Какому числу может равняться ранг матрицы. Нахождение ранга матрицы

Рассмотрим прямоугольную матрицу. Если в этой матрице выделить произвольно k строк и k столбцов, то элементы, стоящие на пересечении выделенных строк и столбцов, образуют квадратную матрицу k-го порядка. Определитель этой матрицы называется минором k-го порядка матрицы А. Очевидно, что матрица А обладает минорами любого порядка от 1 до наименьшего из чисел m и n. Среди всех отличных от нуля миноров матрицы А найдется по крайней мере один минор, порядок которого будет наибольшим. Наибольший из порядков миноров данной матрицы, отличных от нуля, называется рангом матрицы. Если ранг матрицы А равен r , то это означает, что в матрице А имеется отличный от нуля минор порядка r , но всякий минор порядка, большего чем r , равен нулю. Ранг матрицы А обозначается через r(A). Очевидно, что выполняется соотношение

Вычисление ранга матрицы с помощью миноров

Ранг матрицы находится либо методом окаймления миноров, либо методом элементарных преобразований. При вычислении ранга матрицы первым способом следует переходить от миноров низших порядков к минорам более высокого порядка. Если уже найден минор D k-го порядка матрицы А, отличный от нуля, то требуют вычисления лишь миноры (k+1)-го порядка, окаймляющие минор D, т.е. содержащие его в качестве минора. Если все они равны нулю, то ранг матрицы равен k .

Пример 1. Найти методом окаймления миноров ранг матрицы

.

Решение. Начинаем с миноров 1-го порядка, т.е. с элементов матрицы А. Выберем, например, минор (элемент) М 1 = 1, расположенный в первой строке и первом столбце. Окаймляя при помощи второй строки и третьего столбца, получаем минор M 2 = , отличный от нуля. Переходим теперь к минорам 3-го порядка, окаймляющим М 2 . Их всего два (можно добавить второй столбец или четвертый). Вычисляем их: = 0. Таким образом, все окаймляющие миноры третьего порядка оказались равными нулю. Ранг матрицы А равен двум.

Вычисление ранга матрицы с помощью элементарных преобразований

Элементарными называются следующие преобразования матрицы:

1) перестановка двух любых строк (или столбцов),

2) умножение строки (или столбца) на отличное от нуля число,

3) прибавление к одной строке (или столбцу) другой строки (или столбца), умноженной на некоторое число.

Две матрицы называются эквивалентными , если одна из них получается из другой с помощью конечного множества элементарных преобразований.

Эквивалентные матрицы не являются, вообще говоря, равными, но их ранги равны. Если матрицы А и В эквивалентны, то это записывается так: A ~ B.

Канонической матрицей называется матрица, у которой в начале главной диагонали стоят подряд несколько единиц (число которых может равняться нулю), а все остальные элементы равны нулю, например,

.

При помощи элементарных преобразований строк и столбцов любую матрицу можно привести к канонической. Ранг канонической матрицы равен числу единиц на ее главной диагонали.

Пример 2 Найти ранг матрицы

и привести ее к каноническому виду.

Решение. Из второй строки вычтем первую и переставим эти строки:

.

Теперь из второй и третьей строк вычтем первую, умноженную соответственно на 2 и 5:

;

из третьей строки вычтем первую; получим матрицу

которая эквивалентна матрице А, так как получена из нее с помощью конечного множества элементарных преобразований. Очевидно, что ранг матрицы В равен 2, а следовательно, и r(A)=2. Матрицу В легко привести к канонической. Вычитая первый столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы первой строки, кроме первого, причем элементы остальных строк не изменяются. Затем, вычитая второй столбец, умноженный на подходящие числа, из всех последующих, обратим в нуль все элементы второй строки, кроме второго, и получим каноническую матрицу:

.

Любая матрица A порядка m×n можно рассматривать как совокупность m векторов строк или n векторов столбцов .

Рангом матрицы A порядка m×n называется максимальное количество линейно независимых векторов столбцов или векторов строк.

Если ранг матрицы A равен r , то пишется:

Нахождение ранга матрицы

Пусть A произвольная матрица порядка m ×n . Для нахождения ранга матрицы A применим к ней метод исключения Гаусса.

Отметим, что если на каком-то этапе исключения ведущий элемент окажется равным нулю, то меняем местами данную строку со строкой, в котором ведущий элемент отличен от нуля. Если окажется, что нет такой строки, то переходим к следующему столбцу и т.д.

После прямого хода исключения Гаусса получим матрицу, элементы которой под главной диагональю равны нулю. Кроме этого могут оказаться нулевые векторы строки.

Количество ненулевых векторов строк и будет рангом матрицы A .

Рассмотрим все это на простых примерах.

Пример 1.

Умножив первую строку на 4 и прибавив ко второй строке и умножив первую строку на 2 и прибавив к третьей строке имеем:

Вторую строку умножим на -1 и прибавим к третьей строке:

Получили две ненулевые строки и, следовательно ранг матрицы равен 2.

Пример 2.

Найдем ранг следующей матрицы:

Умножим первую строку на -2 и прибавим ко второй строке. Аналогично обнулим элементы третьей и четвертой строки первого столбца:

Обнулим элементы третьей и четвертой строк второго столбца прибавляя соответствующие строки ко второй строке умноженной на число -1.

Определение. Рангом матрицы называется максимальное число линейно независимых строк, рассматриваемых как векторы.

Теорема 1 о ранге матрицы. Рангом матрицы называется максимальный порядок отличного от нуля минора матрицы.

Понятие минора мы уже разбирали на уроке по определителям , а сейчас обобщим его. Возьмём в матрице сколько-то строк и сколько-то столбцов, причём это "сколько-то" должно быть меньше числа строк и стобцов матрицы, а для строк и столбцов это "сколько-то" должно быть одним и тем же числом. Тогда на пересечении скольки-то строк и скольки-то столбцов окажется матрица меньшего порядка, чем наша исходная матрица. Определитель это матрицы и будет минором k-го порядка, если упомянутое "сколько-то" (число строк и столбцов) обозначим через k.

Определение. Минор (r +1)-го порядка, внутри которого лежит выбранный минор r -го порядка, называется называется окаймляющим для данного минора.

Наиболее часто используются два способа отыскания ранга матрицы . Это способ окаймляющих миноров и способ элементарных преобразований (методом Гаусса).

При способе окаймляющих миноров используется следующая теорема.

Теорема 2 о ранге матрицы. Если из элементов матрицы можно составить минор r -го порядка, не равный нулю, то ранг матрицы равен r .

При способе элементарных преобразований используется следующее свойство:

Если путём элементарных преобразований получена трапециевидная матрица, эквивалентная исходной, то рангом этой матрицы является число строк в ней кроме строк, полностью состоящих из нулей.

Отыскание ранга матрицы способом окаймляющих миноров

Окаймляющим минором называется минор большего порядка по отношению к данному, если этот минорм большего порядка содержит в себе данный минор.

Например, дана матрица

Возьмём минор

окаймляющими будут такие миноры:

Алгоритм нахождения ранга матрицы следующий.

1. Находим не равные нулю миноры второго порядка. Если все миноры второго порядка равны нулю, то ранг матрицы будет равен единице (r =1 ).

2. Если существует хотя бы один минор второго порядка, не равный нулю, то составляем окаймляющие миноры третьего порядка. Если все окаймляющие миноры третьего порядка равны нулю, то ранг матрицы равен двум (r =2 ).

3. Если хотя бы один из окаймляющих миноров третьего порядка не равен нулю, то составляем окаймляющие его миноры. Если все окаймляющие миноры четвёртого порядка равны нулю, то ранг матрицы равен трём (r =2 ).

4. Продолжаем так, пока позволяет размер матрицы.

Пример 1. Найти ранг матрицы

.

Решение. Минор второго порядка .

Окаймляем его. Окаймляющих миноров будет четыре:

,

,

Таким образом, все окаймляющие миноры третьего порядка равны нулю, следовательно, ранг данной матрицы равен двум (r =2 ).

Пример 2. Найти ранг матрицы

Решение. Ранг данной матрицы равен 1, так как все миноры второго порядка этой матрицы равны нулю (в этом, как и в случаях окаймляющих миноров в двух следующих примерах, дорогим студентам предлагается убедиться самостоятельно, возможно, используя правила вычисления определителей), а среди миноров первого порядка, то есть среди элементов матрицы, есть не равные нулю.

Пример 3. Найти ранг матрицы

Решение. Минор второго порядка этой матрицы , в все миноры третьего порядка этой матрицы равны нулю. Следовательно, ранг данной матрицы равен двум.

Пример 4. Найти ранг матрицы

Решение. Ранг данной матрицы равен 3, так как единственный минор третьего порядка этой матрицы равен 3.

Отыскание ранга матрицы способом элементарных преобразований (методом Гаусса)

Уже на примере 1 видно, что задача определения ранга матрицы способом окаймляющих миноров требует вычисления большого числа определителей. Существует, однако, способ, позволяющий свести объём вычислений к минимуму. Этот способ основан на использовании элементарных преобразований матриц и ещё называется также методом Гаусса.

Под элементарными преобразованиями матрицы понимаются следующие операции:

1) умножение какой-либо строки или какого либо столбца матрицы на число, отличное от нуля;

2) прибавление к элементам какой-либо строки или какого-либо столбца матрицы соответствующих элементов другой строки или столбца, умноженных на одно и то же число;

3) перемена местами двух строк или столбцов матрицы;

4) удаление "нулевых" строк, то есть таких, все элементы которых равны нулю;

5) удаление всех пропорциональных строк, кроме одной.

Теорема. При элементарном преобразовании ранг матрицы не меняется. Другими словами, если мы элементарными преобразованиями от матрицы A перешли к матрице B , то .

Число r называется рангом матрицы A , если:
1) в матрице A есть минор порядка r , отличный от нуля;
2) все миноры порядка (r+1) и выше, если они существуют, равны нулю.
Иначе, ранг матрицы – это наивысший порядок минора, отличного от нуля.
Обозначения: rangA , r A или r .
Из определения следует, что r – целое положительное число. Для нуль-матрицы считают ранг равным нулю.

Назначение сервиса . Онлайн-калькулятор предназначен для нахождения ранга матрицы . При этом решение сохраняется в формате Word и Excel . см. пример решения .

Инструкция . Выберите размерность матрицы, нажмите Далее.

Определение . Пусть дана матрица ранга r . Любой минор матрицы, отличный от нуля и имеющий порядок r, называется базисным, а строки и столбцы его составляющие – базисными строками и столбцами.
Согласно этому определению, матрица A может иметь несколько базисных миноров.

Ранг единичной матрицы E равен n (количеству строк).

Пример 1 . Даны две матрицы , и их миноры , . Какой из них можно принять в качестве базисного?
Решение . Минор M 1 =0, поэтому он не может быть базисным ни для одной из матриц. Минор M 2 =-9≠0 и имеет порядок 2, значит его можно принять в качестве базисного матриц A или / и B при условии, что они имеют ранги, равные 2 . Поскольку detB=0 (как определитель с двумя пропорциональными столбцами), то rangB=2 и M 2 можно взять за базисный минор матрицы B. Ранг матрицы A равен 3, в силу того, что detA=-27≠0 и, следовательно, порядок базисного минора этой матрицы должен равняться 3, то есть M 2 не является базисным для матрицы A . Отметим, что у матрицы A единственный базисный минор, равный определителю матрицы A .

Теорема (о базисном миноре). Любая строка (столбец) матрицы является линейной комбинацией ее базисных строк (столбцов).
Следствия из теоремы.

  1. Всякие (r+1) столбцов (строк) матрицы ранга r линейно зависимы.
  2. Если ранг матрицы меньше числа ее строк (столбцов), то ее строки (столбцы) линейно зависимы. Если rangA равен числу ее строк (столбцов), то строки (столбцы) линейно независимы.
  3. Определитель матрицы A равен нулю тогда и только тогда, когда ее строки (столбцы) линейно зависимы.
  4. Если к строке (столбцу) матрицы прибавить другую строку, (столбец) умноженную на любое число, отличное от нуля, то ранг матрицы не изменится.
  5. Если в матрице зачеркнуть строку (столбец), являющуюся линейной комбинацией других строк (столбцов), то ранг матрицы не изменится.
  6. Ранг матрицы равен максимальному числу ее линейно независимых строк (столбцов).
  7. Максимальное число линейно независимых строк совпадает с максимальным числом линейно независимых столбцов.

Пример 2 . Найти ранг матрицы .
Решение. Исходя из определения ранга матрицы, будем искать минор наивысшего порядка, отличный от нуля. Сначала преобразуем матрицу к более простому виду. Для этого первую строку матрицы умножим на (-2) и прибавим ко второй, затем ее же умножим на (-1) и прибавим к третьей.

Ранее для квадратной матрицы -го порядка было введено понятие минора
элемента. Напомним, что так был назван определитель порядка
, полученный из определителя
вычеркиванием-й строки и-го столбца.

Введем теперь общее понятие минора. Рассмотрим некоторую, не обязательно квадратную матрицу . Выберем какие-нибудьномеров строк
иномеров столбцов
.

Определение . Минором порядка матрицы (соответствующим выбранным строкам и столбцам) называется определитель порядка, образованный элементами, стоящими на пересечении выбранных строк и столбцов, т.е. число

.

Каждая матрица имеет столько миноров данного порядка , сколькими способами можно выбрать номера строк
и столбцов
.

Определение . В матрице размеров
минор порядканазываетсябазисным , если он отличен от нуля, а все миноры порядка
равны нулю или миноров порядка
у матрицывообще нет.

Ясно, что в матрице может быть несколько разных базисных миноров, но все базисные миноры имеют один и тот же порядок. Действительно, если все миноры порядка
равны нулю, то равны нулю и все миноры порядка
, а, следовательно, и всех бόльших порядков.

Определение . Рангом матрицы называется порядок базисного минора, или, иначе, самый большой порядок, для которого существуют отличные от нуля миноры. Если все элементы матрицы равны нулю, то ранг такой матрицы, по определению, считают нулем.

Ранг матрицы будем обозначать символом
. Из определения ранга следует, что для матрицыразмеров
справедливо соотношение.

Два способа вычисления ранга матрицы

а) Метод окаймляющих миноров

Пусть в матрице найден минор
-го порядка, отличный от нуля. Рассмотрим лишь те миноры
-го порядка, которые содержат в себе (окаймляют) минор
: если все они равны нулю, то ранг матрицы равен. В противном случае среди окаймляющих миноров найдется ненулевой минор
-го порядка, и вся процедура повторяется.

Пример 9 . Найти ранг матрицы методом окаймляющих миноров.

Выберем минор второго порядка
. Существует только один минор третьего порядка, окаймляющий выбранный минор
. Вычислим его.

Значит, минор
базисный, а ранг матрицы равен его порядку, т.е.

Ясно, что перебирать таким способом миноры в поисках базисного – задача, связанная с большими вычислениями, если размеры матрицы не очень малы. Существует, однако, более простой способ нахождения ранга матрицы – при помощи элементарных преобразований.

б) Метод элементарных преобразований

Определение . Элементарными преобразованиями матрицы называют следующие преобразования:

    умножение строки на число, отличное от нуля;

    прибавление к одной строке другой строки;

    перестановку строк;

    такие же преобразования столбцов.

Преобразования 1 и 2 выполняются поэлементно.

Комбинируя преобразования первого и второго вида, мы можем к любой строке прибавить линейную комбинацию остальных строк.

Теорема . Элементарные преобразования не меняют ранга матрицы.

(Без доказательства)

Идея практического метода вычисления ранга матрицы

заключается в том, что с помощью элементарных преобразований данную матрицу приводят к виду

, (5)

в котором «диагональные» элементы
отличны от нуля, а элементы, расположенные ниже «диагональных», равны нулю. Условимся называть матрицутакого вида треугольной (иначе, ее называют диагональной, трапециевидной или лестничной). После приведения матрицык треугольному виду можно сразу записать, что
.

В самом деле,
(т.к. элементарные преобразования не меняют ранга). Но у матрицысуществует отличный от нуля минор порядка:

,

а любой минор порядка
содержит нулевую строку и поэтому равен нулю.

Сформулируем теперь практическое правило вычисления ранга матрицы с помощью элементарных преобразований: для нахождения ранга матрицыследует с помощью элементарных преобразований привести ее к треугольному виду. Тогда ранг матрицыбудет равен числу ненулевых строк в полученной матрице.

Пример 10. Найти ранг матрицы методом элементарных преобразований

Решение.

Поменяем местами первую и вторую строку (т.к. первый элемент второй строки −1 и с ней будет удобно выполнять преобразования). В результате получим матрицу, эквивалентную данной.


Обозначим -тую строку матрицы –. Нам необходимо привести исходную матрицу к треугольному виду. Первую строку будем считать ведущей, она будет участвовать во всех преобразованиях, но сама остается без изменений.

На первом этапе выполним преобразования, позволяющие получить в первом столбце нули, кроме первого элемента. Для этого из второй строки вычтем первую, умноженную на 2
, к третьей строке прибавим первую
, а из третьей вычтем первую, умноженную на 3
Получаем матрицу, ранг которой совпадает с рангом данной матрицы. Обозначим ее той же буквой:

.

Так как нам необходимо привести матрицу к виду (5), вычтем из четвертой строки вторую. При этом имеем:

.

Получена матрица треугольного вида, и можно сделать вывод, что
, т. е. числу ненулевых строк. Коротко решение задачи можно записать следующим образом:


Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.