Найти корни уравнения 4 степени. Уравнение четвертой степени

В общем случае решение уравнения четвёртой степени осуществляется с использованием методов решения уравнений для высших степеней, например, методом Феррари или с помощью схемы Горнера. Но некоторые уравнения 4-ой степени имеют более простое решение.

Существует несколько особых типов уравнений четвертой степени, со способами решения которых вы познакомитесь ниже:

  • Биквадратное уравнения $ax^4+bx^2+c=0$;
  • Возвратные уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$;
  • Уравнения вида $ax^4+b=0$.

Решение биквадратных уравнений четвёртой степени

Биквадратные уравнения $ax^4+bx^2+c=0$ сводятся к квадратным путём замены переменной $x^2$ на новую, например, на $y$. После замены решается новое полученное уравнение, а затем значение найденной переменной подставляется в уравнение $x^2=y$. Результатом решения будут корни уравнения $x^2=y$.

Пример 1

Решите уравнение $x(x-1)(x-2)(x-3)=24$:

Раскроем скобки в многочлене:

$(x^2-3x)(x^2-3x+2)=24$

В таком виде становится очевидно, что в качестве новой переменной можно выбрать выражение $y=x^2-3x$, подставим её:

$y \cdot (y+2)=24$

Теперь решим два квадратных уравнения $x^2-3x=-4$ и $x^2-3x=-6$.

Корни первого уравнения $x_1{1,2}=4;-1$, второе решений не имеет.

Решение возвратных уравнений 4 степени

Эти уравнения вида $ax^4+bx^3+cx^2 +bx+ a=0$ повторяют своими коэффициентами при младших членах коэффициенты при многочленах со старшими степенями. Для решения такого уравнения сначала делят его на $x^2$:

$ax^4+bx^3+cx^2 +bx+ a=0|:x^2$

$ax^2+bx+c+\frac{b}{x} + \frac{a}{x^2}=0$

$a(x^2+\frac{1}{x^2})+b(x+\frac{1}{x}) + c=0$

Затем заменяют $(x+\frac{1}{x})$ на новую переменную, тогда $(x^2+\frac{1}{x^2})=y^2-2$, после подстановки получаем следующее квадратное уравнение:

$a(y^2-2)+by+c=0$

После этого ищем корни уравнений $x+\frac{1}{x}=y_1$ и $x+\frac{1}{x}=y_2$.

Аналогичным методом решаются возвратные уравнения вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$.

Пример 2

Решите уравнение:

$3x^4-2x^3-9x^2-4x+12=0$

Данное уравнение – возвратное уравнение вида $ax^4+bx^3+cx^2 +kbx+ k^2a=0$. Поэтому разделим всё уравнение на $x^2$:

$3x^2-2x-9 \cdot \frac{2 \cdot 2}{x}+3 \cdot (\frac{2}{x})^2=0$

$3(x^2+\frac{4}{x^2})-2(x+\frac{2}{x}-9=0$

Произведём замену выражения $x+\frac{2}{x}$: $3(y^2-4)-2y-9=0$

Рассчитаем корни данного уравнения, они равны $y_1=3$ и $y_2=-\frac{7}{3}$.

Соответственно, теперь необходимо решить два уравнения $x+\frac{2}{x}=3$ и $x+\frac{2}{x}=-\frac{7}{3}$. Решение первого уравнения - $x_1=1, x_2=2$, второе уравнение не имеет корней.

Следовательно, корнями исходного уравнения являются $x_1=1, x_2=2$.

Уравнения вида $ax^4+b=0$

Корни уравнения такой разновидности находятся с помощью применения формул сокращённого умножения.

Решение Декарта - Эйлера

Сделав подстановку , получим уравнение в следующем виде (он называется «неполным»):

y 4 + p y 2 + q y + r = 0 .

Корни y 1 , y 2 , y 3 , y 4 такого уравнения равны одному из следующих выражений:

в которых сочетания знаков выбираются таким образом, чтобы выполнялось следующее соотношение:

,

причём z 1 , z 2 и z 3 - это корни кубического уравнения

Решение Феррари

Основная статья : Метод Феррари

Представим уравнение четвёртой степени в виде:

A x 4 + B x 3 + C x 2 + D x + E = 0,

Его решение может быть найдено из следующих выражений:

если β = 0 , решив u 4 + αu 2 + γ = 0 и, сделав подстановку , найдём корни: . , (любой знак квадратного корня подойдёт) , (три комплексных корня, один из которых подойдёт) Два ± s должны иметь одинаковый знак, ± t - независимы. Для того, чтобы найти все корни, надо найти x для знаковых комбинаций ± s ,± t = +,+ для +,− для −,+ для −,−. Двойные корни появятся два раза, тройные корни - три раза и корни четвёртого порядка - четыре раза. Порядок корней зависит от того, какой из кубических корней U выбран.

См. также

  • Легко решаемые типы уравнений 4 степени: Биквадратное уравнение , возвратное уравнение четвёртой степени

Литература

  • Корн Г., Корн Т. (1974) Справочник по математике.

Ссылки

  • Решение Феррари (англ.)

Wikimedia Foundation . 2010 .

Смотреть что такое "Уравнение четвертой степени" в других словарях:

    уравнение четвертой степени - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN quartic equation … Справочник технического переводчика

    График многочлена 4 ой степени с четырьмя корнями и тремя критическими точками. Уравнение четвёртой степени в математике алгебраическое уравнение вида: Четвёртая степень для алгебраических уравнений является наивысшей, при которой… … Википедия

    Уравнение вида: anxn + an − 1xn − 1 + ... + a1x + a0 = 0 называется возвратным, если его коэффициенты, стоящие на симметричных позициях, равны, то есть если an − k = ak, при k = 0, 1, …, n. Содержание 1 Уравнение четвёртой степени … Википедия

    В котором неизвестный член в четвертой степени. Полный словарь иностранных слов, вошедших в употребление в русском языке. Попов М., 1907. БИКВАДРАТНОЕ УРАВНЕНИЕ от лат. bis, дважды, и quadratum, квадрат. Уравнение, в котором наибольшая степень… … Словарь иностранных слов русского языка

    Вместе с арифметикой есть наука о числах и через посредство чисел о величинах вообще. Не занимаясь изучением свойств каких нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин как таковых, независимо от… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Совокупность прикладных знаний, позволяющих авиационным инженерам на занятий в области аэродинамики, проблем прочности, двигателестроения и динамики полета летательных аппаратов (т.е. теории) создать новый летательный аппарат или улучшить… … Энциклопедия Кольера

    Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом… … Энциклопедия Кольера

    История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… … Википедия

    Уравнением называется математическое соотношение, выражающее равенство двух алгебраических выражений. Если равенство справедливо для любых допустимых значений входящих в него неизвестных, то оно называется тождеством; например, соотношение вида… … Энциклопедия Кольера

    Теорема Абеля Руффини утверждает, что общее уравнение степени при неразрешимо в радикалах. Содержание 1 Подробности … Википедия

Цели:

  1. Систематизировать и обобщить знания и умения по теме: Решения уравнений третьей и четвертой степени.
  2. Углубить знания, выполнив ряд заданий, часть из которых не знакома или по своему типу, или способу решения.
  3. Формирование интереса к математике через изучение новых глав математики, воспитание графической культуры через построение графиков уравнений.

Тип урока : комбинированный.

Оборудование: графопроектор.

Наглядность: таблица «Теорема Виета».

Ход урока

1. Устный счет

а) Чему равен остаток от деления многочлена р n (х) = а n х n + а n-1 х n-1 + ... + а 1 х 1 + a 0 на двучлен х-а?

б) Сколько корней может иметь кубическое уравнение?

в) С помощью чего мы решаем уравнение третьей и четвертой степени?

г) Если b четное число в квадратном уравнение, то чему равен Д и х 1 ;х 2

2. Самостоятельная работа (в группах)

Составить уравнение, если известны корни (ответы к заданиям закодированы) Используется «Теорема Виета»

1 группа

Корни: х 1 = 1; х 2 = -2; х 3 = -3; х 4 = 6

Составить уравнение:

B=1 -2-3+6=2; b=-2

с=-2-3+6+6-12-18= -23; с= -23

d=6-12+36-18=12; d= -12

е=1(-2)(-3)6=36

х 4 - 2 х 3 - 23х 2 - 12 х + 36 = 0 (это уравнение решает потом 2 группа на доске)

Решение . Целые корни ищем среди делителей числа 36.

р = ±1;±2;±3;±4;±6…

р 4 (1)=1-2-23-12+36=0 Число 1 удовлетворяет уравнению, следовательно, =1 корень уравнения. По схеме Горнера

р 3 (x) = х 3 -х 2 -24x -36

р 3 (-2) = -8 -4 +48 -36=0, х 2 =-2

р 2 (x) = х 2 -3х -18=0

х 3 =-3, х 4 =6

Ответ: 1;-2;-3;6 сумма корней 2 (П)

2 группа

Корни: х 1 = -1; х 2 = х 3 =2; х 4 =5

Составить уравнение:

B=-1+2+2+5-8; b= -8

с=2(-1)+4+10-2-5+10=15; с=15

D=-4-10+20-10= -4; d=4

е=2(-1)2*5=-20;е=-20

8+15+4х-20=0 (это уравнение решает на доске 3 группа)

р = ±1;±2;±4;±5;±10;±20.

р 4 (1)=1-8+15+4-20=-8

р 4 (-1)=1+8+15-4-20=0

р 3 (x) = х 3 -9х 2 +24x -20

р 3 (2) = 8 -36+48 -20=0

р 2 (x) = х 2 -7х +10=0 х 1 =2; х 2 =5

Ответ: -1;2;2;5 сумма корней 8(Р)

3 группа

Корни: х 1 = -1; х 2 =1; х 3 =-2; х 4 =3

Составить уравнение:

В=-1+1-2+3=1;в=-1

с=-1+2-3-2+3-6=-7;с=-7

D=2+6-3-6=-1; d=1

е=-1*1*(-2)*3=6

х 4 - х 3 - 7х 2 + х + 6 = 0 (это уравнение решает потом на доске 4 группа)

Решение. Целые корни ищем среди делителей числа 6.

р = ±1;±2;±3;±6

р 4 (1)=1-1-7+1+6=0

р 3 (x) = х 3 - 7x -6

р 3 (-1) = -1+7-6=0

р 2 (x) = х 2 -х -6=0; х 1 =-2; х 2 =3

Ответ:-1;1;-2;3 Сумма корней 1(О)

4 группа

Корни: х 1 = -2; х 2 =-2; х 3 =-3; х 4 =-3

Составить уравнение:

B=-2-2-3+3=-4; b=4

с=4+6-6+6-6-9=-5; с=-5

D=-12+12+18+18=36; d=-36

е=-2*(-2)*(-3)*3=-36;е=-36

х 4 + 4х 3 – 5х 2 – 36х -36 = 0 (это уравнение решает потом 5 группа на доске)

Решение. Целые корни ищем среди делителей числа -36

р = ±1;±2;±3…

р(1)= 1 + 4-5-36-36 = -72

р 4 (-2) = 16 -32 -20 + 72 -36 = 0

р 3 (х) = х 3 +2х 2 -9х-18 = 0

р 3 (-2)= -8 + 8 + 18-18 = 0

р 2 (х) = х 2 -9 = 0; x=±3

Ответ: -2; -2; -3; 3 Сумма корней-4 (Ф)

5 группа

Корни: х 1 = -1; х 2 =-2; х 3 =-3; х 4 =-4

Составить уравнение

х 4 + 10х 3 + 35х 2 + 50х + 24 = 0 (это уравнение решает потом 6группа на доске)

Решение . Целые корни ищем среди делителей числа 24.

р = ±1;±2;±3

р 4 (-1) = 1 -10 + 35 -50 + 24 = 0

р 3 (х) = x- 3 + 9х 2 + 26x+ 24 = 0

p 3 (-2) = -8 + 36-52 + 24 = О

р 2 (х) = x 2 + 7x+ 12 = 0

Ответ:-1;-2;-3;-4 сумма-10 (И)

6 группа

Корни: х 1 = 1; х 2 = 1; х 3 = -3; х 4 = 8

Составить уравнение

B=1+1-3+8=7;b=-7

с=1 -3+8-3+8-24= -13

D=-3-24+8-24= -43; d=43

х 4 - 7х 3 - 13х 2 + 43 x - 24 = 0 (это уравнение решает потом 1 группа на доске)

Решение . Целые корни ищем среди делителей числа -24.

р 4 (1)=1-7-13+43-24=0

р 3 (1)=1-6-19+24=0

р 2 (x)= х 2 -5x - 24 = 0

х 3 =-3, х 4 =8

Ответ: 1;1;-3;8 сумма 7 (Л)

3. Решение уравнений с параметром

1. Решить уравнение х 3 + 3х 2 + mх - 15 = 0; если один из корней равен (-1)

Ответ записать в порядке возрастания

R=Р 3 (-1)=-1+3-m-15=0

х 3 + 3х 2 -13х - 15 = 0; -1+3+13-15=0

По условию х 1 = - 1; Д=1+15=16

Р 2 (х) = х 2 +2х-15 = 0

х 2 =-1-4 = -5;

х 3 =-1 + 4 = 3;

Ответ:- 1;-5; 3

В порядке возрастания: -5;-1;3. (Ь Н Ы)

2. Найти все корни многочлена х 3 - 3х 2 + ах - 2а + 6, если остатки от его деления на двучлены х-1 и х +2 равны.

Решение: R=Р 3 (1) = Р 3 (-2)

Р 3 (1) = 1-3 + а- 2а + 6 = 4-а

Р 3 (-2) = -8-12-2а-2а + 6 = -14-4а

x 3 -Зх 2 -6х + 12 + 6 = х 3 -Зх 2 -6х + 18

x 2 (x-3)-6(x-3) = 0

(х-3)(х 2 -6) = 0

3) а=0, х 2 -0*х 2 +0 = 0; х 2 =0; х 4 =0

а=0; х=0; х=1

а>0; х=1; х=а ± √а

2. Составить уравнение

1 группа . Корни: -4; -2; 1; 7;

2 группа . Корни: -3; -2; 1; 2;

3 группа . Корни: -1; 2; 6; 10;

4 группа . Корни: -3; 2; 2; 5;

5 группа . Корни: -5; -2; 2; 4;

6 группа . Корни: -8; -2; 6; 7.

2. Уравнение Если в равенство входит буква, то равенство называется уравнением.
Уравнение может быть верным при одних значениях этой буквы
и неверным при других ее значениях.

Например, уравнение x + 6 = 7
верно при x = 1
и неверно при x = 2 .

3. Равносильные уравненияЛинейное уравнение имеет вид ax + by + c = 0 .
Например: 5x – 4y + 6 = 0 .
Выразим y:
⇒ 4y = 5x + 6 ⇒ y =

5x+6
4

⇒ y = 1,25x + 1,5 .
Полученное уравнение, равносильное первому, имеет вид
y = kx + m ,
где: x - независимая переменная (аргумент);
y - зависимая переменная (функция);
k и m - коэффициенты (параметры).

4 Эквивалентные уравнения

Два уравнения и называются равносильными (эквивалентными ), если совпадают множества всех их решений или оба они не имеют решений и обозначают .

5/Уравнение первой степени.

Уравнение первой степени можно привести к виду:

ax + b = 0,

где x – переменная, a и b – некоторые числа, причем a ≠ 0.

Отсюда легко вывести значение x :

b
x = – -
a

Это значение x является корнем уравнения.

Уравнения первой степени имеют один корень.

Уравнение второй степени.

Уравнение второй степени можно привести к виду:

ax 2 + bx + c = 0,

где x – переменная, a, b, c – некоторые числа, причем a ≠ 0.

Число корней уравнения второй степени зависит от дискриминанта:

Если D > 0, то уравнение имеет два корня;

Если D = 0, то уравнение имеет один корень;

Если D < 0, то уравнение корней не имеет.

Уравнение второй степени может иметь не более двух корней.

(о том, что такое дискриминант и как находить корни уравнения, см.разделы «Формулы корней квадратного уравнения. Дискриминант» и «Другой способ решения квадратного уравнения»).

Уравнение третьей степени.

Уравнение третьей степени можно привести к виду:

ax 3 + bx 2 + cx + d = 0,

где x – переменная, a, b, c, d – некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более трех корней.

Уравнение четвертой степени.

Уравнение четвертой степени можно привести к виду:

ax 4 + bx 3 + cx 2 + dx + e = 0,

где x – переменная, a, b, c, d, e – некоторые числа, причем a ≠ 0.

Уравнение третьей степени может иметь не более четырех корней.

Обобщение:

1) уравнение пятой, шестой и т.д. степеней можно легко вывести самостоятельно, следуя приведенной выше схеме;


2) уравнение n -й степени может иметь не более n корней.

6/Уравнением с одной переменной, называется равенство, содержащее только одну переменную. Корнем (или решением) уравнения называется такое значение переменной, при котором уравнение превращается в верное числовое равенство.

1. 8/-11/Системы линейных уравнений: основные понятия Система линейных уравнений.

Несовместная и неопределенная системы линейных уравнений. Совокупность линейных уравнений.Совместная и несовместная совокупность линейных уравнений.

Система линейных уравнений - это объединение из n линейных уравнений, каждое из которых содержит k переменных. Записывается это так:

Многие, впервые сталкиваясь с высшей алгеброй, ошибочно полагают, что число уравнений обязательно должно совпадать с числом переменных. В школьной алгебре так обычно и бывает, однако для высшей алгебры это, вообще говоря, неверно.

Решение системы уравнений - это последовательность чисел (k 1 , k 2 , ..., k n ), которая является решением каждого уравнения системы, т.е. при подстановке в это уравнение вместо переменных x 1 , x 2 , ..., x n дает верное числовое равенство.

Соответственно, решить систему уравнений - значит найти множество всех ее решений или доказать, что это множество пусто. Поскольку число уравнений и число неизвестных может не совпадать, возможны три случая:

1. Система несовместна, т.е. множество всех решений пусто. Достаточно редкий случай, который легко обнаруживается независимо от того, каким методом решать систему.

2. Система совместна и определена, т.е. имеет ровно одно решение. Классический вариант, хорошо известный еще со школьной скамьи.

3. Система совместна и не определена, т.е. имеет бесконечно много решений. Это самый жесткий вариант. Недостаточно указать, что «система имеет бесконечное множество решений» - надо описать, как устроено это множество.

Переменная x i называется разрешенной , если она входит только в одно уравнение системы, причем с коэффициентом 1. Другими словами, в остальных уравнениях коэффициент при переменной x i должен быть равен нулю.

Если в каждом уравнении выбрать по одной разрешенной переменной, получим набор разрешенных переменных для всей системы уравнений. Сама система, записанная в таком виде, тоже будет называться разрешенной. Вообще говоря, одну и ту же исходную систему можно свести к разным разрешенным, однако сейчас нас это не волнует. Вот примеры разрешенных систем:

Обе системы являются разрешенными относительно переменных x 1 , x 3 и x 4 . Впрочем, с тем же успехом можно утверждать, что вторая система - разрешенная относительно x 1 , x 3 и x 5 . Достаточно переписать самое последнее уравнение в виде x 5 = x 4 .

Теперь рассмотрим более общий случай. Пусть всего у нас k переменных, из которых r являются разрешенными. Тогда возможны два случая:

1. Число разрешенных переменных r равно общему числу переменных k : r = k . Получаем систему из k уравнений, в которых r = k разрешенных переменных. Такая система является совместной и определенной, т.к. x 1 = b 1 , x 2 = b 2 , ..., x k = b k ;

2. Число разрешенных переменных r меньше общего числа переменных k : r < k . Остальные (k r ) переменных называются свободными - они могут принимать любые значения, из которых легко вычисляются разрешенные переменные.

Так, в приведенных выше системах переменные x 2 , x 5 , x 6 (для первой системы) и x 2 , x 5 (для второй) являются свободными. Случай, когда есть свободные переменные, лучше сформулировать в виде теоремы:

Обратите внимание: это очень важный момент! В зависимости от того, как вы запишете итоговую систему, одна и та же переменная может быть как разрешенной, так и свободной. Большинство репетиторов по высшей математике рекомендуют выписывать переменные в лексикографическом порядке, т.е. по возрастанию индекса. Однако вы совершенно не обязаны следовать этому совету.

Теорема. Если в системе из n уравнений переменные x 1 , x 2 , ..., x r - разрешенные, а x r + 1 , x r + 2 , ..., x k - свободные, то:

1. Если задать значения свободным переменным (x r + 1 = t r + 1 , x r + 2 = t r + 2 , ..., x k = t k ), а затем найти значения x 1 , x 2 , ..., x r , получим одно из решений.

2. Если в двух решениях значения свободных переменных совпадают, то значения разрешенных переменных тоже совпадают, т.е. решения равны.

В чем смысл этой теоремы? Чтобы получить все решения разрешенной системы уравнений, достаточно выделить свободные переменные. Затем, присваивая свободным переменным разные значения, будем получать готовые решения. Вот и все - таким образом можно получить все решения системы. Других решений не существует.

Вывод: разрешенная система уравнений всегда совместна. Если число уравнений в разрешенной системе равно числу переменных, система будет определенной, если меньше - неопределенной.

Несколько уравнений образуют Совокупность уравнений

2. 12,13/ Линейное неравенство./ Строгие и нестрогие неравенства Что такое неравенство? Берётся любое уравнение, знак "=" ("равно") заменяется на другой значок (> ;; < ; ; ) и получается неравенство.) Уравнение может быть каким угодно: линейным, квадратным,дробным, показательным, тригонометрическим, логарифмическим, и т.д. и т.п. Соответственно, и неравенства у нас получатся линейные, квадратные, и т.д.

Что нужно знать о значках неравенств? Неравенства со значком больше (> ), или меньше (< ) называются строгими. Со значками больше или равно (), меньше или равно () называются нестрогими. Значок не равно () стоит особняком, но решать примеры с таким значком тоже приходится постоянно. И мы порешаем.)

Сам значок не оказывает особого влияния на процесс решения. А вот в конце решения, при выборе окончательного ответа, смысл значка проявляется в полную силу! Что мы и увидим ниже, на примерах. Есть там свои приколы...

Неравенства, как и равенства, бывают верные и неверные. Здесь всё просто, без фокусов. Скажем, 5 > 2 - верное неравенство. 5 < 2 - неверное.

Линейные, квадратные, дробные, показательные, тригонометрические и прочие неравенства решаются по-разному. На каждый вид - свой способ, свой специальный приём. Но! Все эти специальные приёмы можно применять только к некоему стандартному виду неравенства. Т.е. неравенство любого вида нужно сначала подготовить к применению своего способа.

3. 14,16/Основные свойства неравенств/ . Действия с двумя неравенствами.

1) Если

2) Свойство транзитивности. Если

3) Если к обеим частям верного неравенства прибавить одно и то же число, то получится верное неравенство, т.е. если

4) Если из одной части верного неравенства перенести в другую какое-либо слагаемое, изменив его знак на противоположный, то получится верное неравенство, т.е. если

5) Если обе части верного неравенства умножить на одно и то же положительное число, то получится верное неравенство. Например, если

6) Если обе части верного неравенства умножить на одно и то же отрицательное число и изменить знак неравенства на противоположный, то получится верное неравенство. Например, если

7) Аналогично правилам 5) и 6) действуют правила для деления на одно и то же число. Если

Для уравнений четвертой степени применимы все те общие схемы решения уравнений высших степеней, что мы разбирали в предыдущем материале. Однако существует ряд нюансов в решении двучленных, биквадратных и возвратных уравнений, на которых мы хотели бы остановиться подробнее.

Также в статье мы разберем искусственный метод разложения многочлена на множители, решение в радикалах и метод Феррари, который используется для того, чтобы свести решение уравнения четвертой степени к кубическому уравнению.

Решение двучленного уравнения четвертой степени

Это простейший тип уравнений четвертой степени. Запись уравнения имеет вид A x 4 + B = 0 .

Определение 1

Для решения этого типа уравнений применяются формулы сокращенного умножения:

A x 4 + B = 0 x 4 + B A = 0 x 4 + 2 B A x 2 + B A - 2 B A x 2 = 0 x 2 + B A 2 - 2 B A x 2 = 0 x 2 - 2 B A 4 x + B A x 2 + 2 B A 4 x + B A = 0

Остается лишь найти корни квадратных трехчленов.

Пример 1

Решить уравнение четвертой степени 4 x 4 + 1 = 0 .

Решение

Для начала проведем разложение многочлена 4 x 4 + 1 на множители:

4 x 4 + 1 = 4 x 4 + 4 x 2 + 1 = (2 x 2 + 1) 2 - 4 x 2 = 2 x 2 - 2 x + 1 (2 x 2 + 2 x + 1)

Теперь найдем корни квадратных трехчленов.

2 x 2 - 2 x + 1 = 0 D = (- 2) 2 - 4 · 2 · 1 = - 4 x 1 = 2 + D 2 · 2 = 1 2 + i x 2 = 2 - D 2 · 2 = 1 2 - i

2 x 2 + 2 x + 1 = 0 D = 2 2 - 4 · 2 · 1 = - 4 x 3 = - 2 + D 2 · 2 = - 1 2 + i x 4 = - 2 - D 2 · 2 = - 1 2 - i

Мы получили четыре комплексных корня.

Ответ: x = 1 2 ± i и x = - 1 2 ± i .

Решение возвратного уравнения четвертой степени

Определение 2

Возвратные уравнения четвертого порядка имеют вид A x 4 + B x 3 + C x 2 + B x + A = 0

х = 0 не является корнем этого уравнения: A · 0 4 + B · 0 3 + C · 0 2 + B · 0 + A = A ≠ 0 . Поэтому на x 2 можно смело разделить обе части этого уравнения:

A x 4 + B x 3 + C x 2 + B x + A = 0 A x 2 + B x + C + B x + A x 2 = 0 A x 2 + A x 2 + B x + B x + C = 0 A x 2 + 1 x 2 + B x + 1 x + C = 0

Проведем замену переменных x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 - 2:

A x 2 + 1 x 2 + B x + 1 x + C = 0 A (y 2 - 2) + B y + C = 0 A y 2 + B y + C - 2 A = 0

Так мы проведи сведение возвратного уравнения четвертой степени к квадратному уравнению.

Пример 2

Найти все комплексные корни уравнения 2 x 4 + 2 3 + 2 x 3 + 4 + 6 x 2 + 2 3 + 2 x + 2 = 0 .

Решение

Симметрия коэффициентов подсказывает нам, что мы имеем дело с возвратным уравнением четвертой степени. Проведем деление обеих частей на x 2:

2 x 2 + 2 3 + 2 x + 4 + 6 + 2 3 + 2 x + 2 x 2 = 0

Проведем группировку:

2 x 2 + 2 x 2 + 2 3 + 2 x + 2 3 + 2 x + 4 + 6 + = 0 2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0

Проведем замену переменной x + 1 x = y ⇒ x + 1 x 2 = y 2 ⇒ x 2 + 1 x 2 = y 2 - 2

2 x 2 + 1 x 2 + 2 3 + 2 x + 1 x + 4 + 6 = 0 2 y 2 - 2 + 2 3 + 2 y + 4 + 6 = 0 2 y 2 + 2 3 + 2 y + 6 = 0

Решим полученное квадратное уравнение:

D = 2 3 + 2 2 - 4 · 2 · 6 = 12 + 4 6 + 2 - 8 6 = = 12 - 4 6 + 2 = 2 3 - 2 2 y 1 = - 2 3 - 2 + D 2 · 2 = - 2 3 - 2 + 2 3 - 2 4 = - 2 2 y 2 = - 2 3 - 2 - D 2 · 2 = - 2 3 - 2 - 2 3 + 2 4 = - 3

Вернемся к замене: x + 1 x = - 2 2 , x + 1 x = - 3 .

Решим первое уравнение:

x + 1 x = - 2 2 ⇒ 2 x 2 + 2 x + 2 = 0 D = 2 2 - 4 · 2 · 2 = - 14 x 1 = - 2 - D 2 · 2 = - 2 4 + i · 14 4 x 2 = - 2 - D 2 · 2 = - 2 4 - i · 14 4

Решим второе уравнение:

x + 1 x = - 3 ⇒ x 2 + 3 x + 1 = 0 D = 3 2 - 4 · 1 · 1 = - 1 x 3 = - 3 + D 2 = - 3 2 + i · 1 2 x 4 = - 3 - D 2 = - 3 2 - i · 1 2

Ответ: x = - 2 4 ± i · 14 4 и x = - 3 2 ± i · 1 2 .

Решение биквадратного уравнения

Биквадратные уравнения четвертой степени имеют вид A x 4 + B x 2 + C = 0 . Мы можем свести такое уравнение к квадратному A y 2 + B y + C = 0 путем замены y = x 2 . Это стандартный прием.

Пример 3

Решить биквадратное уравнение 2 x 4 + 5 x 2 - 3 = 0 .

Решение

Выполним замену переменной y = x 2 , что позволит нам свести исходное уравнение к квадратному:

2 y 2 + 5 y - 3 = 0 D = 5 2 - 4 · 2 · (- 3) = 49 y 1 = - 5 + D 2 · 2 = - 5 + 7 4 = 1 2 y 2 = - 5 - D 2 · 2 = - 5 - 7 4 = - 3

Следовательно, x 2 = 1 2 или x 2 = - 3 .

Первое равенство позволяет нам получить корень x = ± 1 2 . Второе равенство не имеет действительных корней, зато имеет комплексно сопряженных корней x = ± i · 3 .

Ответ: x = ± 1 2 и x = ± i · 3 .

Пример 4

Найти все комплексные корни биквадратного уравнения 16 x 4 + 145 x 2 + 9 = 0 .

Решение

Используем метод замены y = x 2 для того, чтобы свести исходное биквадратное уравнение к квадратному:

16 y 2 + 145 y + 9 = 0 D = 145 2 - 4 · 16 · 9 = 20449 y 1 = - 145 + D 2 · 16 = - 145 + 143 32 = - 1 16 y 2 = - 145 - D 2 · 16 = - 145 - 143 32 = - 9

Поэтому, в силу замены переменной, x 2 = - 1 16 или x 2 = - 9 .

Ответ: x 1 , 2 = ± 1 4 · i , x 3 , 4 = ± 3 · i .

Решение уравнений четвертой степени с рациональными корнями

Алгоритм нахождения рациональных корней уравнения четвертой степени приведен в материале «Решение уравнений высших степеней».

Решение уравнений четвертой степени по методу Феррари

Уравнения четвертой степени вида x 4 + A x 3 + B x 2 + C x + D = 0 в общем случае можно решить с применением метода Феррари. Для этого необходимо найти y 0 . Это любой из корней кубического уравнения y 3 - B y 2 + A C - 4 D y - A 2 D + 4 B D - C 2 = 0 . После этого необходимо решить два квадратных уравнения x 2 + A 2 x + y 0 2 + A 2 4 - B + y 0 x 2 + A 2 y 0 - C x + y 0 2 4 - D = 0 , у которых подкоренное выражение является полным квадратом.

Корни, полученные в ходе вычислений, будут корнями исходного уравнения четвертой степени.

Пример 5

Найти корни уравнения x 4 + 3 x 3 + 3 x 2 - x - 6 = 0 .

Решение

Имеем А = 3 , В = 3 , С = - 1 , D = - 6 . Применим метод Феррари для решения данного уравнения.

Составим и решим кубическое уравнение:
y 3 - B y 2 + A C - 4 D y - A 2 D + 4 B D - C 2 = 0 y 3 - 3 y 2 + 21 y - 19 = 0

Одним из корней кубического уравнения будет y 0 = 1 , так как 1 3 - 3 · 1 2 + 21 · 1 - 19 = 0 .

Запишем два квадратных уравнения:
x 2 + A 2 x + y 0 2 ± A 2 4 - B + y 0 x 2 + A 2 y 0 - C x + y 0 2 4 - D = 0 x 2 + 3 2 x + 1 2 ± 1 4 x 2 + 5 2 x + 25 4 = 0 x 2 + 3 2 x + 1 2 ± 1 2 x + 5 2 2 = 0

x 2 + 3 2 x + 1 2 + 1 2 x + 5 2 = 0 или x 2 + 3 2 x + 1 2 - 1 2 x - 5 2 = 0

x 2 + 2 x + 3 = 0 или x 2 + x - 2 = 0

Корнями первого уравнения будут x = - 1 ± i · 2 , корнями второго х = 1 и х = - 2 .

Ответ: x 1 , 2 = - 1 ± i 2 , x 3 = 1 , x 4 = - 2 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.