Мономерами сложных углеводов являются. Углеводы

Углеводы

Переходя к рассмотрению органических веществ, нельзя не отметить значение углерода для жизни. Вступая в химические реакции, углерод образует прочные ковалентные связи, обобществляя четыре электрона. Атомы углерода, соединяясь между собой, способны образовывать стабильные цепи и кольца, служащие скелетами макромолекул. Углерод также может образовывать кратные ковалентные связи с другими углеродными атомами, а также с азотом и кислородом. Все эти свойства обеспечивают уникальное разнообразие органических молекул.

Макромолекулы , составляющие около 90 % массы обезвоженной клетки, синтезируются из более простых молекул, называемых мономерами . Существуют три основных типа макромолекул: полисахариды, белки и нуклеиновые кислоты ; мономерами для них являются, соответственно, моносахариды, аминокислоты и нуклеотиды.

Углеводами называют вещества с общей формулой C x (H 2 O) y , где x и y – натуральные числа. Название «углеводы» говорит о том, что в их молекулах водород и кислород находятся в том же отношении, что и в воде.

В животных клетках содержится небольшое количество углеводов, а в растительных – почти 70 % от общего количества органических веществ.

Моносахариды играют роль промежуточных продуктов в процессах дыхания и фотосинтеза , участвуют в синтезе нуклеиновых кислот, коферментов, АТФ и полисахаридов, служат , высвобождаемой при окислении в процессе дыхания. Производные моносахаридов – сахарные спирты, сахарные кислоты, дезоксисахара и аминосахара – имеют важное значение в процессе дыхания, а также используются при синтезе липидов, ДНК и других макромолекул.

Дисахариды образуются в результате реакции конденсации между двумя моносахаридами. Иногда они используются в качестве запасных питательных веществ. Наиболее распространенными из них являются мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза) и сахароза (глюкоза + фруктоза). содержится только в молоке. (тростниковый сахар) наиболее распространена в растениях; это и есть тот самый «сахар», который мы обычно употребляем в пищу.


Целлюлоза также является полимером глюкозы. В ней заключено около 50 % углерода, содержащегося в растениях. По общей массе на Земле целлюлоза занимает первое место среди органических соединений. Форма молекулы (длинные цепи с выступающими наружу –OH-группами) обеспечивает прочное сцепление между соседними цепями. При всей своей прочности, макрофибриллы, состоящие из таких цепей, легко пропускают воду и растворённые в ней вещества и потому служат идеальным строительным материалом для стенок растительной клетки. Целлюлоза – ценный источник глюкозы, однако для её расщепления необходим фермент целлюлаза, сравнительно редко встречающийся в природе. Поэтому в пищу целлюлозу употребляют только некоторые животные (например, жвачные). Велико и промышленное значение целлюлозы – из этого вещества изготовляют хлопчатобумажные ткани и бумагу.

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц – олигосахариды, а более десяти – полисахариды.

Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях.

Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение – L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН 2 ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы глюкоза , фруктоза , манноза и галактоза – по стереохимической конфигурациям относят к соединениям D-ряда.

Полисахари́ды – общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров моносахаридов . С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.

https :// ru . wikipedia . org / wiki /Углеводы

1.6. Липиды - номенклатура и строение. Полиморфизм липидов.

Липи́ды – обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот , сложных – из спирта, высокомолекулярных жирных кислот и других компонентов.

Классификация липидов

Простые липиды – это липиды, включающие в свою структуру углерод (С), водород (H) и кислород (O).

Сложные липиды – это липиды, включающие в свою структуру помимо углерода (С), водорода (H) и кислорода (О) и другие химические элементы. Чаще всего: фосфор (Р), серу (S), азот (N).

https :// ru . wikipedia . org / wiki /Липиды

Литература:

1) Черкасова Л. С., Мережинский М. Ф., Обмен жиров и липидов, Минск, 1961;

2) Маркман А. Л., Химия липидов, в. 12, Таш., 1963 – 70;

3) Тютюнников Б. Н., Химия жиров, М., 1966;

4) Малер Г., Кордес К., Основы биологической химии, пер. с англ., М., 1970.

1.7. Биологические мембраны. Формы агрегации липидов. Понятие о жидко-кристаллическом состоянии. Латеральная диффузия и флип-флоп.

Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндо-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.

Схема строения мембраны: а – трехмерная модель; б – плоскостное изображение;

1 – белки, примыкающие к липидному слою (А), погруженные в него (Б) или пронизывающие его насквозь (В); 2 – слои молекул липидов; 3 – гликопротеины; 4 – гликолипиды; 5 – гидрофильный канал, функционирующий как пора.

Функции биологических мембран следующие:

1) Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

2) Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

3) Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д.).

4) Являются катализаторами (обеспечение примембранных химических процессов).

5) Участвуют в преобразовании энергии.

http :// sbio . info / page . php ? id =15

Латеральная диффузия – это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. При латеральной диффузии рядом рас­положенные молекулы липидов скачком меняются местами, и вследствие таких последовательных перескоков из одного мес­та в другое молекула перемещается вдоль поверхности мемб­раны.

Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флуоресцентных меток – флюоресцирующих молекулярных групп. Флуоресцентные метки делают флюоресцирующими молекулы, дви­жение которых по поверхности клетки можно изучать, например, исследуя под микроскопом скорость расплывания по поверхности клетки флюоресцирующего пятна, созданного такими молекулами.

Флип-флоп – это диффузия молекул мембранных фосфолипидов поперек мембраны.

Скорость перескоков молекул с одной поверхности мембра­ны на другую (флип-флоп) определена методом спиновых ме­ток в опытах на модельных липидных мембранах – липосомах.

Часть фосфолипидных молекул, из которых формировались липосомы, метились присоединенными к ним спиновыми мет­ками. Липосомы подвергались воздействию аскорбиновой кис­лоты, вследствие чего неспаренные электроны на молекулах пропадали: парамагнитные молекулы становились диамагнит­ными, что можно было обнаружить по уменьшению площади под кривой спектра ЭПР.

Таким образом, перескоки молекул с одной поверхности бислоя на другую (флип-флоп) совершаются значительно медлен­нее, чем перескоки при латеральной диффузии. Среднее время, через которое фосфолипидная молекула совершает флип-флоп (Т ~ 1час), в десятки миллиардов раз больше среднего времени, характерного для перескока молекулы из одного места в сосед­нее в плоскости мембраны.

Понятие о жидко-кристаллическом состоянии

Твердое тело может быть как кристаллическим , так и аморфным. В первом случае имеется дальний порядок в расположении частиц на расстояниях, много превышающих межмолекулярные расстояния (кристаллическая решетка). Во втором – нет дальнего порядка в расположении атомов и молекул.

Различие между аморфным телом и жидкостью состоит не в наличии или отсутствии дальнего порядка, а в характере движения частиц. Молекулы жидкости и твердого тела совершают колебательные (иногда вращательные) движения около положения равновесия. Через некоторое среднее время («время оседлой жизни») происходит перескок молекул в другое положение равновесия. Различие заключается в том, что «время оседлой жизни» в жидкости намного меньше, чем в твердом состоянии.

Липидные двухслойные мембраны при физиологических условиях – жидкие, «время оседлой жизни» фосфолипидной молекулы в мембране составляет 10 −7 – 10 −8 с.

Молекулы в мембране расположены не беспорядочно, в их расположении наблюдается дальний порядок. Фосфолипидные молекулы находятся в двойном слое, а их гидрофобные хвосты примерно параллельны друг другу. Есть порядок и в ориентации полярных гидрофильных голов.

Физиологическое состояние, при котором есть дальний порядок во взаимной ориентации и расположении молекул, но агрегатное состояние жидкое, называется жидкокристаллическим состоянием. Жидкие кристаллы могут образовываться не во всех веществах, а в веществах из «длинных молекул» (поперечные размеры которых меньше продольных). Могут существовать различные жидкокристаллические структуры: нематическая (нитевидная), когда длинные молекулы ориентированы параллельно друг другу; смектическая – молекулы параллельны друг другу и располагаются слоями; холестическая – молекулы располагаются параллельно друг другу в одной плоскости, но в разных плоскостях ориентации молекул разные.

http :// www . studfiles . ru / preview /1350293/

Литература: Н.А. Лемеза, Л.В.Камлюк, Н.Д. Лисов. «Пособие по биологии для поступающих в ВУЗы».

1.8. Нуклеиновые кислоты. Гетероциклические основания, нуклеозиды, нуклеотиды, номенклатура. Пространственная структура нуклеиновых кислот - ДНК, РНК (тРНК, рРНК, мРНК). Рибосомы и ядро клетки. Методы определения первичной и вторичной структуры нуклеиновых кислот (секвенирование, гибридизация).

Нуклеиновые кислоты – фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации.

Нуклеиновые кислоты представляют собой биополимеры. Их макромолекулы состоят из неоднократно повторяющихся звеньев, которые представлены нуклеотидами. И их логично назвали полинуклеотидами. Одной из главных характеристик нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида (структурного звена нуклеиновых кислот) входят три составные части:

Азотистое основание. Может быть пиримидиновое и пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов.

Остаток фосфорной кислоты.

Моносахарид – рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

Нуклеотид по своей сути – это фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

http :// sbio . info / page . php ? id =11

Азо́тистые основа́ния гетероциклические органические соединения, производные пиримидина и пурина , входящие в состав нуклеиновых кислот . Для сокращенного обозначения пользуются большими латинскими буквами. К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C), которые входят в состав как ДНК, так и РНК. Тимин (T) входит в состав только ДНК, а урацил (U) встречается только в РНК.

1. Дайте определения понятий.
Углеводы – органические вещества, содержащие карбонильную группу и несколько гидроксильных групп.
Моносахарид – простой углевод, при гидролизе не расщепляющийся на более простые соединения.
Дисахарид – углевод, представляющий собой соединений из двух моносахаридов.

2. Дополните схему «Разнообразие углеводов в клетке».

3. Рассмотрите рисунок 11 учебника и приведите примеры моносахаридов, в состав которых входит:
пять атомов углерода: рибоза, дезоксирибоза;
шесть атомов углерода: глюкоза, фруктоза.

4. Заполните таблицу.

Биологические функции моно- и дисахаридов


5. Назовите растворимые в воде углеводы. Какие особенности строения их молекул обеспечивают свойство растворимости?
Моносахариды (глюкоза, фруктоза) и дисахариды (сахароза). Их молекулы небольшого размера и полярные, поэтому растворимы в воде. Полисахариды образуют длинные цепи, которые в воде не растворяются

6. Заполните таблицу.

БИОЛОГИЧЕСКИЕ ФУНКЦИИ ПОЛИСАХАРИДОВ


7. Полисахарид хитин входит в структуру клеточных стенок грибов и составляет основу наружного скелета членистоногих. С каким из известных вам полисахаридов он проявляет функциональное сходство? Ответ обоснуйте.
Хитин является веществом, очень близким по строению, физико-химическим свойствам и биологической роли к целлюлозе. Он выполняет защитную и опорную функции, содержится в клеточных стенках грибов, некоторых водорослей, бактерий.

8. Дайте определения понятий.
Полипептид - химическое вещество, состоящее из длинной цепи аминокислот, связанных пептидными связями.
Денатурация - потеря белками или нуклеиновыми кислотами их естественных свойств вследствие нарушения пространственной структуры их молекул.
Ренатурация - восстановление (после денатурации) биологически активной пространственной структуры биополимера (белка или нуклеиновой кислоты).

9. Объясните утверждение: «Белки - носители и организаторы жизни».
По Энгельсу «Всюду, где есть встречаем жизнь, она связана с каким-либо белковым телом, и повсюду, где мы встречаем какое-либо белковое тело, которое не находится в процессе разложения, мы без исключения встречаем и явления жизни...». «Жизнь есть способ существования белковых тел...».

10. Напишите общую структурную формулу аминокислоты. Объясните, почему мономер белка носит такое название.
RCH(NH2)COOH. Аминокислоты объединяют в себе свойства кислот и аминов, т. е. содержат наряду с карбоксильной группой -COOH аминогруппу -NH2.

11. Чем отличаются друг от друга различные аминокислоты?
Аминокислоты отличаются друг т друга по строению радикала.

12. Заполните кластер «Многообразие белков и их функции».
Белки: гормоны, транспортные белки, ферменты, токсины, антибиотики, запасные белки, защитные белки, двигательные белки, структурные белки.

13. Закончите заполнение таблицы.


14. Пользуясь учебником, объясните суть высказывания: «Биохимические реакции, протекающие в присутствии ферментов, - основа жизнедеятельности клеток».
Белки-ферменты катализируют множество реакций, обеспечивают слаженность ансамбля клеток живых организмов, ускоряя во много раз скорость химических реакций.

15. Приведите примеры белков, участвующих в перечисленных процессах.
Бег, ходьба, прыжки – актин и миозин.
Рост – соматотропин.
Транспорт кислорода и углекислого газа в крови – гемоглобин.
Рост ногтей и волос – кератин.
Свертывание крови – протромбин, фибриноген.
Связывание кислорода в мышцах – миоглобин.

16. Установите соответствие между конкретными белками и их функциями.
1. Протромбин
2. Коллаген
3. Актин
4. Соматотропин
5. Гемоглобин
6. Инсулин
Роль в организме
A. Сократительный белок мышц
Б. Гормон гипофиза
B. Обеспечивает свертываемость крови
Г. Входит в состав волокон соединительной ткани
Д. Гормон поджелудочной железы
Е. Переносит кислород

17. На чем основано дезинфицирующее свойство этилового спирта?
Он разрушает белки (в т. ч. токсины) бактерий, приводит к их денатурации.

18. Почему вареное яйцо, погруженное в холодную воду, не возвращается к исходному состоянию?
Происходит необратимая денатурация белка куриного яйца под воздействием высокой температуры.

19. При окислении 1 г белков выделяется столько же энергии, сколько при окислении 1 г углеводов. Почему организм использует белки как источник энергии только в крайних случаях?
Функции белков – это, во-первых, строительная, ферментативная, транспортная функции, и только в крайних случаях организм использует или тратит белки на получение энергии, только тогда, когда в организм не поступают углеводы и жиры, когда организм голодает.

20. Выберите правильный ответ.
Тест 1.
Белки, увеличивающие скорость химических реакций в клетке:
2) ферменты;
Тест 2.
Мономер сложных углеводов - это:
4) глюкоза.
Тест 3.
Углеводы в клетке не выполняют функцию:
3) хранения наследственной информации.
Тест 4.
Полимер, мономеры которого располагаются в одну линию:
2) неразветвленный полимер;
Тест 5.
В состав аминокислот не входит:
3) фосфор;
Тест 6.
У животных гликоген, а у растений:
3) крахмал;
Тест 7.
У гемоглобина есть, а у лизоцима нет:
4) четвертичной структуры.

21. Объясните происхождение и общее значение слова (термина), опираясь на значение корней, его составляющих.


22. Выберите термин и объясните, насколько его современное значение соответствует первоначальному значению его корней.
Выбранный термин: дезоксирибоза.
Соответствие: термин соответствует значению. Это дезоксисахар - производное рибозы, где гидроксильная группа у второго атома углерода замещена водородом с потерей атома кислорода (дезокси - отсутствие атома кислорода).

23. Сформулируйте и запишите основные идеи § 2.5.
Углеводы и белки относятся к органическим веществам клетки. К углеводам относятся: моносахариды (рибоза, дезоксирибоза, глюкоза), дисахариды (сахароза), полисахариды (крахмал, гликоген, целлюлоза, хитин). В организме они выполняют функции: энергетическую, запасающую, структурная.
Белки, мономерами которых являются аминокислоты, имеют первичную, вторичную, третичную и часто четвертичную структуры. Выполняют в организме важные функции: являются гормонами, ферментами, токсинами, антибиотиками, запасными, защитными, транспортными, двигательными и структурными белками.

Углеводы — органические соединения, состав которых в большинстве случаев выражается общей формулой C n (H 2 O) m (n и m ≥ 4). Углеводы подразделяются на моносахариды, олигосахариды и полисахариды.

Моносахариды — простые углеводы, в зависимости от числа атомов углерода подразделяются на триозы (3), тетрозы (4), пентозы (5), гексозы (6) и гептозы (7 атомов). Наиболее распространены пентозы и гексозы. Свойства моносахаридов — легко растворяются в воде, кристаллизуются, имеют сладкий вкус, могут быть представлены в форме α- или β-изомеров.

Рибоза и дезоксирибоза относятся к группе пентоз, входят в состав нуклеотидов РНК и ДНК, рибонуклеозидтрифосфатов и дезоксирибонуклеозидтрифосфатов и др. Дезоксирибоза (С 5 Н 10 О 4) отличается от рибозы (С 5 Н 10 О 5) тем, что при втором атоме углерода имеет атом водорода, а не гидроксильную группу, как у рибозы.

Глюкоза, или виноградный сахар (С 6 Н 12 О 6), относится к группе гексоз, может существовать в виде α-глюкозы или β-глюкозы. Отличие между этими пространственными изомерами заключается в том, что при первом атоме углерода у α-глюкозы гидроксильная группа расположена под плоскостью кольца, а у β-глюкозы — над плоскостью.

Глюкоза — это:

  1. один из самых распространенных моносахаридов,
  2. важнейший источник энергии для всех видов работ, происходящих в клетке (эта энергия выделяется при окислении глюкозы в процессе дыхания),
  3. мономер многих олигосахаридов и полисахаридов,
  4. необходимый компонент крови.

Фруктоза, или фруктовый сахар , относится к группе гексоз, слаще глюкозы, в свободном виде содержится в меде (более 50%) и фруктах. Является мономером многих олигосахаридов и полисахаридов.

Олигосахариды — углеводы, образующиеся в результате реакции конденсации между несколькими (от двух до десяти) молекулами моносахаридов. В зависимости от числа остатков моносахаридов различают дисахариды, трисахариды и т. д. Наиболее распространены дисахариды. Свойства олигосахаридов — растворяются в воде, кристаллизуются, сладкий вкус уменьшается по мере увеличения числа остатков моносахаридов. Связь, образующаяся между двумя моносахаридами, называется гликозидной .

Сахароза, или тростниковый, или свекловичный сахар , — дисахарид, состоящий из остатков глюкозы и фруктозы. Содержится в тканях растений. Является продуктом питания (бытовое название — сахар ). В промышленности сахарозу вырабатывают из сахарного тростника (стебли содержат 10-18%) или сахарной свеклы (корнеплоды содержат до 20% сахарозы).

Мальтоза, или солодовый сахар , — дисахарид, состоящий из двух остатков глюкозы. Присутствует в прорастающих семенах злаков.

Лактоза, или молочный сахар , — дисахарид, состоящий из остатков глюкозы и галактозы. Присутствует в молоке всех млекопитающих (2-8,5%).

Полисахариды — это углеводы, образующиеся в результате реакции поликонденсации множества (несколько десятков и более) молекул моносахаридов. Свойства полисахаридов — не растворяются или плохо растворяются в воде, не образуют ясно оформленных кристаллов, не имеют сладкого вкуса.

Крахмал (С 6 Н 10 О 5) n — полимер, мономером которого является α-глюкоза. Полимерные цепочки крахмала содержат разветвленные (амилопектин, 1,6-гликозидные связи) и неразветвленные (амилоза, 1,4-гликозидные связи) участки. Крахмал — основной резервный углевод растений, является одним из продуктов фотосинтеза, накапливается в семенах, клубнях, корневищах, луковицах. Содержание крахмала в зерновках риса — до 86%, пшеницы — до 75%, кукурузы — до 72%, в клубнях картофеля — до 25%. Крахмал — основной углевод пищи человека (пищеварительный фермент — амилаза).

Гликоген (С 6 Н 10 О 5) n — полимер, мономером которого также является α-глюкоза. Полимерные цепочки гликогена напоминают амилопектиновые участки крахмала, но в отличие от них ветвятся еще сильнее. Гликоген — основной резервный углевод животных, в частности, человека. Накапливается в печени (содержание — до 20%) и мышцах (до 4%), является источником глюкозы.

(С 6 Н 10 О 5) n — полимер, мономером которого является β-глюкоза. Полимерные цепочки целлюлозы не ветвятся (β-1,4-гликозидные связи). Основной структурный полисахарид клеточных стенок растений. Содержание целлюлозы в древесине — до 50%, в волокнах семян хлопчатника — до 98%. Целлюлоза не расщепляется пищеварительными соками человека, т.к. у него отсутствует фермент целлюлаза, разрывающий связи между β-глюкозами.

Инулин — полимер, мономером которого является фруктоза. Резервный углевод растений семейства Сложноцветные.

Гликолипиды — комплексные вещества, образующиеся в результате соединения углеводов и липидов.

Гликопротеины — комплексные вещества, образующиеся в результате соединения углеводов и белков.

Функции углеводов

Строение и функции липидов

Липиды не имеют единой химической характеристики. В большинстве пособий, давая определение липидам , говорят, что это сборная группа нерастворимых в воде органических соединений, которые можно извлечь из клетки органическими растворителями — эфиром, хлороформом и бензолом. Липиды можно условно разделить на простые и сложные.

Простые липиды в большинстве представлены сложными эфирами высших жирных кислот и трехатомного спирта глицерина — триглицеридами. Жирные кислоты имеют: 1) одинаковую для всех кислот группировку — карбоксильную группу (-СООН) и 2) радикал, которым они отличаются друг от друга. Радикал представляет собой цепочку из различного количества (от 14 до 22) группировок -СН 2 -. Иногда радикал жирной кислоты содержит одну или несколько двойных связей (-СН=СН-), такую жирную кислоту называют ненасыщенной . Если жирная кислота не имеет двойных связей, ее называют насыщенной . При образовании триглицерида каждая из трех гидроксильных групп глицерина вступает в реакцию конденсации с жирной кислотой с образованием трех сложноэфирных связей.

Если в триглицеридах преобладают насыщенные жирные кислоты , то при 20°С они — твердые; их называют жирами , они характерны для животных клеток. Если в триглицеридах преобладают ненасыщенные жирные кислоты , то при 20 °С они — жидкие; их называют маслами , они характерны для растительных клеток.

1 — триглицерид; 2 — сложноэфирная связь; 3 — ненасыщенная жирная кислота;
4 — гидрофильная головка; 5 — гидрофобный хвост.

Плотность триглицеридов ниже, чем у воды, поэтому в воде они всплывают, находятся на ее поверхности.

К простым липидам также относят воски — сложные эфиры высших жирных кислот и высокомолекулярных спиртов (обычно с четным числом атомов углерода).

Сложные липиды . К ним относят фосфолипиды, гликолипиды, липопротеины и др.

Фосфолипиды — триглицериды, у которых один остаток жирной кислоты замещен на остаток фосфорной кислоты. Принимают участие в формировании клеточных мембран.

Гликолипиды — см. выше.

Липопротеины — комплексные вещества, образующиеся в результате соединения липидов и белков.

Липоиды — жироподобные вещества. К ним относятся каротиноиды (фотосинтетические пигменты), стероидные гормоны (половые гормоны, минералокортикоиды, глюкокортикоиды), гиббереллины (ростовые вещества растений), жирорастворимые витамины (А, D, Е, К), холестерин, камфора и т.д.

Функции липидов

Функция Примеры и пояснения
Энергетическая Основная функция триглицеридов. При расщеплении 1 г липидов выделяется 38,9 кДж.
Структурная Фосфолипиды, гликолипиды и липопротеины принимают участие в образовании клеточных мембран.
Запасающая Жиры и масла являются резервным пищевым веществом у животных и растений. Важно для животных, впадающих в холодное время года в спячку или совершающих длительные переходы через местность, где нет источников питания.

Масла семян растений необходимы для обеспечения энергией проростка.

Защитная Прослойки жира и жировые капсулы обеспечивают амортизацию внутренних органов.

Слои воска используются в качестве водоотталкивающего покрытия у растений и животных.

Теплоизоляционная Подкожная жировая клетчатка препятствует оттоку тепла в окружающее пространство. Важно для водных млекопитающих или млекопитающих, обитающих в холодном климате.
Регуляторная Гиббереллины регулируют рост растений.

Половой гормон тестостерон отвечает за развитие мужских вторичных половых признаков.

Половой гормон эстроген отвечает за развитие женских вторичных половых признаков, регулирует менструальный цикл.

Минералокортикоиды (альдостерон и др.) контролируют водно-солевой обмен.

Глюкокортикоиды (кортизол и др.) принимают участие в регуляции углеводного и белкового обменов.

Источник метаболической воды При окислении 1 кг жира выделяется 1,1 кг воды. Важно для обитателей пустынь.
Каталитическая Жирорастворимые витамины A, D, E, K являются кофакторами ферментов, т.е. сами по себе эти витамины не обладают каталитической активностью, но без них ферменты не могут выполнять свои функции.

    Перейти к лекции №1 «Введение. Химические элементы клетки. Вода и другие неорганические соединения»

    Перейти к лекции №3 «Строение и функции белков. Ферменты»

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы - дисахариды, от двух до десяти единиц -- олигосахариды, а более десяти -- полисахариды. Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях. Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры с образованием сотен и тысяч молекул моносахаридов.

Распространённый в природе моносахарид -- бета-D-глюкоза

Моносахариды

Моносахариды (от греческого monos -- единственный, sacchar -- сахар) -- простейшие углеводы, не гидролизующиеся с образованием более простых углеводов -- обычно представляют собой бесцветные, легко растворимые в воде, плохо -- в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды -- стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.

В природе в свободном виде наиболее распространена D-глюкоза (C6H12O6) -- структурная единица многих дисахаридов (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.