натрия.
По результатам опытов составьте уравнения реакций. Рассчитайте ЭДС реакции и сделайте вывод о возможности ее прохождения.

3б. Реакция сероводорода с серной кислотой.

В пробирку с 2–3 мл сероводородной воды (или раствора сульфида натрия) прилейте по каплям концентрированную серную кислоту (осторожно!) до появления мути. Что это за вещество? Какие другие продукты могут получиться в этой реакции?
Напишите уравнения реакций. Рассчитайте ЭДС реакции, используя электродные потенциалы:

4. Диоксид серы и сульфит-ион.

Диоксид серы, сернистый газ – важнейший загрязнитель атмосферы, выделяемый автомобильными двигателями при использовании плохо очищенного бензина и топками, в которых сгорают серосодержащие угли, торф или мазут. Ежегодно в атмосферу из-за сжигания угля и нефти выбрасываются миллионы тонн диоксида серы.
В природе диоксид серы встречается в вулканических газах. Диоксид серы окисляется кислородом воздуха в триоксид серы, который, поглощая воду (пары), превращается в серную кислоту. Выпадающие кислотные дожди разрушают цементные части построек, памятники архитектуры, высеченные из камня скульптуры. Кислотные дожди замедляют рост растений и даже приводят к их гибели, убивают живые организмы водоемов. Такие дожди вымывают из пашен малорастворимые в воде фосфорные удобрения, которые, попадая в водоемы, приводят к бурному размножению водорослей и быстрому заболачиванию прудов, рек.
Диоксид серы – бесцветный газ с резким запахом. Получать диоксид серы и работать с ним следует под тягой.

Сернистый газ можно получить, поместив в колбу, закрывающуюся пробкой с отводной трубкой и капельной воронкой, 5–10 г сульфита натрия. Из капельной воронки с 10 мл концентрированной серной кислоты (крайняя осторожность!) приливайте ее по каплям к кристаллам сульфита натрия. Вместо кристаллического сульфита натрия можно воспользоваться его насыщенным раствором.
Диоксид серы можно получить также реакцией между металлической медью и серной кислотой. В круглодонную колбу, снабженную пробкой с газоотводной трубкой и капельной воронкой, положите медные стружки или куски проволоки и прилейте из капельной воронки немного серной кислоты (на 10 г меди берется около 6 мл концентрированной серной кислоты). Для начала реакции слегка нагрейте колбу. После этого кислоту приливайте по каплям. Напишите уравнения приема и отдачи электронов и суммарное уравнение.
Свойства диоксида серы можно изучать, пропуская газ через раствор реагента, или в виде водного раствора (сернистой кислоты). Такие же результаты получаются при использовании подкисленных растворов сульфитов натрия Na 2 SO 3 и калия К 2 SO 3 . В одном объеме воды растворяется до сорока объемов сернистого газа (получается ~6%-й раствор).
Диоксид серы токсичен. При легких отравлениях начинается кашель, насморк, появляются слезы, начинается головокружение. Увеличение дозы приводит к остановке дыхания.

4а. Взаимодействие сернистой кислоты с пероксидом водорода.

Предскажите продукты взаимодействия сернистой кислоты и пероксида водорода. Проверьте свое предположение опытом.
К 2–3 мл сернистой кислоты прилейте столько же 3%-го раствора пероксида водорода. Как доказать образование предполагаемых продуктов реакции?
Тот же опыт повторите с подкисленным и щелочным растворами сульфита натрия.
Напишите уравнения реакций и рассчитайте ЭДС процесса.
Выберите нужные вам электродные потенциалы:

4б. Реакция между сернистым газом и сероводородом.

Эта реакция проходит между газообразными SO 2 и H 2 S и служит для получения серы. Реакция интересна также тем, что два загрязнителя атмосферы взаимно уничтожают друг друга. Проходит ли эта реакция между растворами сероводорода и сернистого газа? Ответьте на этот вопрос опытом.
Выберите электродные потенциалы для определения возможности прохождения реакции в растворе:

Попробуйте провести термодинамический расчет возможности прохождения реакций. Термодинамические характеристики веществ для определения возможности прохождения реакции между газообразными веществами следующие:

При каком состоянии веществ – газообразном или в растворе – реакции более предпочтительны?

Химические свойства

Физические свойства

При обычных условиях сероводород – бесцветный газ, с сильным характерным запахом тухлых яиц. Т пл = -86 °С,Т кип = -60 °С, плохо растворим в воде, при 20 °С в 100 г воды растворяется 2,58 мл H 2 S. Очень ядовит, при вдыхании вызывает паралич, что может привести к смертельному исходу. В природе выделяется в составе вулканических газов, образуется при гниении растительных и животных организмов. Хорошо растворим в воде, при растворении образует слабую сероводородную кислоту.

  1. В водном растворе сероводород обладает свойствами слабой двухосновной кислоты:

H 2 S = HS - + H + ;

HS - = S 2- + H + .

  1. Сероводород горит в воздухе голубым пламенем. При ограниченном доступе воздуха образуется свободная сера:

2H 2 S + O 2 = 2H 2 O + 2S.

При избыточном доступе воздуха горение сероводорода приводит к образованию оксида серы (IV):

2H 2 S + 3O 2 = 2H 2 O + 2SО 2 .

  1. Сероводород обладает восстановительными свойствами. В зависимости от условий сероводород может окисляться в водном растворе до серы, сернистого газа и серной кислоты.

Например, он обесцвечивает бромную воду:

H 2 S + Br 2 = 2HBr + S.

взаимодействует с хлорной водой:

H 2 S + 4Cl 2 + 4H 2 O = H 2 SO 4 + 8HCl.

Струю сероводорода можно поджечь, используя диоксид свинца, так как реакция сопровождается большим выделением тепла:

3PbO 2 + 4H 2 S = 3PbS + SO 2 + 4H 2 O.

  1. Взаимодействие сероводорода с сернистым газом используется для получения серы из отходящих газов металлургического и сернокислого производства:

SO 2 + 2H 2 S = 3S + 2H 2 O.

С этим процессом связано образование самородной серы при вулканических процессах.

  1. При одновременном пропускании сернистого газа и сероводорода через раствор щелочи образуется тиосульфат:

4SO 2 + 2H 2 S + 6NaOH = 3Na 2 S 2 O 3 + 5H 2 O.

  1. Реакция разбавленной соляной кислоты с сульфидом железа (II)

FeS + 2HCl = FeCl 2 + H 2 S

  1. Взаимодействие сульфида алюминия с холодной водой

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S

  1. Прямой синтез из элементов происходит при пропускании водорода над расплавленной серой:

H 2 + S = H 2 S.

  1. Нагревание смеси парафина с серой.

1.9. Сероводородная кислота и её соли

Сероводородной кислоте присущи все свойства слабых кислот. Она реагирует с металлами, оксидами металлов, основаниями.

Как двухосновная, кислота образует два типа солей – сульфиды и гидросульфиды . Гидросульфиды хорошо растворимы в воде, сульфиды щелочных и щелочно-земельных металлов также, сульфиды тяжелых металлов практически нерастворимы.

Сульфиды щелочных и щелочноземельных металлов не окрашены, остальные имеют характерную окраску, например, сульфиды меди (II), никеля и свинца – черные, кадмия, индия, олова – желтые, сурьмы – оранжевый.


Ионные сульфиды щелочных металлов M 2 S имеют структуру типа флюорита, где каждый атом серы окружен кубом из 8 атомов металла и каждый атом металла – тетраэдром из 4 атомов серы. Сульфиды типа MS характерны для щелочноземельных металлов и имеют структуру типа хлорида натрия, где каждый атом металла и серы окружен октаэдром из атомов другого сорта. При усилении ковалентного характера связи металл – сера реализуются структуры с меньшими координационными числами.

Сульфиды цветных металлов встречаются в природе как минералы и руды, служат сырьем для получения металлов.

Пособие-репетитор по химии

Продолжение. Cм. в № 22/2005; 1, 2, 3, 5, 6, 8, 9, 11, 13, 15, 16, 18, 22/2006;
3, 4, 7, 10, 11, 21/2007;
2, 7, 11, 18, 19, 21/2008;
1, 3, 10/2009

ЗАНЯТИЕ 30

10-й класс (первый год обучения)

Сера и ее соединения

1. Положение в таблице Д.И.Менделеева, строение атома.

2. Происхождение названия.

3. Физические свойства.

4. Химические свойства.

5. Нахождение в природе.

6. Основные методы получения.

7. Важнейшие соединения серы (сероводород, сероводородная кислота и ее соли; сернистый газ, сернистая кислота и ее соли; триоксид серы, серная кислота и ее соли).

В периодической системе сера находится в главной подгруппе VI группы (подгруппа халькогенов). Электронная формула серы 1s 2 2s 2 p 6 3s 2 p 4 , это р -элемент. В зависимости от состояния сера может проявлять валентность II, IV или VI:

S: 1s 2 2s 2 2p 6 3s 2 3p 4 3d 0 (валентность II),

S * : 1s 2 2s 2 2p 6 3s 2 3p 3 3d 1 (валентность IV),

S ** : 1s 2 2s 2 2p 6 3s 1 3p 3 3d 2 (валентность VI).

Характерные степени окисления серы –2, +2, +4, +6 (в дисульфидах, содержащих мостиковую связь –S–S– (например, FeS 2), степень окисления серы равна –1); в соединениях входит в состав анионов, с более электроотрицательными элементами – в состав катионов, например:

Сера – элемент с высокой электроотрицательностью, проявляет неметаллические (кислотные) свойства. Имеет четыре стабильных изотопа с массовыми числами 32, 33, 34 и 36. Природная сера на 95 % состоит из изотопа 32 S.

Русское название серы произошло от санскритского слова cira – светло-желтый, по цвету природной серы. Латинское название sulfur переводится как «горючий порошок». 1

Ф и з и ч е с к и е с в о й с т в а

Сера образует три аллотропные модификации : ромбическая (-сера), моноклинная (-сера) и пластическая , или каучукоподобная. Наиболее устойчива при обычных условиях ромбическая сера, а выше 95,5 °С стабильна моноклинная сера. Обе эти аллотропные модификации имеют молекулярную кристаллическую решетку, построенную из молекул состава S 8 , расположенных в пространстве в виде короны; атомы соединены одинарными ковалентными связями. Различие ромбической и моноклинной серы состоит в том, что в кристаллической решетке молекулы упакованы по-разному.

Если ромбическую или моноклинную серу нагреть до точки кипения (444,6 °С) и полученную жидкость вылить в холодную воду, то образуется пластическая сера, по свойствам напоминающая резину. Пластическая сера состоит из длинных зигзагообразных цепей. Эта аллотропная модификация неустойчива и самопроизвольно превращается в одну из кристаллических форм.

Ромбическая сера – твердое кристаллическое вещество желтого цвета; в воде не растворяется (и не смачивается), но хорошо растворяется во многих органических растворителях (сероуглерод, бензол и т.д.). Сера обладает очень плохой электро- и теплопроводностью. Температура плавления ромбической серы +112,8 °С, при температуре 95,5 °С ромбическая сера переходит в моноклинную:

Х и м и ч е с к и е с в о й с т в а

По своим химическим свойствам сера является типичным активным неметаллом. В реакциях может быть как окислителем, так и восстановителем.

Металлы (+):

2Na + S = Na 2 S,

2Al + 3S Al 2 S 3 ,

Неметаллы (+/–)*:

2P + 3S P 2 S 3 ,

S + Cl 2 = SCl 2 ,

S + 3F 2 = SF 6 ,

S + N 2 реакция не идет.

Н 2 О (–). сера не смачивается водой.

Основные оксиды (–).

Кислотные оксиды (–).

Основания (+/–):

S + Cu(OH) 2 реакция не идет.

Кислоты (не окислители) (–).

Кислоты-окислители (+):

S + 2H 2 SO 4 (конц.) = 3SO 2 + 2H 2 O,

S + 2HNO 3 (разб.) = H 2 SO 4 + 2NO,

S + 6HNO 3 (конц.) = H 2 SO 4 + 6NO 2 + 2H 2 O.

В п р и р о д е сера встречается как в самородном состоянии, так и в виде соединений, важнейшими из которых являются пирит, он же железный, или серный, колчедан (FeS 2), цинковая обманка (ZnS), свинцовый блеск (PbS), гипс (CaSO 4 2H 2 O), глауберова соль (Na 2 SO 4 10H 2 O), горькая соль (MgSO 4 7H 2 O). Кроме того, сера входит в состав каменного угля, нефти, а также в различные живые организмы (в составе аминокислот). В организме человека сера концентрируется в волосах.

В л а б о р а т о р н ы х у с л о в и я х серу можно получить, используя окислительно-восстановительные реакции (ОВР), например:

H 2 SO 3 + 2H 2 S = 3S + 3H 2 O,

2H 2 S + O 2 2S + 2H 2 O.

В а ж н е й ш и е с о е д и н е н и я с е р ы

Сероводород (H 2 S) – бесцветный газ с удушающим неприятным запахом тухлых яиц, ядовит (соединяется с гемоглобином крови, образуя сульфид железа). Тяжелее воздуха, малорастворим в воде (2,5 объема сероводорода в 1 объеме воды). Связи в молекуле ковалентные полярные, sp 3 -гибридизация, молекула имеет угловое строение:

В химическом отношении сероводород достаточно активен. Он термически неустойчив; легко сгорает в атмосфере кислорода или на воздухе; легко окисляется галогенами, диоксидом серы или хлоридом железа(III); при нагревании взаимодействует с некоторыми металлами и их оксидами, образуя сульфиды:

2H 2 S + O 2 2S + 2H 2 O,

2H 2 S + 3O 2 2SO 2 + 2H 2 O,

H 2 S + Br 2 = 2HBr + S,

2H 2 S + SO 2 3S + 2H 2 O,

2FeCl 3 + H 2 S = 2FeCl 2 + S + 2HCl,

H 2 S + Zn ZnS + H 2 ,

H 2 S + CaO CaS + H 2 O.

В лабораторных условиях сероводород получают действием на сульфиды железа или цинка сильных минеральных кислот или необратимым гидролизом сульфида алюминия:

ZnS + 2HCl = ZnCl 2 + H 2 S,

Аl 2 SO 3 + 6HOH 2Al(OH) 3 + 3H 2 S.

Раствор сероводорода в воде – сероводородная вода, или сероводородная кислота . Слабый электролит, по второй ступени практически не диссоциирует. Как двухосновная кислота образует два типа солей – сульфиды и гидросульфиды :

например, Na 2 S – сульфид натрия, NaHS – гидросульфид натрия.

Сероводородная кислота проявляет все общие свойства кислот. Кроме того, сероводород, сероводородная кислота и ее соли проявляют сильную восстановительную способность. Например:

H 2 S + Zn = ZnS + H 2 ,

H 2 S + CuO = CuS + H 2 O,

Качественной реакцией на сульфид-ион является взаимодействие с растворимыми солями свинца; при этом выпадает осадок сульфида свинца черного цвета:

Pb 2+ + S 2– -> PbS,

Pb(NO 3) 2 + Na 2 S = PbS + 2NaNO 3 .

Оксид серы(IV) SO 2 – сернистый газ, сернистый ангидрид – бесцветный газ с резким запахом, ядовит. Кислотный оксид. Связи в молекуле ковалентные полярные, sp 2 -гибридизация. Тяжелее воздуха, хорошо растворим в воде (в одном объеме воды – до 80 объемов SO 2), образует при растворении сернистую кислоту , существующую только в растворе:

H 2 O + SO 2 H 2 SO 3 .

По кислотно-основным свойствам сернистый газ проявляет свойства типичного кислотного оксида, сернистая кислота также проявляет все типичные свойства кислот:

SO 2 + CaO CaSO 3 ,

H 2 SO 3 + Zn = ZnSO 3 + H 2 ,

H 2 SO 3 + CaO = CaSO 3 + H 2 O.

По окислительно-восстановительным свойствам сернистый газ, сернистая кислота и сульфиты могут проявлять окислительно-восстановительную двойственность (с преобладанием восстановительных свойств). С более сильными восстановителями соединения серы(IV) ведут себя как окислители:

С более сильными окислителями они проявляют восстановительные свойства:

В промышленности диоксид серы получают:

При горении серы:

Обжигом пирита и других сульфидов:

4FeS 2 + 11O 2 2Fe 2 O 3 + 8SO 2 ,

2ZnS + 3O 2 2ZnO + 2SO 2 .

К лабораторным методам получения относятся:

Действие сильных кислот на сульфиты:

Na 2 SO 3 + 2HCl = 2NaCl + SO 2 + H 2 O;

Взаимодействие концентрированной серной кислоты с тяжелыми металлами:

Cu + 2H 2 SO 4 (конц.) = СuSO 4 + SO 2 + 2H 2 O.

Качественные реакции на сульфит-ион – обесцвечивание «йодной воды» или действие сильных минеральных кислот:

Na 2 SO 3 + I 2 + 2NaOH = 2NaI + Na 2 SO 4 + H 2 O,

Ca 2 SO 3 + 2HCl = CaCl 2 + H 2 O + SO 2 .

Оксид серы(VI) SO 3 – триоксид серы, или серный ангидрид , – это бесцветная жидкость, которая при температуре ниже 17 °С превращается в белую кристаллическую массу. Ядовит. Существует в виде полимеров (мономерные молекулы существуют только в газовой фазе), связи в молекуле ковалентные полярные, sp 2 -гибридизация. Гигроскопичен, термически неустойчив. С водой реагирует с сильным экзо-эффектом. Реагирует с безводной серной кислотой, образуя олеум . Образуется при окислении сернистого газа:

SO 3 + H 2 O = H 2 SO 4 + Q ,

n n SO 3 .

По кислотно-основным свойствам является типичным кислотным оксидом:

SO 3 + H 2 O = H 2 SO 4 ,

SO 3 + CaO = CaSO 4 ,

По окислительно-восстановительным свойствам выступает сильным окислителем, обычно восстанавливаясь до SO 2 или сульфитов:

В чистом виде практического значения не имеет, является промежуточным продуктом при производстве серной кислоты.

Серная кислота – тяжелая маслянистая жидкость без цвета и запаха. Хорошо растворима в воде (с большим экзо-эффектом). Гигроскопична, ядовита, вызывает сильные ожоги кожи. Является сильным электролитом. Серная кислота образует два типа солей: сульфаты и гидросульфаты , которые проявляют все общие свойства солей. Сульфаты активных металлов термически устойчивы, а сульфаты других металлов разлагаются даже при небольшом нагревании:

Na 2 SO 4 не разлагается,

ZnSO 4 ZnO + SO 3 ,

4FeSO 4 2Fe 2 O 3 + 4SO 2 + O 2 ,

Ag 2 SO 4 2Ag + SO 2 + O 2 ,

HgSO 4 Hg + SO 2 + O 2 .

Раствор с массовой долей серной кислоты ниже 70 % обычно считается разбавленным; выше 70 % – концентрированным; раствор SO 3 в безводной серной кислоте называется олеум (концентрация триоксида серы в олеуме может достигать 65 %).

Разбавленная серная кислота проявляет все свойства, характерные для сильных кислот:

Н 2 SO 4 2H + + SO 4 2– ,

Н 2 SO 4 + Zn = ZnSO 4 + Н 2 ,

Н 2 SO 4 (разб.) + Cu реакция не идет,

Н 2 SO 4 + CaO = CaSO 4 + H 2 O,

CaCO 3 + Н 2 SO 4 = CaSO 4 + H 2 O + CO 2 .

Концентрированная серная кислота является сильным окислителем, особенно при нагревании. Она окисляет многие металлы, неметаллы, а также некоторые органические вещества. Не окисляются под действием концентрированной серной кислоты железо, золото и металлы платиновой группы (правда, железо хорошо растворяется при нагревании в умеренно концентрированной серной кислоте с массовой долей 70 %). При взаимодействии концентрированной серной кислоты с другими металлами образуются сульфаты и продукты восстановления серной кислоты.

2Н 2 SO 4 (конц.) + Cu = CuSO 4 + SO 2 + 2H 2 O,

5Н 2 SO 4 (конц.) + 8Na = 4Na 2 SO 4 + H 2 S + 4H 2 O,

Н 2 SO 4 (конц.) пассивирует Fe, Al.

При взаимодействии с неметаллами концентрированная серная кислота восстанавливается до SO 2:

5Н 2 SO 4 (конц.) + 2Р = 2H 3 PO 4 + 5SO 2 + 2H 2 O,

2Н 2 SO 4 (конц.) + C = 2H 2 O + CO 2 + 2SO 2 .

Контактный метод получения серной кислоты состоит из трех стадий:

1) обжиг пирита:

4FeS 2 + 11O 2 2Fe 2 O 3 + 8SO 2 ;

2) окисление SO 2 в SO 3 в присутствии катализатора – оксида ванадия:

3) растворение SO 3 в серной кислоте с получением олеума:

SO 3 + H 2 O = H 2 SO 4 + Q ,

n SO 3 + H 2 SO 4 (конц.) = H 2 SO 4 n SO 3 .

Качественная реакция на сульфат-ион – взаимодействие с катионом бария, в результате чего выпадает белый осадок BaSO 4 .

Ba 2+ + SO 4 2– -> BaSO 4 ,

BaCl 2 + Na 2 SO 4 = BaSO 4 + 2NaCl.

Тест по теме «Сера и ее соединения»

1. Сера и кислород – это:

а) хорошие проводники электричества;

б) относятся к подгруппе халькогенов;

в) хорошо растворимы в воде;

г) имеют аллотропные модификации.

2. В результате реакции серной кислоты с медью можно получить:

а) водород; б) серу;

в) сернистый газ; г) сероводород.

3. Сероводород – это:

а) ядовитый газ;

б) сильный окислитель;

в) типичный восстановитель;

г) один из аллотропов серы.

4. Массовая доля (в %) кислорода в серном ангидриде равна:

а) 50; б) 60; в) 40; г) 94.

5. Оксид серы(IV) является ангидридом:

а) серной кислоты;

б) сернистой кислоты;

в) сероводородной кислоты;

г) тиосерной кислоты.

6. На сколько процентов уменьшится масса гидросульфита калия после прокаливания?

в) гидросульфит калия термически устойчив;

7. Сместить равновесие в сторону прямой реакции окисления сернистого газа в серный ангидрид можно:

а) используя катализатор;

б) увеличивая давление;

в) уменьшая давление;

г) понижая концентрацию оксида серы(VI).

8. При приготовлении раствора серной кислоты необходимо:

а) наливать кислоту в воду;

б) наливать воду в кислоту;

в) порядок приливания не имеет значения;

г) серная кислота не растворяется в воде.

9. Какую массу (в г) декагидрата сульфата натрия необходимо добавить к 100 мл 8%-го раствора сульфата натрия (плотность равна 1,07 г/мл), чтобы удвоить массовую долю соли в растворе?

а) 100; б) 1,07; в) 30,5; г) 22,4.

10. Для определения сульфит-иона в качественном анализе можно использовать:

а) катионы свинца;

б) «йодную воду»;

в) раствор марганцовки;

г) сильные минеральные кислоты.

Ключ к тесту

б, г в а, в б б г б, г а в б, г

Задачи и упражнения на серу и ее соединения

Ц е п о ч к и п р е в р а щ е н и й

1. Сера -> сульфид железа(II) -> сероводород -> сернистый газ -> триоксид серы > серная кислота > оксид серы(IV).

3. Серная кислота -> сернистый газ -> сера -> диоксид серы -> триоксид серы -> серная кислота.

4. Сернистый ангидрид -> сульфит натрия -> гидросульфит натрия -> сульфит натрия -> сульфат натрия.

5. Пирит -> сернистый газ -> серный ангидрид -> серная кислота -> оксид серы(IV) -> сульфит калия -> сернистый ангидрид.

6. Пирит > сернистый газ -> сульфит натрия -> сульфат натрия -> сульфат бария -> сульфид бария.

7. Сульфид натрия -> А -> В -> С -> D -> сульфат бария (все вещества содержат серу; первая, вторая и четвертая реакции – ОВР).

У р о в е н ь А

1. Через раствор, содержащий 5 г едкого натра, пропустили 6,5 л сероводорода. Определите состав полученного раствора.

Ответ. 7 г NaHS, 5,61 г H 2 S.

2. Какую массу глауберовой соли необходимо добавить к 100 мл 8%-го раствора сульфата натрия (плотность раствора равна 1,07 г/мл), чтобы удвоить массовую долю вещества в растворе?

Ответ. 30,5 г Na 2 SO 4 10H 2 O.

3. К 40 г 12%-го раствора серной кислоты добавили 4 г серного ангидрида. Вычислите массовую долю вещества в образовавшемся растворе.

Ответ. 22 % H 2 SO 4 .

4. Смесь сульфида железа(II) и пирита, массой 20,8 г, подвергли длительному обжигу, при этом образовалось 6,72 л газообразного продукта (н.у.). Определите массу твердого остатка, образовавшегося при обжиге.

Ответ. 16 г Fe 2 O 3 .

5. Имеется смесь меди, углерода и оксида железа(III) с молярным соотношением компонентов 4:2:1 (в порядке перечисления). Какой объем 96%-й серной кислоты (плотность равна 1,84 г/мл) нужен для полного растворения при нагревании 2,2 г такой смеси?

Ответ. 4,16 мл раствора H 2 SO 4 .

6. Для окисления 3,12 г гидросульфита щелочного металла потребовалось добавить 50 мл раствора, в котором молярные концентрации дихромата натрия и серной кислоты равны 0,2 моль/л и 0,5 моль/л соответственно. Установите состав и массу остатка, который получится при выпаривании раствора после реакции.

Ответ . 7,47 г смеси сульфатов хрома (3,92 г) и натрия (3,55 г).

У р о в е н ь Б

(задачи на олеум)

1. Какую массу триоксида серы надо растворить в 100 г 91%-го раствора серной кислоты, чтобы получить 30%-й олеум?

Решение

По условию задачи:

m (H 2 SO 4) = 100 0,91 = 91 г,

m (H 2 O) = 100 0,09 = 9 г,

(H 2 O) = 9/18 = 0,5 моль.

Часть добавленного SO 3 (m 1) пойдет на реакцию с H 2 O:

H 2 O + SO 3 = H 2 SO 4 .

По уравнению реакции:

(SO 3) = (H 2 O) = 0,5 моль.

m 1 (SO 3) = 0,5 80 = 40 г.

Вторая часть SO 3 (m 2) пойдет на создание концентрации олеума. Выразим массовую долю олеума:

m 2 (SO 3) = 60 г.

Суммарная масса триоксида серы:

m (SO 3) = m 1 (SO 3) + m 2 (SO 3) = 40 + 60 = 100 г.

Ответ . 100 г SO 3 .

2. Какую массу пирита необходимо взять для получения такого количества оксида серы(VI), чтобы, растворив его в 54,95 мл 91%-го раствора серной кислоты (плотность равна 1,82 г/см 3), получить 12,5%-й олеум? Выход серного ангидрида считать за 75 %.

Ответ . 60 г FeS 2 .

3. На нейтрализацию 34,5 г олеума расходуется 74,5 мл 40%-го раствора гидроксида калия (плотность равна 1,41 г/мл). Сколько молей серного ангидрида приходится на 1 моль серной кислоты в этом олеуме?

Ответ . 0,5 моль SO 3 .

4. При добавлении оксида серы(VI) к 300 г 82%-го раствора серной кислоты получен олеум с массовой долей триоксида серы 10%. Найдите массу использованного серного ангидрида.

Ответ . 300 г SO 3 .

5. При добавлении 400 г триоксида серы к 720 г водного раствора серной кислоты получен олеум с массовой долей 7,14 %. Найдите массовую долю серной кислоты в исходном растворе.

Ответ . 90 % H 2 SO 4 .

6. Найдите массу 64%-го раствора серной кислоты, если при добавлении к этому раствору 100 г триоксида серы получается олеум, содержащий 20 % триоксида серы.

Ответ . 44,4 г раствора H 2 SO 4 .

7. Какие массы триоксида серы и 91%-го раствора серной кислоты необходимо смешать для получения 1 кг 20%-го олеума?

Ответ . 428,6 г SO 3 и 571,4 г раствора H 2 SO 4 .

8. К 400 г олеума, содержащего 20 % триоксида серы, добавили 100 г 91%-го раствора серной кислоты. Найдите массовую долю серной кислоты в полученном растворе.

Ответ . 92 % H 2 SO 4 в олеуме.

9. Найдите массовую долю серной кислоты в растворе, полученном при смешивании 200 г 20%-го олеума и 200 г 10%-го раствора серной кислоты.

Ответ . 57,25 % H 2 SO 4 .

10. Какую массу 50%-го раствора серной кислоты необходимо добавить к 400 г 10%-го олеума для получения 80%-го раствора серной кислоты?

Ответ . 296,67 г 50%-го раствора H 2 SO 4 .

Ответ . 114,83 г олеума.

К а ч е с т в е н н ы е з а д а ч и

1. Бесцветный газ А с резким характерным запахом окисляется кислородом в присутствии катализатора в соединение В, представляющее собой летучую жидкость. Вещество В, соединяясь с негашеной известью, образует соль С. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – SO 2 , B – SO 3 , C – CaSO 4 .

2. При нагревании раствора соли А образуется осадок В. Этот же осадок образуется при действии щелочи на раствор соли А. При действии кислоты на соль А выделяется газ С, обесцвечивающий раствор перманганата калия. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – Ca(HSO 3) 2 , B – CaSO 3 , C – SO 2 .

3. При окислении газа А концентрированной серной кислотой образуется простое вещество В, сложное вещество С и вода. Растворы веществ А и С реагируют между собой с образованием осадка вещества В. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – H 2 S, B – S, C – SO 2 .

4. В реакции соединения двух жидких при обычной температуре оксидов А и В образуется вещество С, концентрированный раствор которого обугливает сахарозу. Идентифицируйте вещества, напишите уравнения реакций.

Ответ . Вещества: А – SO 3 , B – H 2 O, C – H 2 SO 4 .

5. В вашем распоряжении имеются сульфид железа(II), сульфид алюминия и водные растворы гидроксида бария и хлороводорода. Получите из этих веществ семь различных солей (без использования ОВР).

Ответ . Соли: AlCl 3 , BaS, FeCl 2 , BaCl 2 , Ba(OH)Cl, Al(OH)Cl 2 , Al(OH) 2 Cl.

6. При действии концентрированной серной кислоты на бромиды выделяется сернистый газ, а на йодиды – сероводород. Напишите уравнения реакций. Объясните разницу в характере продуктов в этих случаях.

Ответ . Уравнения реакций:

2H 2 SO 4 (конц.) + 2NaBr = SO 2 + Br 2 + Na 2 SO 4 + 2H 2 O,

5H 2 SO 4 (конц.) + 8NaI = H 2 S + 4I 2 + 4Na 2 SO 4 + 4H 2 O.

1 См.: Лидин Р.А. «Справочник по общей и неорганической химии». М.: Просвещение, 1997.

* Знак +/– означает, что данная реакция протекает не со всеми реагентами или в специфических условиях.

Продолжение следует

О.С.ЗАЙЦЕВ

УЧЕБНАЯ КНИГА ПО ХИМИИ

ДЛЯ УЧИТЕЛЕЙ СРЕДНИХ ШКОЛ,
СТУДЕНТОВ ПЕДАГОГИЧЕСКИХ ВУЗОВ И ШКОЛЬНИКОВ 9–10 КЛАССОВ,
РЕШИВШИХ ПОСВЯТИТЬ СЕБЯ ХИМИИ И ЕСТЕСТВОЗНАНИЮ

УЧЕБНИКЗАДАЧНИКЛАБОРАТОРНЫЙ ПРАКТИКУМНАУЧНЫЕ РАССКАЗЫ ДЛЯ ЧТЕНИЯ

Продолжение. См. № 4–14, 16–28, 30–34, 37–44, 47, 48/2002;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25-26, 27-28, 29, 30, 31, 32, 35, 36, 37, 39, 41, 42, 43, 44 , 46, 47/2003;
1, 2, 3, 4, 5, 7, 11, 13, 14, 16, 17, 20, 22, 24/2004

§ 8.1. Окислительно-восстановительные реакции

ЛАБОРАТОРНЫЕ ИССЛЕДОВАНИЯ
(продолжение)

2. Озон – окислитель.

Озон – важнейшее для природы и человека вещество.

Озон создает вокруг Земли на высоте от 10 до 50 км озоносферу с максимумом содержания озона на высоте 20–25 км. Находясь в верхних слоях атмосферы, озон не пропускает к поверхности Земли большую часть ультрафиолетовых лучей Солнца, губительно действующих на человека, животный и растительный мир. В последние годы обнаружены участки озоносферы с сильно пониженным содержанием озона, так называемые озоновые дыры. Неизвестно, образовывались ли озоновые дыры раньше. Также непонятны и причины их возникновения. Предполагают, что хлорсодержащие фреоны холодильников и парфюмерных баллончиков под действием ультрафиолетового излучения Солнца выделяют атомы хлора, которые реагируют с озоном и тем самым уменьшают его концентрацию в верхних слоях атмосферы. Опасность озоновых дыр в атмосфере крайне беспокоит ученых.
В нижних слоях атмосферы озон образуется в результате ряда последовательных реакций между кислородом воздуха и оксидами азота, выбрасываемыми плохо отрегулированными двигателями автомобилей и создающимися разрядами высоковольтных линий электропередач. Озон очень вреден для дыхания – он разрушает ткани бронхов и легких. Озон чрезвычайно ядовит (сильнее угарного газа). Предельно допустимая концентрация в воздухе – 10 –5 %.
Таким образом, озон в верхних и в нижних слоях атмосферы оказывает противоположное по своим результатам воздействие на человека и животный мир.
Озон наряду с хлором используют для обработки воды, чтобы разрушить органические примеси и уничтожить бактерии. Однако как хлорирование, так и озонирование воды имеет свои преимущества и недостатки. При хлорировании воды уничтожаются практически полностью бактерии, но образуются вредные для здоровья органические вещества канцерогенного характера (способствуют развитию раковых опухолей) – диоксины и подобные им соединения. При озонировании воды такие вещества не образуются, но озон убивает не все бактерии, и оставшиеся живыми бактерии через некоторое время обильно размножаются, поглощая остатки убитых бактерий, и вода становится даже более загрязненной бактериальной флорой. Поэтому озонирование питьевой воды лучше применять при ее быстром использовании. Очень эффективно озонирование воды в бассейнах, когда вода непрерывно циркулирует через озонатор. Озон применяют также и для очистки воздуха. Он относится к числу экологически чистых окислителей, не оставляющих вредных продуктов своего распада.
Озон окисляет почти все металлы, кроме золота и металлов платиновой группы.

Химические способы получения озона неэффективны или слишком опасны. Поэтому советуем вам получить озон в смеси с воздухом в озонаторе (действие слабого электрического разряда на кислород), имеющемся в школьной физической лаборатории.

Озон чаще всего получают действием на газообразный кислород тихого электрического разряда (без свечения и искр), который происходит между стенками внутреннего и внешнего сосудов озонатора. Простейший озонатор нетрудно изготовить из стеклянных трубок с пробками. Как это сделать, вы поймете из рис. 8.4. Внутренний электрод – металлический стержень (длинный гвоздь), наружный электрод – проволочная спираль. Воздух можно продувать воздушным насосом для аквариума или резиновой грушей от пульверизатора. На рис. 8.4 внутренний электрод находится в стеклянной трубке (как вы думаете, почему? ), но можно собрать озонатор и без нее. Резиновые пробки быстро разъедаются озоном.


Высокое напряжение удобно получить от индукционной катушки системы зажигания автомобиля, непрерывно размыкая соединение с источником низкого напряжения (аккумулятор или выпрямитель тока на 12 В).
Выход озона – несколько процентов.

Качественно обнаружить озон можно при помощи крахмального раствора йодида калия. Этим раствором можно пропитать полоску фильтровальной бумаги или раствор добавить в озонированную воду, а воздух с озоном пропускать через раствор в пробирке. Кислород в реакцию с йодид-ионом не вступает.
Уравнение реакции:

2I – + О 3 + Н 2 О = I 2 + O 2 + 2ОН – .

Напишите уравнения реакций приема и отдачи электронов.
Поднесите к озонатору полоску фильтровальной бумаги, смоченную этим раствором. (Зачем раствор йодида калия должен содержать крахмал?) Определению озона этим способом мешает пероксид водорода (почему?) .
Рассчитайте ЭДС реакции, используя электродные потенциалы:

3. Восстановительные свойства сероводорода и сульфид-иона.

Сероводород – бесцветный газ с запахом тухлых яиц (в состав некоторых белков входит сера).
Для проведения опытов с сероводородом можно пользоваться газообразным сероводородом, пропуская его через раствор с изучаемым веществом, или приливать к исследуемым растворам заранее приготовленную сероводородную воду (это удобнее). Многие реакции можно проводить с раствором сульфида натрия (реакции на сульфид-ион S 2–).
Работать с сероводородом только под тягой! Смеси сероводорода с воздухом сгорают со взрывом.

Сероводород обычно получают в аппарате Киппа, действуя 25%-й серной (разбавленной 1:4) или 20%-й соляной (разбавленной 1:1) кислотой на сульфид железа в виде кусочков размером 1–2 см. Уравнение реакции:

FeS (кр.) + 2Н + = Fe 2+ + H 2 S (г.).

Небольшие количества сероводорода можно получить, поместив кристаллический сульфид натрия в колбу с пробкой, через которую пропущены капельная воронка с краном и отводная трубка. Медленно приливая из воронки 5–10%-ю соляную кислоту (почему не серную?) , колбу постоянно встряхивают покачиванием, чтобы избежать местного скопления непрореагировавшей кислоты. Если этого не делать, неожиданное смешение компонентов может привести к бурной реакции, выталкиванию пробки и разрушению колбы.
Равномерный ток сероводорода получается при нагревании с серой богатых водородом органических соединений, например парафина (1 часть парафина на 1 часть серы, 300 °С).
Для получения сероводородной воды через дистиллированную воду (или прокипяченную) пропускают сероводород. В одном объеме воды растворяется около трех объемов газообразного сероводорода. При стоянии на воздухе сероводородная вода постепенно мутнеет (почему?) .
Сероводород – сильный восстановитель: галогены восстанавливаются им до галогеноводородов, серная кислота – до диоксида серы и серы.
Сероводород ядовит. Предельно допустимая концентрация в воздухе 0,01 мг/л. Даже при незначительных концентрациях сероводород раздражает глаза и дыхательные пути, вызывает головную боль. Концентрации выше 0,5 мг/л опасны для жизни. При более высоких концентрациях поражается нервная система. При вдохе сероводорода возможна остановка сердца и дыхания. Иногда сероводород скапливается в пещерах и канализационных колодцах, и попавший туда человек мгновенно теряет сознание и погибает.
В то же время сероводородные ванны оказывают лечебное действие на организм человека.

3а. Реакция сероводорода с пероксидом водорода.

Изучите действие раствора пероксида водорода на сероводородную воду или раствор сульфида натрия.
По результатам опытов составьте уравнения реакций. Рассчитайте ЭДС реакции и сделайте вывод о возможности ее прохождения.

3б. Реакция сероводорода с серной кислотой.

В пробирку с 2–3 мл сероводородной воды (или раствора сульфида натрия) прилейте по каплям концентрированную серную кислоту (осторожно!) до появления мути. Что это за вещество? Какие другие продукты могут получиться в этой реакции?
Напишите уравнения реакций. Рассчитайте ЭДС реакции, используя электродные потенциалы:

4. Диоксид серы и сульфит-ион.

Диоксид серы, сернистый газ – важнейший загрязнитель атмосферы, выделяемый автомобильными двигателями при использовании плохо очищенного бензина и топками, в которых сгорают серосодержащие угли, торф или мазут. Ежегодно в атмосферу из-за сжигания угля и нефти выбрасываются миллионы тонн диоксида серы.
В природе диоксид серы встречается в вулканических газах. Диоксид серы окисляется кислородом воздуха в триоксид серы, который, поглощая воду (пары), превращается в серную кислоту. Выпадающие кислотные дожди разрушают цементные части построек, памятники архитектуры, высеченные из камня скульптуры. Кислотные дожди замедляют рост растений и даже приводят к их гибели, убивают живые организмы водоемов. Такие дожди вымывают из пашен малорастворимые в воде фосфорные удобрения, которые, попадая в водоемы, приводят к бурному размножению водорослей и быстрому заболачиванию прудов, рек.
Диоксид серы – бесцветный газ с резким запахом. Получать диоксид серы и работать с ним следует под тягой.

Сернистый газ можно получить, поместив в колбу, закрывающуюся пробкой с отводной трубкой и капельной воронкой, 5–10 г сульфита натрия. Из капельной воронки с 10 мл концентрированной серной кислоты (крайняя осторожность!) приливайте ее по каплям к кристаллам сульфита натрия. Вместо кристаллического сульфита натрия можно воспользоваться его насыщенным раствором.
Диоксид серы можно получить также реакцией между металлической медью и серной кислотой. В круглодонную колбу, снабженную пробкой с газоотводной трубкой и капельной воронкой, положите медные стружки или куски проволоки и прилейте из капельной воронки немного серной кислоты (на 10 г меди берется около 6 мл концентрированной серной кислоты). Для начала реакции слегка нагрейте колбу. После этого кислоту приливайте по каплям. Напишите уравнения приема и отдачи электронов и суммарное уравнение.
Свойства диоксида серы можно изучать, пропуская газ через раствор реагента, или в виде водного раствора (сернистой кислоты). Такие же результаты получаются при использовании подкисленных растворов сульфитов натрия Na 2 SO 3 и калия К 2 SO 3 . В одном объеме воды растворяется до сорока объемов сернистого газа (получается ~6%-й раствор).
Диоксид серы токсичен. При легких отравлениях начинается кашель, насморк, появляются слезы, начинается головокружение. Увеличение дозы приводит к остановке дыхания.

4а. Взаимодействие сернистой кислоты с пероксидом водорода.

Предскажите продукты взаимодействия сернистой кислоты и пероксида водорода. Проверьте свое предположение опытом.
К 2–3 мл сернистой кислоты прилейте столько же 3%-го раствора пероксида водорода. Как доказать образование предполагаемых продуктов реакции?
Тот же опыт повторите с подкисленным и щелочным растворами сульфита натрия.
Напишите уравнения реакций и рассчитайте ЭДС процесса.
Выберите нужные вам электродные потенциалы:

4б. Реакция между сернистым газом и сероводородом.

Эта реакция проходит между газообразными SO 2 и H 2 S и служит для получения серы. Реакция интересна также тем, что два загрязнителя атмосферы взаимно уничтожают друг друга. Проходит ли эта реакция между растворами сероводорода и сернистого газа? Ответьте на этот вопрос опытом.
Выберите электродные потенциалы для определения возможности прохождения реакции в растворе:

Попробуйте провести термодинамический расчет возможности прохождения реакций. Термодинамические характеристики веществ для определения возможности прохождения реакции между газообразными веществами следующие:

При каком состоянии веществ – газообразном или в растворе – реакции более предпочтительны?

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.