Как устроена нервная. Центральная нервная система человека

Нервная система разделяется на центральную нервную систему (ЦНС) и периферическую нервную систему (см. рис. 1).

Центральная нервная система состоит из головного мозга и спинного мозга.

Головной мозг в свою очередь состоит из больших полушарий головного мозга, мозжечка и ствола мозга. Периферическая нервная система представляет собой нервные волокна и узлы, отходящие от центральной нервной системы (ЦНС) и распространяющиеся по всему организму. При этом по чувствительным нервным волокнам импульсы возбуждения от любой ткани, любого органа передаются в центральную нервную систему, подвергаются здесь определенной переработке и по двигательным и секреторным нервным волокнам соответствующий импульс поступает в исполнительный орган - мышцу, сосуд, железу и т. п. Ощущения, которые возникают при возбуждении органов чувств и воздействии на кожу, мышцы и суставы, также передаются по нервным волокнам в центральную нервную систему, где они сознательно или бессознательно фиксируются.

Белое и серое вещество

В головном и спинном мозге различают так называемые серое и белое вещества. В сером веществе расположены клеточные тела нейронов. Основная функция нейронов - восприятие раздражении, их переработка, передача этой информации и формирование ответной реакции. От тела каждой нервной клетки отходит длинный отросток (аксон), по которому нервные импульсы идут от тела клетки к иннервируемым органам и другим нервным клеткам. Аксоны покрыты миелиновой (мякотной) оболочкой, толщина которой зависит от функции нерва. Миелиновая оболочка состоит из белково-липидного комплекса (миелина) белого цвета. Совокупность нервных волокон головного и спинного мозга называют белым веществом центральной нервной системы.

Миелиновая оболочка

При рассеянном склерозе повреждается миелиновая оболочка нервных волокон. Миелиновая оболочка служит для быстрой передачи электрического нервного импульса. В нервных волокнах нервный импульс распространяется довольно медленно. Миелиновая оболочка, являясь изолятором, предотвращает рассеивание нервных импульсов и их переход на другие нервные волокна. Миелиновое покрытие по длине волокна имеет сегментарное строение; на границе двух сегментов имеются участки безмиелиновых перетяжек - так называемые узлы нервного волокна или перехваты Ранвье. За счет этого нервный импульс распространяется по мякотному волокну не непрерывно, как по безмякотному, а быстрее - скачками: электрические импульсы «перепрыгивают» от одного перехвата Ранвье к другому (рис. 2),

Таким образом скорость распространения нервных импульсов в мякотных волокнах выше, чем в безмякотных. Если в результате болезни какой-то участок миелиновой оболочки повреждается, нервные импульсы на этом участке проходят по лишенному миелиновой оболочки аксону, и значит скорость их прохождения замедляется; функции на этом нервном пути осуществляются медленнее и в измененном виде.

Тела нейронов и нервные проводники-аксоны окружают глиальные клетки, которые выполняют в центральной нервной системе опорную функцию, а также участвуют в метаболизме нервных клеток. Они отличаются высоким уровнем белкового и нуклеинового обмена и ответственны за транспорт веществ в нейроны. Глиальные клетки участвуют в образовании миелиновых оболочек аксонов. Миелиновая оболочка состоит из миелина, включающего в свой состав протеины, липиды, жиры и содержащие сахар белки.

Функции в центральной нервной системе строго локализованы, отдельные нервные пути, т. е. пучки нервных волокон выполняют вполне определенные задачи и связаны с восприятием информации от определенного органа чувств. Разные функции организма регулируются различными частями нервной системы. Каждая совокупность нервных клеток отвечает за восприятие одного вида чувствительности. И если одна совокупность нервных клеток ведает регуляцией вегетативных реакций, то двигательные импульсы передает другая совокупность нервных клеток. Причем, скажем, двигательные импульсы, соответствующие конкретному движению, передаются нервными волокнами с определенного участка коры головного мозга в любой доле мозга отдельно для движений, осуществляемых правой и левой половиной тела. Эти нервные волокна объединяются в общий так называемый двигательный пирамидный путь. Он включает в свой состав определенные нервные волокна, ответственные за каждое конкретное движение, и обеспечивает передачу соответствующей импульсации исполнительному органу - определенным мышцами. При этом за каждое конкретное движение ответственно не одно единственное нервное волокно, а целый пучок нервных волокон. И если в результате болезни часть нервных волокон в таком пучке повреждается, он утрачивает способность выполнять свои функции. Соответственно утрачивается способность совершать то движение, за которое отвечал поврежденный пучок нервных волокон, т. е. происходит ограничение определенной физической возможности больного человека. И если пучок нервных волокон повреждается целиком, то функция утрачивается полностью, как это происходит, например, при поперечном параличе в результате несчастного случая.

Кроме нервных путей, осуществляющих прямую передачу импульсов, как, к примеру, уже упомянутый пирамидный путь, в центральной нервной системе имеются многочисленные нервные пути, которые регулируют осуществление отдельных движений или восприятие определенных ощущений. Так становятся возможными сложные двигательные акты, требующие четкой координации и тонкой дифференцированности. При этом восприятие ощущений, передаваемых одним органом чувств, становится доминирующим, а восприятие ощущений через другой орган чувств становится второстепенным, или важные впечатления могут быть отделены от незначительных.

В целом нервная система регулирует всю деятельность организма и обеспечивает его связь с окружающей средой. Нервная система осуществляет регулирующее влияние на обменные процессы в тканях, деятельность сердечной мышцы и системы кровообращения, дыхательную функцию, работу мочевого пузыря, желудочно-кишечного тракта, на образование гормонов. Деятельность нервной системы обусловливает состояние относительного равновесия внутренней среды организма.

Спинномозговая жидкость

В центральной нервной системе существует несколько переходящих одна в другую полостей, совокупность которых образует систему - своего рода жидкостную ось мозга. Она включает в себя две полости в больших полушариях мозга, по одной в центральной части мозга и между продолговатым мозгом и мозжечком, а также центральный канал спинного мозга. В желудочках мозга, в субарахноидальном пространстве и в центральном канале спинного мозга циркулирует ликвор - спинномозговая жидкость, которая участвует в обмене веществ между кровеносной и нервной системами.

По мере эволюционного усложнения многоклеточных организмов, функциональной специализации клеток, возникла необходимость регуляции и координации жизненных процессов на надклеточном, тканевом, органном, системном и организменном уровнях. Эти новые регуляторные механизмы и системы должны были появиться наряду с сохранением и усложнением механизмов регуляции функций отдельных клеток с помощью сигнальных молекул. Приспособление многоклеточных организмов к изменениям в среде существования могло быть выполнено при условии, что новые механизмы регуляции будут способны обеспечить быстрые, адекватные, адресные ответные реакции. Эти механизмы должны быть способны запоминать и извлекать из аппарата памяти сведения о предыдущих воздействиях на организм, а также обладать другими свойствами, обеспечивающими эффективную приспособительную деятельность организма. Ими стали механизмы нервной системы, появившейся у сложных, высокоорганизованных организмов.

Нервная система — это совокупность специальных структур, объединяющая и координирующая деятельность всех органов и систем организма в постоянном взаимодействии с внешней средой.

К центральной нервной системе относятся головной и спинной мозг. Головной мозг подразделяется на задний мозг ( и варолиев мост), ретикулярную формацию, подкорковые ядра, . Тела образуют серое вещество ЦНС, а их отростки (аксоны и дендриты) — белое вещество.

Общая характеристика нервной системы

Одной из функций нервной системы является восприятие различных сигналов (раздражителей) внешней и внутренней среды организма. Вспомним, что воспринимать разнообразные сигналы среды существования могут любые клетки с помощью специализированных клеточных рецепторов. Однако к восприятию ряда жизненно важных сигналов они не приспособлены и не могут мгновенно передать информацию другим клеткам, которые выполняют функцию регуляторов целостных адекватных реакций организма на действие раздражителей.

Воздействие раздражителей воспринимается специализированными сенсорными рецепторами. Примерами таких раздражителей могут быть кванты света, звуки, тепло, холод, механические воздействия (гравитация, изменение давления, вибрация, ускорение, сжатие, растяжение), а также сигналы сложной природы (цвет, сложные звуки, слово).

Для оценки биологической значимости воспринятых сигналов и организации на них адекватной ответной реакции в рецепторах нервной системы осуществляется их превращение - кодирование в универсальную форму сигналов, понятную нервной системе, — в нервные импульсы, проведение (передана) которых по нервным волокнам и путям в нервные центры необходимы для их анализа.

Сигналы и результаты их анализа используются нервной системой для организации ответных реакции на изменения во внешней или внутренней среде, регуляции и координации функции клеток и надклеточных структур организма. Такие ответные реакции осуществляются эффекторными органами. Наиболее частыми вариантами ответных реакций на воздействия являются моторные (двигательные) реакции скелетной или гладкой мускулатуры, изменение секреции эпителиальных (экзокринных, эндокринных) клеток, инициируемые нервной системой. Принимая прямое участие в формировании ответных реакций на изменения в среде существования, нервная система выполняет функции регуляции гомеостаза, обеспечения функционального взаимодействия органов и тканей и их интеграции в единый целостный организм.

Благодаря нервной системе осуществляется адекватное взаимодействие организма с окружающей средой не только через организацию ответных реакций эффекторными системами, но и через ее собственные психические реакции — эмоции, мотивации, сознание, мышление, память, высшие познавательные и творческие процессы.

Нервную систему подразделяют на центральную (головной и спинной мозг) и периферическую — нервные клетки и волокна за пределами полости черепной коробки и спинномозгового канала. Головной мозг человека содержит более 100 миллиардов нервных клеток (нейронов). Скопления нервных клеток, выполняющих или контролирующих одинаковые функции, формируют в центральной нервной системе нервные центры. Структуры мозга, представленные телами нейронов, формируют серое вещество ЦНС, а отростки этих клеток, объединяясь в проводящие пути, — белое вещество. Кроме этого, структурной частью ЦНС являются глиальные клетки, формирующие нейроглию. Число глиальных клеток приблизительно в 10 раз превышает число нейронов, и эти клетки составляют большую часть массы центральной нервной системы.

Нервную систему по особенностям выполняемых функций и строения делят на соматическую и автономную (вегетативную). К соматической относят структуры нервной системы, которые обеспечивают восприятие сенсорных сигналов преимущественно внешней среды через органы чувств, и контролируют работу поперечно-полосатой (скелетной) мускулатуры. К автономной (вегетативной) нервной системе относят структуры, которые обеспечивают восприятие сигналов преимущественно внутренней среды организма, регулируют работу сердца, других внутренних органов, гладкой мускулатуры, экзокринных и части эндокринных желез.

В центральной нервной системе принято выделять структуры, расположенные на различных уровнях, для которых свойственны специфические функции и роль в регуляции жизненных процессов. Среди них , базальные ядра, структуры ствола мозга, спинной мозг, периферическая нервная система.

Строение нервной системы

Нервную систему подразделяют на центральную и периферическую. К центральной нервной системе (ЦНС) относятся головной и спинной мозг, а к периферической — нервы, отходящие от центральной нервной системы к различным органам.

Рис. 1. Строение нервной системы

Рис. 2. Функциональное деление нервной системы

Значение нервной системы:

  • объединяет органы и системы организма в единое целое;
  • регулирует работу всех органов и систем организма;
  • осуществляет связь организма с внешней средой и приспособление его к условиям среды;
  • составляет материальную основу психической деятельности: речь, мышление, социальное поведение.

Структура нервной системы

Структурно-физиологической единицей нервной системы является - (рис. 3). Он состоит из тела (сомы), отростков (дендритов) и аксона. Дендриты сильно ветвятся и образуют множество синапсов с другими клетками, что определяет их ведущую роль в восприятии нейроном информации. Аксон начинается от тела клетки аксонным холмиком, являющимся генератором нервного импульса, который затем по аксону проводится к другим клеткам. Мембрана аксона в области синапса содержит специфические рецепторы, способные реагировать на различные медиаторы или нейромодуляторы. Поэтому на процесс выделения медиатора пресинаптическими окончаниями могут оказывать влияние другие нейроны. Также мембрана окончаний содержит большое число кальциевых каналов, через которые ионы кальция поступают внутрь окончания при его возбуждении и активизируют выделение медиатора.

Рис. 3. Схема нейрона (по И.Ф. Иванову): а — строение нейрона: 7 — тело (перикарион); 2 — ядро; 3 — дендриты; 4,6 — нейриты; 5,8 — миелиновая оболочка; 7- коллатераль; 9 — перехват узла; 10 — ядро леммоцита; 11 — нервные окончания; б — типы нервных клеток: I — униполярная; II — мультиполярная; III — биполярная; 1 — неврит; 2 -дендрит

Обычно в нейронах потенциал действия возникает в области мембраны аксонного холмика, возбудимость которой в 2 раза выше возбудимости других участков. Отсюда возбуждение распространяется по аксону и телу клетки.

Аксоны, помимо функции проведения возбуждения, служат каналами для транспорта различных веществ. Белки и медиаторы, синтезированные в теле клетки, органеллы и другие вещества могут перемещаться по аксону к его окончанию. Это перемещение веществ получило название аксонного транспорта. Существует два его вида — быстрый и медленный аксонный транспорт.

Каждый нейрон в центральной нервной системе выполняет три физиологические роли: воспринимает нервные импульсы с рецепторов или других нейронов; генерирует собственные импульсы; проводит возбуждение к другому нейрону или органу.

По функциональному значению нейроны подразделяют на три группы: чувствительные (сенсорные, рецепторные); вставочные (ассоциативные); моторные (эффекторные, двигательные).

Помимо нейронов в центральной нервной системе имеются глиальные клетки, занимающие половину объема мозга. Периферические аксоны также окружены оболочкой из глиальных клеток — леммоцитов (шванновские клетки). Нейроны и глиальные клетки разделены межклеточными щелями, которые сообщаются друге другом и образуют заполненное жидкостью межклеточное пространство нейронов и глии. Через это пространств происходит обмен веществами между нервными и глиальными клетками.

Клетки нейроглии выполняют множество функций: опорную, защитную и трофическую роль для нейронов; поддерживают определенную концентрацию ионов кальция и калия в межклеточном пространстве; разрушают нейромедиаторы и другие биологически активные вещества.

Функции центральной нервной системы

Центральная нервная система выполняет несколько функций.

Интегративная: организм животных и человека представляет собой сложную высокоорганизованную систему, состоящую из функционально связанных между собой клеток, тканей, органов и их систем. Эту взаимосвязь, объединение различных составляющих организма в единое целое (интеграция), их согласованное функционирование обеспечивает центральная нервная система.

Координирующая: функции различных органов и систем организма должны протекать согласованно, так как только при таком способе жизнедеятельности возможно поддерживать постоянство внутренней среды, равно как и успешно адаптировать к изменяющимся условиям окружающей среды. Координацию деятельности составляющих организм элементов осуществляет центральная нервная система.

Регулирующая: центральная нервная система регулирует все процессы, протекающие в организме, поэтому при ее участии происходят наиболее адекватные изменения работы различных органов, направленные на обеспечение той или иной его деятельности.

Трофическая: центральная нервная система осуществляет регуляцию трофики, интенсивности обменных процессов в тканях организма, что лежит в основе формирования реакций, адекватных происходящим изменениям во внутренней и внешней среде.

Приспособительная: центральная нервная система осуществляет связь организма с внешней средой путем анализа и синтеза поступающей к ней разнообразной информации от сенсорных систем. Это дает возможность перестраивать деятельность различных органов и систем в соответствии с изменениями среды. Она выполняет функции регулятора поведения, необходимого в конкретных условиях существования. Это обеспечивает адекватное приспособление к окружающему миру.

Формирование ненаправленного поведения: центральная нервная система формирует определенное поведение животного в соответствии с доминирующей потребностью.

Рефлекторная регуляция нервной деятельности

Приспособление процессов жизнедеятельности организма, его систем, органов, тканей к меняющимся условиям среды называется регуляцией. Регуляция, обеспечиваемая совместно нервной и гормональной системами, называется нервно-гормональной регуляцией. Благодаря нервной системе организм осуществляет свою деятельность по принципу рефлекса.

Основным механизмом деятельности центральной нервной системы является — это ответная реакция организма на действия раздражителя, осуществляемая с участием ЦНС и направленная на достижение полезного результата.

Рефлекс в переводе с латинского языка означает «отражение». Термин «рефлекс» был впервые предложен чешским исследователем И.Г. Прохаской, который развил учение об отражательных действиях. Дальнейшее становление рефлекторной теории связано с именем И.М. Сеченова. Он полагал, что все бессознательное и сознательное совершается по типу рефлекса. Но тогда еще не существовало методов объективной оценки деятельности мозга, которые могли бы подтвердить это предположение. Позднее объективный метод оценки деятельности мозга был разработан академиком И.П. Павловым, и он получил название метода условных рефлексов. С помощью этого метода ученый доказал, что в основе высшей нервной деятельности животных и человека лежат условные рефлексы, формирующиеся на базе безусловных рефлексов за счет образования временных связей. Академик П.К. Анохин показал, что все многообразие деятельности животных и человека осуществляется на основе концепции функциональных систем.

Морфологической основой рефлекса является , состоящая из нескольких нервных структур, которая обеспечивает осуществление рефлекса.

В образовании рефлекторной дуги участвуют три вида нейронов: рецепторные (чувствительные), промежуточные (вставочные), двигательные (эффекторные) (рис. 6.2). Они объединяются в нейронные цепи.

Рис. 4. Схема регуляции но принципу рефлекса. Рефлекторная дуга: 1 — рецептор; 2 — афферентный путь; 3 — нервный центр; 4 — эфферентный путь; 5 — рабочий орган (любой орган организма); МН — моторный нейрон; М — мышца; КН — командный нейрон; СН — сенсорный нейрон, МодН — модуляторный нейрон

Дендрит ренепторного нейрона контактирует с рецептором, его аксон направляется в ЦНС и взаимодействует с вставочным нейроном. От вставочного нейрона аксон идет к эффекторному нейрону, а его аксон направляется на периферию к исполнительному органу. Таким образом и формируется рефлекторная дуга.

Рецепторные нейроны расположены на периферии и во внутренних органах, а вставочные и двигательные находятся в ЦНС.

В рефлекторной дуге различают пять звеньев: рецептор, афферентный (или центростремительный) путь, нервный центр, эфферентный (или центробежный) путь и рабочий орган (или эффектор).

Рецептор — специализированное образование, воспринимающее раздражение. Рецептор состоит из специализированных высокочувствительных клеток.

Афферентное звено дуги представляет собой рецепторный нейрон и проводит возбуждение от рецептора к нервному центру.

Нервный центр образован большим числом вставочных и двигательных нейронов.

Это звено рефлекторной дуги состоит из совокупности нейронов, расположенных в различных отделах ЦНС. Нервный центр воспринимает импульсы от рецепторов по афферентному пути, осуществляет анализ и синтез этой информации, затем передает сформированную программу действий по эфферентным волокнам к периферическому исполнительному органу. А рабочий орган осуществляет свойственную ему деятельность (мышца сокращается, железа выделяет секрет и т.д.).

Специальное звено обратной афферентации воспринимает параметры совершенного рабочим органом действия и передает эту информацию в нервный центр. Нервный центр является акцептором действия звена обратной афферентации и воспринимает информацию с рабочего органа о совершенном действии.

Время от начала действия раздражителя на рецептор до появления ответной реакции называется временем рефлекса.

Все рефлексы у животных и человека подразделяются на безусловные и условные.

Безусловные рефлексы - врожденные, наследственно передающиеся реакции. Безусловные рефлексы осуществляются через уже сформированные в организме рефлекторные дуги. Безусловные рефлексы видоспецифичны, т.е. свойственны всем животным данного вида. Они постоянны в течение жизни и возникают в ответ на адекватные раздражения рецепторов. Безусловные рефлексы классифицируются и по биологическому значению: пищевые, оборонительные, половые, локомоторные, ориентировочные. По расположению рецепторов эти рефлексы подразделяются: на экстероцептивные (температурные, тактильные, зрительные, слуховые, вкусовые и др.), интероцептивные (сосудистые, сердечные, желудочный, кишечный и пр.) и проприоцептивные (мышечные, сухожильные и пр.). По характеру ответной реакции — на двигательные, секреторные и др. По нахождению нервных центров, через которые осуществляется рефлекс, — на спинальные, бульбарные, мезэнцефальные.

Условные рефлексы - рефлексы, приобретенные организмом в процессе его индивидуальной жизни. Условные рефлексы осуществляются через вновь сформированные рефлекторные дуги на базе рефлекторных дуг безусловных рефлексов с образованием между ними временной связи в коре больших полушарий.

Рефлексы в организме осуществляются с участием желез внутренней секреции и гормонов.

В основе современных представлений о рефлекторной деятельности организма находится понятие полезного приспособительного результата, для достижения которого и совершается любой рефлекс. Информация о достижении полезного приспособительного результата поступает в центральную нервную систему по звену обратной связи в виде обратной афферентации, которая является обязательным компонентом рефлекторной деятельности. Принцип обратной афферентации в рефлекторной деятельности был разработан П. К. Анохиным и основан на том, что структурной основой рефлекса является не рефлекторная дуга, а рефлекторное кольцо, включающее следующие звенья: рецептор, афферентный нервный путь, нервный центр, эфферентный нервный путь, рабочий орган, обратная афферентация.

При выключении любого звена рефлекторного кольца рефлекс исчезает. Следовательно, для осуществления рефлекса необходима целостность всех звеньев.

Свойства нервных центров

Нервные центры обладают рядом характерных функциональных свойств.

Возбуждение в нервных центрах распространяется односторонне от рецептора к эффектору, что связано со способностью проводить возбуждение только от пресинаптической мембраны к постсинаптической.

Возбуждение в нервных центрах проводится медленнее, чем по нервному волокну, в результате замедления проведения возбуждения через синапсы.

В нервных центрах может происходить суммация возбуждений.

Можно выделить два основных способа суммации: временную и пространственную. При временной суммации несколько импульсов возбуждения приходят к нейрону через один синапс, суммируются и генерируют в нем потенциал действия, а пространственная суммации проявляется в случае поступления импульсов к одному нейрону через разные синапсы.

В них происходит трансформация ритма возбуждения, т.е. уменьшение или увеличение количества импульсов возбуждения, выходящих из нервного центра по сравнению с количеством импульсов, приходящих к нему.

Нервные центры очень чувствительны к недостатку кислорода и действию различных химических веществ.

Нервные центры, в отличие от нервных волокон, способны к быстрому утомлению. Синаптическая утомляемость при длительной активации центра выражается в снижении числа постсинаптических потенциалов. Это обусловлено расходованием медиатора и накоплением метаболитов, закисляющих среду.

Нервные центры находятся в состоянии постоянного тонуса, обусловленного непрерывным поступлением определенного числа импульсов от рецепторов.

Нервным центрам свойственна пластичность — способность увеличивать свои функциональные возможности. Это свойство может быть обусловлено синаптическим облегчением — улучшение проведения в синапсах после короткого раздражения афферентных путей. При частом использовании синапсов ускоряется синтез рецепторов и медиатора.

Наряду с возбуждением в нервном центре происходят процессы торможения.

Координационная деятельность ЦНС и ее принципы

Одной из важных функций центральной нервной системы является координационная функция, которую называют также координационной деятельностью ЦНС. Под ней понимают регуляцию распределения возбуждения и торможения в нейронных структурах, а также взаимодействие между нервными центрами, которые обеспечивают эффективное осуществление рефлекторных и произвольных реакций.

Примером координационной деятельности ЦНС могут быть реципрокные отношения между центрами дыхания и глотания, когда во время глотания центр дыхания затормаживается, надгортанник закрывает вход в гортань и предупреждает попадание в дыхательные пути пищи или жидкости. Координационная функция ЦНС принципиально важна для осуществления сложных движений, осуществляемых при участии множества мышц. Примерами таких движений могут быть артикуляция речи, акт глотания, гимнастические движения, требующие согласованного сокращения и расслабления множества мышц.

Принципы координационной деятельности

  • Реципрокность — взаимное торможение антагонистических групп нейронов (мотонейроны сгибателей и разгибателей)
  • Конечный нейрон — активация эфферентного нейрона с различных рецептивных полей и конкурентная борьба между различными афферентными импульсациями за данный мотонейрон
  • Переключения — процесс перехода активности с одного нервного центра на нервный центр антагонист
  • Индукция — смена возбуждения торможением или наоборот
  • Обратная связь — механизм, обеспечивающий необходимость сигнализации от рецепторов исполнительных органов для успешной реализации функции
  • Доминанта — стойкий главенствующий очаг возбуждения в ЦНС, подчиняющий себе функции других нервных центров.

В основе координационной деятельности центральной нервной системы лежит ряд принципов.

Принцип конвергенции реализуется в конвергентных цепях нейронов, в которых на один из них (обычно эфферентный) сходятся или конвергируют аксоны ряда других. Конвергенция обеспечивает поступление к одному и тому же нейрону сигналов от различных нервных центров или рецепторов различных модальностей (различных органов чувств). На основе конвергенции самые разные раздражители могут вызвать однотипную реакцию. Например, сторожевой рефлекс (поворот глаз и головы — настораживание) может быть вызван и световым, и звуковым, и тактильным воздействием.

Принцип общего конечного пути вытекает из принципа конвергенции и близок по своей сути. Под ним понимают возможность осуществления одной и той же реакции, запускаемой конечным в иерархической нервной цепи эфферентным нейроном, на который конвергируют аксоны множества других нервных клеток. Примером классического конечного пути являются мотонейроны передних рогов спинного мозга или двигательных ядер черепных нервов, которые своими аксонами непосредственно иннервируют мышцы. Одна и та же двигательная реакция (например сгибание руки) может запускаться путем поступления к этим нейронам импульсов от пирамидных нейронов первичной двигательной коры, нейронов ряда моторных центров ствола мозга, интернейронов спинного мозга, аксонов чувствительных нейронов спинальных ганглиев в ответ на действие сигналов, воспринятых разными органами чувств (на световое, звуковое, гравитационное, болевое или механическое воздействие).

Принцип дивергенции реализуется в дивергентных цепях нейронов, в которых один из нейронов имеет ветвящийся аксон, и каждая из ветвей образует синапс с другой нервной клеткой. Эти цепи выполняют функции одновременной передачи сигналов от одного нейрона на многие другие нейроны. Благодаря дивергентным связям происходит широкое распространение (иррадиация) сигналов и быстрое вовлечение в ответную реакцию многих центров, расположенных на разных уровнях ЦНС.

Принцип обратной связи (обратной афферентации) заключается в возможности передачи по афферентным волокнам информации об осуществляемой реакции (например, о движении от проприорецепторов мышц) обратно в нервный центр, который ее запускал. Благодаря обратной связи формируется замкнутая нейронная цепь (контур), через которую можно контролировать ход исполнения реакции, регулировать силу, продолжительность и другие параметры реакции, если они не были реализованы.

Участие обратной связи можно рассмотреть на примере реализации сгибательного рефлекса, вызываемого механическим воздействием на рецепторы кожи (рис. 5). При рефлекторном сокращении мышцы-сгибателя изменяется активность проприорецепторов и частота посылки нервных импульсов по афферентным волокнам к а-мотонейронам спинного мозга, иннервирующим эту мышцу. В результате формируется замкнутый контур регулирования, в котором роль канала обратной связи выполняют афферентные волокна, передающие информацию о сокращении в нервные центры от рецепторов мышц, а роль канала прямой связи — эфферентные волокна мотонейронов, идущие к мышцам. Таким образом, нервный центр (его мотонейроны) получает информацию об изменении состояния мышцы, вызванном передачей импульсов по двигательным волокнам. Благодаря обратной связи образуется своеобразное регуляторное нервное кольцо. Поэтому некоторые авторы предпочитают вместо термина «рефлекторная дуга» применять термин «рефлекторное кольцо».

Наличие обратной связи имеет важное значение в механизмах регуляции кровообращения, дыхания, температуры тела, поведенческих и других реакций организма и рассматривается далее в соответствующих разделах.

Рис. 5. Схема обратной связи в нейронных цепях простейших рефлексов

Принцип реципрокных отношений реализуется при взаимодействии между нервными центрами-антагонистами. Например, между группой моторных нейронов, контролирующих сгибание руки, и группой моторных нейронов, контролирующих разгибание руки. Благодаря реципрокным отношениям возбуждение нейронов одного из антагонистических центров сопровождается торможением другого. В приведенном примере реципрокные отношения между центрами сгибания и разгибания проявятся тем, что во время сокращения мышц- сгибателей руки будет происходить эквивалентное расслабление разгибателей, и наоборот, что обеспечивает плавность сгибательных и разгибательных движений руки. Реципрокные отношения осуществляются за счет активации нейронами возбужденного центра тормозных вставочных нейронов, аксоны которых образуют тормозные синапсы на нейронах антагонистического центра.

Принцип доминанты также реализуется на основе особенностей взаимодействия между нервными центрами. Нейроны доминирующего, наиболее активного центра (очага возбуждения) обладают стойкой высокой активностью и подавляют возбуждение в других нервных центрах, подчиняя их своему влиянию. Более того, нейроны доминирующего центра притягивают к себе афферентные нервные импульсы, адресуемые к другим центрам, и усиливают свою активность за счет поступления этих импульсов. Доминантный центр может длительно находиться в состоянии возбуждения без признаков утомления.

Примером состояния, обусловленного наличием в центральной нервной системе доминантного очага возбуждения, может служить состояние после пережитого человеком важного для него события, когда все его мысли и действия так или иначе становятся связанными с этим событием.

Свойства доминанты

  • Повышенная возбудимость
  • Стойкость возбуждения
  • Инертность возбуждения
  • Способность к подавлению субдоминантных очагов
  • Способность к суммированию возбуждений

Рассмотренные принципы координации могут использоваться, в зависимости от координируемых ЦНС процессов порознь или вместе в различных сочетаниях.

Нервная система человека работает непрерывно. Благодаря ей осуществляются такие жизненно важные процессы, как дыхание, биение сердца и пищеварение.

Зачем нужна нервная система?

Нервная система человека выполняет сразу несколько важнейших функций:
— получает информацию о внешнем мире и состоянии организма,
— передает информацию о состоянии всего тела в головной мозг ,
— координирует произвольные (сознательные) движения тела,
— координирует и регулирует непроизвольные функции: дыхание, сердечный ритм, кровяное давление и температуру тела.

Как она устроена?

Головной мозг – это центр нервной системы : примерно такой же, как процессор в компьютере.

Провода и порты этого «суперкомпьютера» — спинной мозг и нервные волокна. Они пронизывают все ткани тела, как большая сеть. Нервы передают электрохимические сигналы из разных участков нервной системы, а также других тканей и органов.

Кроме нервной сети, называемой периферической нервной системой, есть также вегетативная нервная система . Она регулирует работу внутренних органов, которая не контролируется сознательно: пищеварение , сердцебиение, дыхание, выделение гормонов .

Что может навредить нервной системе?

Токсичные вещества нарушают протекание электрохимических процессов в клетках нервной системы и приводят к гибели нейронов.

Особенно опасны для нервной системы тяжелые металлы (например, ртуть и свинец), различные яды (в их число входят табак и алкоголь ), а также некоторые лекарственные препараты.

Травмы происходят, когда повреждаются конечности или позвоночник. В случае переломов костей близко расположенные к ним нервы оказываются раздавлены, пережаты или даже разорваны. Это приводит к боли, онемению, потере чувствительности или нарушению двигательной функции.

Подобный процесс может происходить и при нарушении осанки . Из-за постоянного неправильного положения позвонков защемляются или постоянно раздражаются нервные корешки спинного мозга, которые выходят в отверстия позвонков. Подобные защемления нерва могут происходить также в районах суставов или мышц и вызывать онемение или боль.

Другой пример защемления нерва – так называемый туннельный синдром . При этом недуге постоянные мелкие движения кисти приводят к защемлению нерва в туннеле, образованном костями запястья, через который проходят срединный и локтевой нерв.

На функции нервов влияют и некоторые заболевания, например, рассеянный склероз. В течение этой болезни разрушается оболочка нервных волокон, из-за чего в них нарушается проводимость.

Как сохранить нервную систему здоровой?

1. Придерживайтесь здорового питания . Все нервные клетки покрыты жировой оболочкой – миелином. Чтобы этот изолятор не разрушался, в пище должно быть достаточное количество здоровых жиров, а также витамина D и В12.

Кроме того, для нормальной работы нервной системы полезны продукты, богатые калием , магнием , фолиевой кислотой и другими витаминами группы В .

2. Откажитесь от вредных привычек : курения и употребления алкоголя.

3. Не забывайте о прививках . Такое заболевание, как полиомиелит поражает нервную систему и приводит к нарушению двигательных функций. От полиомиелита можно защититься с помощью вакцинации .

4. Больше двигайтесь . Работа мышц не только стимулирует деятельность головного мозга , но и улучшает проводимость в самих нервных волокнах. Кроме того, улучшение кровоснабжения всего тела позволяет лучше питаться и нервной системе.

5. Тренируйте нервную систему ежедневно . Читайте, разгадывайте кроссворды или гуляйте на природе. Даже составление обычного письма требует использования всех основных компонентов нервной системы: не только периферических нервов, но и зрительного анализатора, различных отделов головного и спинного мозга.

Самое важное

Чтобы организм функционировал правильно, нервная система должна хорошо работать. Если ее работа нарушается – качество жизни человека серьезно страдает.

Тренируйте нервную систему ежедневно, откажитесь от вредных привычек и питайтесь правильно.

1. Какую функцию нервная система выполняет в организме? Какая еще система органов выполняет аналогичную функцию?

Функцией нервной системы в организме является координация и регуляция всех процессов в организме посредством передачи нервных импульсов между клетками, подобно нервной системе действует эндокринная система, которая регулирует все процессы с помощью биологически активных веществ – гормонов. Вместе они составляют систему нейрогуморальной регуляции.

2. Сопоставьте скорость проведения нервного импульса со скоростью тока в аорте (0,5 м/с). Сделайте вывод о различии между нервной и гуморальной регуляцией.

Скорость нервного импульса значительно выше скорости крови в аорте (месте кровеносной системы с наибольшей скоростью кровотока), где максимальная скорость составляет 0,5м/с. Для сравнения, скорость нервного импульса от 0,5 м/с до 200м/с.

И нервная и гуморальная регуляции являются координаторами деятельности человека. Они действуют по-разному (нервные импульсы и гормоны) и в разные сроки (импульсы распространяются очень быстро и быстро заканчивается их действие, в отличие от гормонов, которые разносятся с током крови медленно и действуют достаточно продолжительно по сравнению с нервными импульсами).

3. Как устроена нервная система? Что такое белое вещество, серое вещество?

Нервная система состоит из центрального и периферического отделов. К центральному отделу относят головной и спинной мозг, к периферическому – длинные отростки нервных клеток, выходящие из отверстий черепа и позвоночника. Головной и спинной мозг состоит из белого и серого вещества, где серое вещество это тела нейронов, а белое – проводящие пути от тел нейронов к вставочным нейронам и рабочим органам или от чувствительных рецепторов к чувствительным ядрам в головном и спинном мозге. Белым оно называется из-за того, что отростки покрыты светлой миелиновой оболочкой.

4. Что такое синапс?

Синапсы – это места контактов нейронов между собой или мышечным волокном, секретирующей железой. Благодаря синапсам происходит передача возбуждения с помощью раздражения рецепторов электрическими импульсами или высвобождением химических веществ в синаптическую щель. Синапс состоит из отростков двух клеток, где отростки заканчиваются синаптическими мембранами, и синаптической щели между ними.

5. Используя рисунок на с. 55 учебника, расскажите о строении нервной системы человека, указав её центральную и периферическую части.

См. вопрос 3

6. Вспомните, к какому типу относится нервная система человека. Какие еще типы нервной системы вы знаете? У каких животных они встречаются? Расположите их в порядке усложнения.

У кишечнополостных (гидра) впервые появляется нервная система диффузного типа, самая простая, представляет собой сеть нервных клеток, диффузно разбросанных по всему телу.

Для плоских червей (бычий цепень, планария), круглых червей (аскарида) нервная система стволовая или близкая к стволовой, которая характеризуется наличием в голове животного двух сгущений тел нервных клеток в виде компактных, четко выраженных и соединенных друг с другом узлов, от которых отходят вдоль тела 2 (4) брюшных нервных ствола, соединенных поперечными нервными перемычками.

Для кольчатых червей (дождевой червь), моллюсков (прудовик большой, беззубка), членистоногих (речной рак, паук-крестовик, майский жук) характерна нервная система узлового типа (ганглионарная). Она представляет собой концентрацией тел нервных клеток в четко выраженные ганглии, внутри которых образуется сплетение отростков и осуществляется контакт между отдельными нейронами.

Для типа хордовые, в частности человека, характерна нервная система более сложного типа – трубчатая. Спинной мозг у таких животных представлен трубкой, головной мозг состоит из 5 отделов.

7. Дайте определения понятий «рецептор», «нервы», «нервные узлы».

Рецептор – клетка или специальный чувствительный орган, способный воспринимать раздражение под влиянием определенного вида возбудителя и передать его в виде нервного импульса в проводящие нервные пути.

Нервы – пучки длинных отростков нервных клеток, выходящие за пределы головного и спинного мозга и покрытые соединительной тканью, образующей оболочки нервов.

Нервные узлы – скопления тел нейронов вне центральной нервной системы.

8. Что иннервирует соматическая нервная система? Чем функция вегетативной нервной системы отличается от функции соматической нервной системы?

Соматическая нервная система иннервирует кожу и мышцы. Благодаря ей организм через органы чувств поддерживает связь с внешней средой. Путем сокращения скелетных мышц выполняются все движения человека. Соматическая нервная система подчиняется воле человека.

Вегетативная нервная система управляет работой внутренних органов, обеспечивая их наилучшую работу при изменениях внешней среды или смене рода деятельности человека. Данная система не подконтрольна нашему сознанию и подразделяется на симпатическую и парасимпатическую части.

9. Сравните действие симпатической и парасимпатической нервной системы.

Симпатическая нервная система создает условия для интенсивной деятельности организма, при выполнении трудной физической или умственной работы. При её активации усиливается частота сердечных сокращений, повышается артериальное давление, уменьшается перистальтика кишечника, расширяются бронхи и сужаются сосуды кожи, усиливается секреция потовых желез, зрачки расширяются, увеличивается количество сахара в крови и потребление кислорода. Парасимпатическую нервную систему еще называют системой «отбоя», она снижает уровень активности, чем способствует восстановлению ресурсов, истраченных организмом. Под её влиянием уменьшается частота сердечных сокращений и уменьшается артериальное давление, усиливается перистальтика кишечника и сокращаются желчные протоки, вызывает сужение зрачков, снижает количество сахара в крови и потребление кислорода клетками.

10. Что такое рефлекс? Какие виды рефлексов вы знаете? Изобразите общую схему рефлекторной дуги, указав её обязательные части.

Рефлекс – ответная реакция организма на воздействие внешней среды или на изменение его внутреннего состояния, выполняемые с участием нервной системы. Рефлексы подразделяются на условные и безусловные.

Нервная система - целостная морфологическая и функциональная совокупность различных взаимосвязанных нервных структур, которая совместно с гуморальной системой обеспечивает взаимосвязанную регуляцию деятельности всех систем организма и реакцию на изменение условий внутренней и внешней среды. Нервная система действует как интегративная система, связывая в одно целое чувствительность, двигательную активность и работу других регуляторных систем (эндокринной и иммунной).

Общая характеристика нервной системы

Все разнообразие значений нервной системы вытекает из ее свойств.

  1. , раздражимость и проводимость характеризуются как функции времени, то есть это процесс, возникающий от раздражения до проявления ответной деятельности органа. Согласно электрической теории распространения нервного импульса в нервном волокне он распространяется за счет перехода локальных очагов возбуждения на соседние неактивные области нервного волокна или процесса распространяющейся деполяризации , представляющего подобие электрического тока. В синапсах протекает другой-химический процесс, при котором развитие волны возбуждения-поляризации принадлежит медиатору ацетилхолину, то есть химической реакции.
  2. Нервная система обладает свойством трансформации и генерации энергий внешней и внутренней среды и преобразования их в нервный процесс.
  3. К особенно важному свойству нервной системы относится свойство мозга хранить информацию в процессе не только онто-, но и филогенеза.

Нервная система состоит из нейронов, или нервных клеток и , или нейроглиальных клеток. Нейроны - это основные структурные и функциональные элементы как в центральной, так и периферической нервной системе. Нейроны - это возбудимые клетки, то есть они способны генерировать и передавать электрические импульсы (потенциалы действия). Нейроны имеют различную форму и размеры, формируют отростки двух типов: аксоны и дендриты . У нейрона обычно несколько коротких разветвлённых дендритов, по которым импульсы следуют к телу нейрона, и один длинный аксон, по которому импульсы идут от тела нейрона к другим клеткам (нейронам, мышечным либо железистым клеткам). Передача возбуждения с одного нейрона на другие клетки происходит посредством специализированных контактов - синапсов.

Морфология нейронов

Структура нервных клеток различна. Существуют многочисленные классификации нервных клеток, основанные на форме их тела, протяженности и форме дендритов и других признаках. По функциональному значению нервные клетки подразделяются на двигательные (моторные), чувствительные (сенсорные) и интернейроны. Нервная клетка осуществляет две основные функции: а) специфическую - переработка поступающей на нейрон информации и передача нервного импульса; б) биосинтетическую для поддержания своей жизнедеятельности. Это находит выражение и в ультраструктуре нервной клетки. Передача информации от одной клетки к другой, объединение нервных клеток в системы и комплексы разной сложности определяют характерные структуры нервной клетки - аксоны, дендриты, синапсы. Органеллы, связанные с обеспечением энергетического обмена, белоксинтезирующей функцией клетки и др., встречаются в большинстве клеток, в нервных клетках они подчинены выполнению их основных функций - переработке и передачи информации. Тело нервной клетки на микроскопическом уровне представляет собой округлое и овальное образование. В центре клетки располагается ядро. Оно содержит ядрышко и окружено ядерными мембранами. В цитоплазме нервных клеток располагаются элементы зернистой и незернистой цитоплазматической сети, полисомы, рибосомы, митохондрии, лизосомы, многопузырчатые тельца и другие органеллы. В функциональной морфологии тела клетки внимание привлекают прежде всего следующие ультраструктуры: 1) митохондрии, определяющие энергетический обмен; 2) ядро, ядрышко, зернистая и незернистая цитоплазматическая сеть, пластинчатый комплекс, полисомы и рибосомы, в основном обеспечивающие белоксинтезирующую функцию клетки; 3) лизосомы и фагосомы - основные органеллы «внутриклеточного пищеварительного тракта»; 4) аксоны, дендриты и синапсы, обеспечивающие морфофункциональную связь отдельных клеток.

При микроскопическом исследовании обнаруживается, что тело нервных клеток как бы постепенно переходит в дендрит, резкой границы и выраженных различий в ультраструктуре сомы и начального отдела крупного дендрита не наблюдается. Крупные стволы дендритов отдают большие ветви, а также мелкие веточки и шипики. Аксоны, так же как и дендриты, играют важнейшую роль в структурно-функциональной организации мозга и механизмах системной его деятельности. Как правило, от тела нервной клетки отходит один аксон, который затем может отдавать многочисленные ветви. Аксоны покрываются миелиновой оболочкой образуя миелиновые волокна. Пучки волокон составляют белое вещество мозга, черепные и периферические нервы. Переплетения аксонов, дендритов и отростков глиальных клеток создают сложные, не повторяющиеся картины нейропиля. Взаимосвязи между нервными клетками осуществляются межнейрональными контактами, или синапсами. Синапсы делятся на аксосоматические, образованные аксоном с телом нейрона, аксодендритические, расположенные между аксоном и дендритом, и аксо-аксональные, находящиеся между двумя аксонами. Значительно реже встречаются дендро-дендритические синапсы, расположенные между дендритами. В синапсе выделяют пресинаптический отросток, содержащий пресинаптические пузырьки, и постсинаптическую часть (дендрит, тело клетки или аксон). Активная зона синаптического контакта, в которой осуществляются выделение медиатора и передача импульса, характеризуется увеличением электронной плотности пресинаптической и постсинаптической мембран, разделенных синаптической щелью. По механизмам передачи импульса различают синапсы, в которых эта передача осуществляется с помощью медиаторов, и синапсы, в которых передача импульса происходит электрическим путем, без участия медиаторов.

Важную роль в межнейрональных связях играет аксональный транспорт. Принцип его заключается в том, что в теле нервной клетки благодаря участию шероховатого эндоплазматического ретикулума, пластинчатого комплекса, ядра и ферментных систем, растворенных в цитоплазме клетки, синтезируется ряд ферментов и сложных молекул, которые затем транспортируются по аксону в его концевые отделы - синапсы. Система аксонального транспорта является тем основным механизмом, который определяет возобновление и запас медиаторов и модуляторов в пресинаптических окончаниях, а также лежит в основе формирования новых отростков, аксонов и дендритов.

Нейроглия

Глиальные клетки более многочисленны, чем нейроны и составляют по крайней мере половину объёма ЦНС, но в отличие от нейронов они не могут генерировать потенциалов действия. Нейроглиальные клетки различны по строению и происхождению, они выполняют вспомогательные функции в нервной системе, обеспечивая опорную, трофическую, секреторную, разграничительную и защитную функции.

Сравнительная нейроанатомия

Типы нервных систем

Существует несколько типов организации нервной системы, представленные у различных систематических групп животных.

  • Диффузная нервная система - представлена у кишечнополостных. Нервные клетки образуют диффузное нервное сплетение в эктодерме по всему телу животного, и при сильном раздражении одной части сплетения возникает генерализованный ответ - реагирует все тело.
  • Стволовая нервная система (ортогон)- некоторые нервные клетки собираются в нервные стволы, наряду с которыми сохраняется и диффузное подкожное сплетение. Такой тип нервной системы представлен у плоских червей и нематод (у последних диффузное сплетение сильно редуцировано), а также многих других групп первичноротых - например, гастротрих и головохоботных.
  • Узловая нервная система, или сложная ганглионарная система - представлена у аннелид, членистоногих, моллюсков и других групп беспозвоночных. Большая часть клеток центральной нервной системы собраны в нервные узлы - ганглии. У многих животных клетки в них специализированы и обслуживают отдельные органы. У некоторых моллюсков (например, головоногих) и членистоногих возникает сложное объединение специализированных ганглиев с развитыми связями между ними - единый головной мозг или головогрудная нервная масса (у пауков). У насекомых особенно сложное строение имеют некоторые отделы протоцеребрума («грибовидные тела»).
  • Трубчатая нервная система (нервная трубка) характерна для хордовых.

Нервная система различных животных

Нервная система книдарий и гребневиков

Наиболее примитивными животными, у которых есть нервная система, считаются книдарии. У полипов она представляет собой примитивную субэпителиальную нервную сеть (нервный плексус ), оплетающую всё тело животного и состоящую из нейронов разного типа (чувствительных и ганглиозных клеток), соединённых друг с другом отростками (диффузная нервная система ), особенно плотные их сплетения образуются наоральном и аборальном полюсах тела. Раздражение вызывает быстрое проведение возбуждения по телу гидры и приводит к сокращению всего тела, в связи с сокращением эпителиально-мускульных клеток эктодермы и одновременно их расслаблением в энтодерме. Медузы устроены сложнее полипов, в их нервной системе начинает обособляться центральный отдел. Помимо подкожного нервного сплетения у них имеются ганглии по краюзонтика, соединённые отростками нервных клеток в нервное кольцо , от которого иннервируются мышечные волокна паруса и ропалии - структуры, содержащие различные (диффузно-узловая нервная система ). Бо́льшая централизация наблюдается у сцифомедуз и особеннокубомедуз. Их 8 ганглиев, соответствующие 8 ропалиям, достигают достаточно крупных размеров.

Нервная система гребневиков включает субэпителиальное нервное сплетение со сгущениями вдоль рядов гребных пластинок, которые сходятся к основанию сложно устроенного аборального органа чувств. У некоторых гребневиков описаны находящиеся рядом с ним нервные ганглии.

Нервная система первичноротых

Плоские черви имеют уже подразделенную на центральный и периферический отделы нервную систему. В целом нервная система напоминает правильную решётку - такой тип строения был назван ортогоном . Она состоит из мозгового ганглия, у многих групп окружающего статоцист(эндонного мозга), который соединен с нервными стволами ортогона, идущими вдоль тела и соединенные кольцевыми поперечными перемычками (комиссурами ). Нервные стволы состоят из нервных волокон, отходящих от рассеянных по их ходу нервных клеток. У некоторых групп нервная система довольно примитивна и близка к диффузной. Среди плоских червей наблюдаются следующие тенденции: упорядочивание подкожного сплетения с обособлением стволов и комиссур, увеличение размеров мозгового ганглия, который превращается в центральный аппарат управления, погружение нервной системы в толщу тела; и, наконец, уменьшение числа нервных стволов (у некоторых групп сохраняются лишь два брюшных (боковых) ствола ).

У немертин центральная часть нервной системы представлена парой соединённых двойных ганглиев, расположенных над и под влагалищемхоботка, соединённых комиссурами и достигающих значительного размера. От ганглиев идут назад нервные стволы, обычно их пара и расположены они по бокам тела. Они также соединены комиссурами, расположены они в кожно-мускульном мешке или в паренхиме. От головного узла отходят многочисленные нервы, наиболее сильно развиты спинной нерв (часто двойной), брюшной и глоточный.

У брюхоресничных червей имеется надглоточный ганглий, окологлоточное нервное кольцо и два поверхностных боковых продольных ствола, соединённых комиссурами.

У нематод имеется окологлоточное нервное кольцо , вперёд и назад от которого отходят по 6 нервных стволов, наиболее крупные - брюшной и спинной стволы - тянутся вдоль соответствующих гиподермальных валиков. Между собой нервные стволы связаны полукольцевыми перемычками, иннервируют они соответственно мышцы брюшных и спинных боковых лент. Нервная система нематоды Caenorhabditis elegans была закартированана клеточном уровне. Каждый нейрон был зарегистрирован, прослежено его происхождение и большинство, если не все, нейронные связи известны. У этого вида нервная система обладает половым диморфизмом: мужская и гермафродитная нервная система имеют разное количество нейронов и групп нейронов, чтобы выполнять полоспецифические функции.

У киноринх нервная система состоит из окологлоточного нервного кольца и вентрального (брюшного) ствола, на котором, в соответствии с присущей им сегментацией тела, группами расположены ганглионарные клетки.

Схоже устроена нервная система волосатиков и приапулид, но их вентральный нервный ствол лишен утолщений.

У коловраток имеется крупный надглоточный ганглий, от которого отходят нервы, особенно крупные - два нерва, идущие через всё тело по бокам кишечника. Более мелкие ганглии лежат в ноге (педальный ганглий) и рядом с жевательным желудком (ганглий мастакса).

У скребней нервная система очень проста: внутри влагалища хоботка имеется непарный ганглий, от которого отходят тонкие веточки вперёд к хоботку и два более толстых боковых ствола назад, они выходят из влагалища хоботка, пересекают полость тела, а затем по её стенкам идут назад.

У кольчатых червей имеется парный надглоточный нервный узел, окологлоточными коннективами (коннективы в отличие от комиссур соединяют разноимённые ганглии) соединённый с брюшной частью нервной системы. У примитивных полихет она состоит из двух продольных нервных тяжей, в которых располагаются нервные клетки. У более высокоорганизованных форм они образуют парные ганглии в каждом сегменте тела (нервная лестница ), а нервные стволы сближаются. У большинства же полихет парные ганглии сливаются (брюшная нервная цепочка ), у части сливаются и их коннективы. От ганглиев отходят многочисленные нервы к органам своего сегмента. В ряду полихет происходит погружение нервной системы из-под эпителия в толщу мышц или даже под кожно-мускульный мешок. Ганглии разных сегментов могут концентрироваться, если сливаются их сегменты. Аналогичные тенденции наблюдаются и у олигохет. У пиявок нервная цепочка, лежащая в брюшном лакунарном канале, состоит из 20 или более ганглиев, причём в один объединяются первые 4 ганглия (подглоточный нервный узел ) и последние 7.

У эхиурид нервная система развита слабо - окологлоточное нервное кольцо соединено с брюшным стволом, но нервные клетки рассеяны по ним равномерно и нигде не образуют узлов.

У сипункулид имеется надглоточный нервный ганглий, окологлоточное нервное кольцо и лишённый нервных узлов брюшной ствол, лежащий на внутренней стороне полости тела.

Тихоходки имеют надглоточный ганглий, окологлоточные коннективы и брюшную цепочку с 5 парными ганглиями.

Онихофоры имеют примитивную нервную систему. Мозг состоит из трёх отделов: протоцеребрум иннервирует глаза, дейтоцеребрум - антенны, а тритоцеребрум - переднюю кишку. От окологлоточных коннектив отходят нервы к челюстям и ротовым сосочкам, а сами коннективы переходят в далёкие друг от друга брюшные стволы, равномерно покрытые нервными клетками и соединённые тонкими комиссурами.

Нервная система членистоногих

У членистоногих нервная система слагается из парного надглоточного узла, состоящего из нескольких соединённых нервных узлов (головной мозг), окологлоточных коннектив и брюшной нервной цепочки, состоящей из двух параллельных стволов. У большинства групп головной мозг делится на три отдела - прото-, дейто- и тритоцеребрум . Каждый сегмент тела имеет по паре нервных ганглиев, но часто наблюдается слияние ганглиев с образованием крупных ; например, подглоточный нервный узел состоит из нескольких пар сросшихся ганглиев - он контролируетслюнные железы и некоторые мышцы пищевода.

В ряду ракообразных в целом наблюдаются те же тенденции, что и у кольчатых червей: сближение пары брюшных нервных стволов, слияние парных узлов одного сегмента тела (то есть образование брюшной нервной цепочки), слияние её узлов в продольном направлении по мере объединения сегментов тела. Так, у крабов имеется лишь две нервные массы - головной мозг и нервная масса в груди, а у веслоногих и ракушковых раков образуется единственное компактное образование, пронизанное каналом пищеварительной системы. Головной мозг раков состоит из парных долей - протоцеребрума, от которого отходят зрительные нервы, имеющие ганглиозные скопления нервных клеток, и дейтоцеребрума, иннервирующего антенны I. Обычно добавляется и тритоцеребрум, образованный слившимися узлами сегмента антенн II, нервы к которым обычно отходят от окологлоточных коннективов. У ракообразных имеется развитая симпатическая нервная система , состоящая из мозгового отдела и непарного симпатического нерва , имеющего несколько ганглиев и иннервирующего кишечник. Важную роль в физиологии раков играютнейросекреторные клетки , расположенные в различных частях нервной системы и выделяющие нейрогормоны .

Головной мозг многоножек имеет сложное строение, образован, скорее всего, многими ганглиями. Подглоточный ганглий иннервирует все ротовые конечности, от него начинается длинный парный продольный нервный ствол, на котором в каждом сегменте приходится по одному парному ганглию (у двупарноногих многоножек в каждом сегменте, начиная с пятого, по две пары ганглиев, расположенных одна за другой).

Нервная система насекомых, также состоящая из головного мозга и брюшной нервной цепочке, может достигать значительного развития и специализации отдельных элементов. Головной мозг состоит из трёх типичных отделов, каждый из которых состоит из нескольких ганглиев, разделённых прослойками нервных волокон. Важным ассоциативным центром являются «грибовидные тела» протоцеребрума. Особенно развитый мозг у общественных насекомых (муравьёв, пчёл , термитов). Брюшная нервная цепочка состоит из подглоточного нервного узла, иннервирующего ротовые конечности, трёх крупных грудных узлов и брюшных узлов (не более 11). У большинства видов не встречается во взрослом состоянии более 8 ганглиев, у многих и они сливаются, давая крупные ганглиозные массы. Может доходить до образования только одной ганглиозной массы в груди, иннервирующей и грудь, и брюшко насекомого (например, у некоторых мух). В онтогенезе зачастую происходит объединение ганглиев. От головного мозга отходят симпатические нервы. Практически во всех отделах нервной системы имеются нейросекреторные клетки.

У мечехвостов головной мозг внешне не расчленён, но имеет сложное гистологическое строение. Утолщённые окологлоточные коннективы иннервируют хелицеры, все конечности головогруди и жаберные крышки. Брюшная нервная цепочка состоит из 6 ганглиев, задний образован слиянием нескольких. Нервы брюшных конечностей соединены продольными боковыми стволами.

Нервная система паукообразных имеет чёткую тенденцию к концентрации. Головной мозг состоит только из протоцеребрума и тритоцеребрума в связи с отсутствием структур, которые иннервирует дейтоцеребрум. Метамерность брюшной нервной цепочки яснее всего сохраняется ускорпионов - у них большая ганглиозная масса в груди и 7 ганглиев в брюшке, у сольпуг их только 1, а у пауков все ганглии слились в головогрудную нервную массу; у сенокосцев и клещей нет разграничения между нею и головным мозгом.

Морские пауки, как и все хелицеровые, не имеют дейтоцеребрума. Брюшная нервная цепочка у разных видов содержит от 4-5 ганглиев до одной сплошной ганглиозной массы.

Нервная система моллюсков

У примитивных моллюсков хитонов нервная система состоит из окологлоточного кольца (иннервирует голову) и 4 продольных стволов - двухпедальных (иннервируют ногу, которые связаны без особого порядка многочисленными комиссурами, и двух плевровисцеральных , которые расположены кнаружи и выше педальных (иннервируют внутренностный мешок, над порошицей соединяются). Педальный и плевровисцеральный стволы одной стороны также связаны множеством перемычек.

Схоже устроена нервная система моноплакофор, но педальные стволы соединяются у них только одной перемычкой.

У более развитых форм образуется в результате концентрации нервных клеток несколько пар ганглиев, которые смещаются к переднему концу тела, причём наибольшее развитие получает надглоточный узел (головной мозг).

Морфологическое деление

Нервная система млекопитающих и человека по морфологическим признакам подразделяется на:

  • периферическую нервную систему

К периферической нервной системе относят , спинномозговые нервы и нервные сплетения

Функциональное деление

  • Соматическая (анимальная) нервная система
  • Автономная (вегетативная) нервная система
    • Симпатический отдел вегетативной нервной системы
    • Парасимпатический отдел вегетативной нервной системы
    • Метасимпатический отдел вегетативной нервной системы (энтеральная нервная система)

Онтогенез

Модели

В настоящий момент нет единого положения о развитии нервной системы в онтогенезе. Основная проблема заключается в оценке уровня детерминированности (предопределения) в развитии тканей из зародышевых клеток. Наиболее перспективными моделями являются мозаичная модель и регуляционная модель . Ни та, ни другая не может в полной мере объяснить развитие нервной системы.

  • Мозаичная модель предполагает полное детерминирование судьбы отдельной клетки на протяжении всего онтогенеза.
  • Регуляционная модель предполагает случайное и изменяемое развитие отдельных клеток, при детерминированности только нейрального направления (то есть любая клетка определённой группы клеток может стать какой угодно в пределах возможности развития для этой группы клеток).

Для беспозвоночных мозаичная модель практически безупречна - степень детерминации их бластомеров очень высока. Но для позвоночных все гораздо сложнее. Некая роль детерминации и здесь несомненна. Уже на шестнадцатиклеточной стадии развития бластулы позвоночных можно с достаточной долей уверенности сказать, какой бластомер не является предшественником определённого органа.

Маркус Джакобсон в 1985 году ввел клональную модель развития головного мозга (близка к регуляционной). Он предположил, что детерминирована судьба отдельных групп клеток, представляющих собой потомство отдельного бластомера, то есть, «клонов» этого бластомера. Муди и Такасаки (независимо) развили эту модель в 1987. Построена карта 32-клеточной стадии развития бластулы. Например, установлено, что потомки бластомера D2 (вегетативный полюс) всегда встречаются в продолговатом мозге. С другой стороны, потомки почти всех бластомеров анимального полюса не имеют выраженной детерминации. У разных организмов одного вида они могут встречаться или не встречаться в определённых отделах головного мозга.

Регуляционные механизмы

Выяснено, что развитие каждого бластомера зависит от наличия и концентрации специфических веществ - паракринных факторов, которые выделяются другими бластомерами. Например в опыте in vitro с апикальной частью бластулы оказалось, что в отсутствие активина (паракринного фактора вегетативного полюса) клетки развиваются в обычный эпидермис, а при его наличии, в зависимости от концентрации, по возрастанию её: клетки мезенхимы, гладкомышечные, клетки хорды или клетки сердечной мышцы.

В последние годы, благодаря появлению новых методов исследования, в ветеринарной медицине стала развиваться отрасль, названнаяветеринарной психоневрологией, исследующая системные взаимосвязи между деятельностью нервной системы как единого целого и другими органами и системами.

Профессиональные сообщества и журналы

Общество нейронаук (SfN, the Society for Neuroscience) - крупнейшая некоммерческая международная организация, объединяющая более 38 тыс. учёных и врачей, занимающихся изучением мозга и нервной системы. Общество было основано в 1969 году, штаб-квартира находится в Вашингтоне. Основной его целью является обмен научной информацией между учёными. С этой целью ежегодно проводится международная конференция в различных городах США и издается Журнал нейронаук (The Journal of Neuroscience). Общество ведет просветительскую и образовательную работу.

Федерация европейских обществ нейронаук (FENS, the Federation of European Neuroscience Societies)объединяет большое количество профессиональных обществ из европейских стран, в том числе и из России. Федерация была основана в 1998 году и является партнером американского общества нейронаук (SfN). Федерация проводит международную конференцию в разных европейских городах раз в 2 года и выпускает Европейский журнал нейронаук (European Journal of Neuroscience)

Интересные факты

Американка Хэрриет Коул (1853-1888) умерла в возрасте 35 лет от туберкулёза и завещала своё тело науке. Тогда патологоанатом Руфус Б. Универ из медицинского колледжа Ханеманна в Филадельфии потратил 5 месяцев на то, чтобы аккуратно извлечь, разложить и закрепить нервы Хэрриет. Ему удалось даже сохранить глазные яблоки, оставшиеся прикреплёнными к глазным нервам.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.