Как делить уравнение уголком. Деление многочленов

Начнём с некоторых определений. Многочленом n-й степени (или n-го порядка) будем именовать выражение вида $P_n(x)=\sum\limits_{i=0}^{n}a_{i}x^{n-i}=a_{0}x^{n}+a_{1}x^{n-1}+a_{2}x^{n-2}+\ldots+a_{n-1}x+a_n$. Например, выражение $4x^{14}+87x^2+4x-11$ есть многочлен, степень которого равна $14$. Его можно обозначить так: $P_{14}(x)=4x^{14}+87x^2+4x-11$.

Коэффициент $a_0$ называют старшим коэффициентом многочлена $P_n(x)$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старший коэффициент равен $4$ (число перед $x^{14}$). Число $a_n$ называют свободным членом многочлена $P_n(x)$. Например, для $4x^{14}+87x^2+4x-11$ свободный член равен $(-11)$. Теперь обратимся к теореме, на которой, собственно говоря, и будет основано изложение материала на данной странице.

Для любых двух многочленов $P_n(x)$ и $G_m(x)$ можно найти такие многочлены $Q_p(x)$ и $R_k(x)$, что будет выполнено равенство

\begin{equation} P_n(x)=G_m(x)\cdot Q_p(x)+R_k(x) \end{equation}

причём $k < m$.

Словосочетание "разделить многочлен $P_n(x)$ на многочлен $G_m(x)$" означает "представить многочлен $P_n(x)$ в форме (1)". Будем называть многочлен $P_n(x)$ - делимым, многочлен $G_m(x)$ - делителем, многочлен $Q_p(x)$ - частным от деления $P_n(x)$ на $G_m(x)$, а многочлен $R_k(x)$ - остачей от деления $P_n(x)$ на $G_m(x)$. Например, для многочленов $P_6(x)=12x^6+3x^5+16x^4+6x^3+8x^2+2x+1$ и $G_4(x)=3x^4+4x^2+2$ можно получить такое равенство:

$$ 12x^6+3x^5+16x^4+6x^3+8x^2+2x+1=(3x^4+4x^2+2)(4x^2+x)+2x^3+1 $$

Здесь многочлен $P_6(x)$ является делимым, многочлен $G_4(x)$ - делителем, многочлен $Q_2(x)=4x^2+x$ - частным от деления $P_6(x)$ на $G_4(x)$, а многочлен $R_3(x)=2x^3+1$ - остатком от деления $P_6(x)$ на $G_4(x)$. Замечу, что степень остатка (т.е. 3) меньше степени делителя, (т.е. 4), посему условие равенства соблюдено.

Если $R_k(x)\equiv 0$, то говорят, что многочлен $P_n(x)$ делится на многочлен $G_m(x)$ без остатка. Например, многочлен $21x^6+6x^5+105x^2+30x$ делится на многочлен $3x^4+15$ без остатка, так как выполнено равенство:

$$ 21x^6+6x^5+105x^2+30x=(3x^4+15)\cdot(7x^2+2x) $$

Здесь многочлен $P_6(x)=21x^6+6x^5+105x^2+30x$ является делимым; многочлен $G_4(x)=3x^4+15$ - делителем; а многочлен $Q_2(x)=7x^2+2x$ - частным от деления $P_6(x)$ на $G_4(x)$. Остаток равен нулю.

Чтобы разделить многочлен на многочлен часто применяют деление "столбиком" или, как его ещё называют, "уголком". Реализацию этого метода разберём на примерах.

Перед тем, как перейти к примерам, я введу ещё один термин. Он не является общепринятым , и использовать его мы будем исключительно для удобства изложения материала. До конца этой страницы будем называть старшим элементом многочлена $P_n(x)$ выражение $a_{0}x^{n}$. Например, для многочлена $4x^{14}+87x^2+4x-11$ старшим элементом будет $4x^{14}$.

Пример №1

Разделить $10x^5+3x^4-12x^3+25x^2-2x+5$ на $5x^2-x+2$, используя деление "столбиком".

Итак, мы имеем два многочлена, $P_5(x)=10x^5+3x^4-12x^3+25x^2-2x+5$ и $G_2(x)=5x^2-x+2$. Степень первого равна $5$, а степень второго равна $2$. Многочлен $P_5(x)$ - делимое, а многочлен $G_2(x)$ - делитель. Наша задача состоит в нахождении частного и остатка. Поставленную задачу будем решать пошагово. Будем использовать ту же запись, что и для деления чисел:

Первый шаг

Разделим старший элемент многочлена $P_5(x)$ (т.е. $10x^5$) на старший элемент многочлена $Q_2(x)$ (т.е. $5x^2$):

$$ \frac{10x^5}{5x^2}=2x^{5-2}=2x^3. $$

Полученное выражение $2x^3$ - это первый элемент частного:

Умножим многочлен $5x^2-x+2$ на $2x^3$, получив при этом:

$$ 2x^3\cdot (5x^2-x+2)=10x^5-2x^4+4x^3 $$

Запишем полученный результат:

Теперь вычтем из многочлена $10x^5+3x^4-12x^3+25x^2-2x+5$ многочлен $10x^5-2x^4+4x^3$:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5-(10x^5-2x^4+4x^3)=5x^4-16x^3+25x^2-2x+5 $$

На этом первый шаг заканчивается. Тот результат, что мы получили, можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot 2x^3+5x^4-16x^3+25x^2-2x+5 $$

Так как степень многочлена $5x^4-16x^3+25x^2-2x+5$ (т.е. 4) больше степени многочлена $5x^2-x+2$ (т.е. 2), то процесс деления надобно продолжить. Перейдём ко второму шагу.

Второй шаг

Теперь уже будем работать с многочленами $5x^4-16x^3+25x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на первом шаге, разделим старший элемент первого многочлена (т.е. $5x^4$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{5x^4}{5x^2}=x^{4-2}=x^2. $$

Полученное выражение $x^2$ - это второй элемент частного. Прибавим к частному $x^2$

Умножим многочлен $5x^2-x+2$ на $x^2$, получив при этом:

$$ x^2\cdot (5x^2-x+2)=5x^4-x^3+2x^2 $$

Запишем полученный результат:

Теперь вычтем из многочлена $5x^4-16x^3+25x^2-2x+5$ многочлен $5x^4-x^3+2x^2$:

$$ 5x^4-16x^3+25x^2-2x+5-(5x^4-x^3+2x^2)=-15x^3+23x^2-2x+5 $$

Этот многочлен допишем уже под чертой:

На этом второй шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2)-15x^3+23x^2-2x+5 $$

Так как степень многочлена $-15x^3+23x^2-2x+5$ (т.е. 3) больше степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к третьему шагу.

Третий шаг

Теперь уже будем работать с многочленами $-15x^3+23x^2-2x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $-15x^3$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{-15x^3}{5x^2}=-3x^{2-1}=-3x^1=-3x. $$

Полученное выражение $(-3x)$ - это третий элемент частного. Допишем к частному $-3x$

Умножим многочлен $5x^2-x+2$ на $(-3x)$, получив при этом:

$$ -3x\cdot (5x^2-x+2)=-15x^3+3x^2-6x $$

Запишем полученный результат:

Теперь вычтем из многочлена $-15x^3+23x^2-2x+5$ многочлен $-15x^3+3x^2-6x$:

$$ -15x^3+23x^2-2x+5-(-15x^3+3x^2-6x)=20x^2+4x+5 $$

Этот многочлен допишем уже под чертой:

На этом третий шаг заканчивается. Полученный результат можно записать в развёрнутой форме:

$$ 10x^5+3x^4-12x^3+25x^2-2x+5=(5x^2-x+2)\cdot (2x^3+x^2-3x)+20x^2+4x+5 $$

Так как степень многочлена $20x^2+4x+5$ (т.е. 2) равна степени многочлена $5x^2-x+2$ (т.е. 2), то продолжаем процесс деления. Перейдём к четвёртому шагу.

Четвёртый шаг

Теперь уже будем работать с многочленами $20x^2+4x+5$ и $5x^2-x+2$. Точно так же, как и на предыдущих шагах, разделим старший элемент первого многочлена (т.е. $20x^2$) на старший элемент второго многочлена (т.е. $5x^2$):

$$ \frac{20x^2}{5x^2}=4x^{2-2}=4x^0=4. $$

Полученное число $4$ - это четвёртый элемент частного. Допишем к частному $4$

Умножим многочлен $5x^2-x+2$ на $4$, получив при этом:

$$ 4\cdot (5x^2-x+2)=20x^2-4x+8 $$

Запишем полученный результат:

Теперь вычтем из многочлена $20x^2+4x+5$ многочлен $20x^2-4x+8$.

Утверждение

остатком неполным частным .

Замечание

Для любых многочленов $A(x)$ и $B(x)$ (степень $B(x)$ больше 0) существуют единственные многочлены $Q(x)$ и $R(x)$ из условия утверждения.

  1. Остаток от деления многочлена $x^{4} + 3x^{3} +5$ на $x^{2} + 1$ равен $3x + 4$:$x^{4} + 3x^{3} +5 = (x^{2} + 3x +1)(x^{2} + 1) +3x + 4.$
  2. Остаток от деления многочлена $x^{4} + 3x^{3} +5$ на $x^{4} + 1$ равен $3x^{3} + 4$:$x^{4} + 3x^{3} +5 = 1 \cdot (x^{2} + 1) +3x^{3} + 4.$
  3. Остаток от деления многочлена $x^{4} + 3x^{3} +5$ на $x^{6} + 1$ равен $x^{4} + 3x^{3} +5$:$x^{4} + 3x^{3} +5 = 0 \cdot (x^{6} + 1) + x^{4} + 3x^{3} +5.$

Утверждение

Для любых двух многочленов $A(x)$ и $B(x)$ (где степень многочлена $B(x)$ ненулевая), существует представление в виде многочлена $A(x)$ в виде $A(x) = Q(x)B(x) + R(x)$, где $Q(x)$ и $R(x)$ - многочлены и степень $R(x)$ меньше степени $B(x).$

Доказательство

Будем доказывать утверждение индукцией по степени многочлена $A(x).$ Обозначим её $n$. Если $n = 0$, утверждение верно: $A(x)$ можно представить как $A(x) = 0 \cdot B(x) + A(x).$ Теперь, пусть утверждение доказано для многочленов степени $n \leq m$. Докажем утверждение для многочленов степени $k= n+1.$

Пусть степень многочлена $B(x)$ равна $m$. Рассмотрим три случая: $k < m$, $k = m$ и $k > m$и докажем утверждение для каждого из них.

  1. $k < m$
    Многочлен $A(x)$ можно представить как

    $A(x) = 0 \cdot B(x) + A(x).$

    Утверждение выполнено.

  2. $k = m$
    Пусть многочлены $A(x)$ и $B(x)$ имеют вид

    $A(x) = a_{n+1}x^{n+1} + a_{n}x^{n} + \dots + a_{1}x + a_{0}, \: \mbox{где} \: a_{n+1} \neq 0;$

    $B(x) = b_{n+1}x^{n+1} + b_{n}x^{n} + \dots + b_{1}x + b_{0}, \: \mbox{где} \: b_{n+1} \neq 0.$

    Представим $A(x)$ как

    $A(x) = \dfrac{a_{n+1}}{b_{n+1}}B(x) - \Big(\dfrac{a_{n+1}}{b_{n+1}}B(x) - A(x)\Big).$

    Заметим, что степень многочлена $\dfrac{a_{n+1}}{b_{n+1}}B(x) - A(x)$ не больше $n+1$, тогда это представление искомое и утверждение выполнено.

  3. $k > m$
    Представим многочлен $A(x)$ в виде

    $A(x) = x(a_{n+1}x^{n} + a_{n}x^{n-1} + \dots + a_{1}) + a_{0}, \: \mbox{где} \: a_{n+1} \neq 0.$

    Рассмотрим многочлен $A"(x) = a_{n+1}x^{n} + a_{n}x^{n-1} + \dots + a_{1}.$ Для него индукционное предположение выполнено, поэтому его можно представить как $A"(x) = Q"(x)B(x) + R"(x)$, где степень многочлена $R"(x)$ меньше $m$, тогда представление для $A(x)$ можно переписать как

    $A(x) = x(Q"(x)B(x) + R"(x)) + a_{0} = xQ"(x)B(x) + xR"(x) + a_{0}.$

    Заметим, что степень многочлена $xR"(x)$ меньше, чем $m+1$, т.е. меньше, чем $k$. Тогда для $xR"(x)$ выполнено индукционное предположение и его можно представить как $xR"(x) = Q""(x)B(x) + R""(x)$, где степень многочлена $R""(x)$ меньше $m$. Перепишем представление для $A(x)$ как

    $A(x) = xQ"(x)B(x) + Q""(x)B(x) + R""(x) + a_{0} =$

    $= (xQ"(x)+xQ""(x))B(x) + R""(x) + a_{0}.$

    Степень многочлена $R""(x) + a_{0}$ меньше $m$, поэтому утверждение выполнено.

Утверждение доказано.

При этом многочлен $R(x)$ называется остатком от деления $A(x)$ на $B(x)$, а $Q(x)$ - неполным частным.

Если остаток $R(x)$ - нулевой многочлен, то говорят, что $A(x)$ делится на $B(x)$.

Сегодня мы узнаем, как выполняется деление многочленов друг на друга, причем выполнять деление мы будем уголком по аналогии с обычными числами. Это очень полезный прием, который, к сожалению, не изучают в большинстве школ. Поэтому внимательно прослушайте данный видеоурок. Ничего сложного в таком делении нет.

Для начала давайте разделим друг на друга два числа:

Как можно это сделать? В первую очередь, мы отсекаем столько разрядов, чтобы полученное числовое значение было больше чем то, на которое мы делим. Если мы отсечем один разряд, то получим пять. Очевидно, семнадцать в пять не вмещается, поэтому этого недостаточно. Берем два разряда — у нас выйдет 59 — оно уже больше, чем семнадцать, поэтому мы можем выполнить операцию. Итак, сколько раз семнадцать помещается в 59? Давайте возьмем три. Перемножаем и записываем результат под 59. Итого у нас получилось 51. Вычитаем и у нас вышло «восемь». Теперь сносим следующий разряд — пять. Делим 85 на семнадцать. Берем пять. Перемножим семнадцать на пять и получаем 85. Вычитаем и у нас получается ноль.

Решаем реальные примеры

Задача № 1

Теперь выполним те же самые шаги, но не с числами, а с многочленами. Для примера возьмем такое:

\[\frac{{{x}^{2}}+8x+15}{x+5}=x+3\]

Обратите внимание, если при делении чисел друг на друга мы подразумевали, что делимое всегда больше делителя, то в случае деления полиномов уголком, необходимо, чтобы степень делимого была больше, чем делителя. В нашем случае все в порядке — мы работаем с конструкциями второй и первой степени.

Итак, первый шаг: сравниваем первые элементы. Вопрос: на что нужно домножить $x$, чтобы получилось ${{x}^{2}}$? Очевидно, что на еще один $x$. Умножаем $x+5$ на только что найденное число $x$. У нас есть ${{x}^{2}}+5$, которое вычитаем из делимого. Остается $3x$. Теперь сносим следующее слагаемое — пятнадцать. Снова посмотрим на первые элементы: $3x$ и $x$. На что следует домножить $x$, чтобы вышло$3x$? Очевидно, что на три. Домножаем почленно $x+5$ на три. Когда мы вычтем, то получим ноль.

Как видите, вся операция деления уголком свелась к сравнению старших коэффициентов при делимом и делителе. Это даже проще, чем когда вы делите числа. Тут не требуется выделять какое-то количество разрядов — мы просто на каждом шаге сравниваем старшие элементы. Вот и весь алгоритм.

Задача № 2

Давайте попробуем еще:

\[\frac{{{x}^{2}}+x-2}{x-1}=x+2\]

Первый шаг: посмотрим на старшие коэффициенты. На сколько нужно домножить $x$, чтобы записать${{x}^{2}}$? Домножаем почленно. Обратите внимание, при вычитании у нас получится именно $2x$, потому что

Сносим -2 и снова сравним первый полученный коэффициент со старшим элементом делителя. Итого у нас вышел «красивый» ответ.

Переходим ко второму примеру:

\[\frac{{{x}^{3}}+2{{x}^{2}}-9x-18}{x+3}={{x}^{2}}-x-6\]

В этот раз в качестве делимого выступает полином третьей степени. Сравним между собой первые элементы. Для того чтобы получилось ${{x}^{3}}$, необходимо $x$ домножить на ${{x}^{2}}$. После вычитания сносим $9x$. Домножаем делитель на $-x$ и вычитаем. В итоге наше выражение полностью разделилось. Записываем ответ.

Задача № 3

Переходим к последней задаче:

\[\frac{{{x}^{3}}+3{{x}^{2}}+50}{x+5}={{x}^{2}}-2x+10\]

Сравниваем ${{x}^{3}}$ и $x$. Очевидно, нужно домножить на ${{x}^{2}}$. В итоге мы видим, что мы получили очень «красивый» ответ. Записываем его.

Вот и весь алгоритм. Ключевых моментов здесь два:

  1. Всегда сравнивайте первую степень делимого и делителя — повторяем это на каждом шаге;
  2. Если в исходном выражении пропущены какие-либо степени, при делении уголком их обязательно следует добавить, но с нулевыми коэффициентами, иначе ответ будет неправильным.

Больше никаких премудростей и хитростей в таком делении нет.

Материал сегодняшнего урока нигде и никогда не встречается в «чистом» виде. Его редко изучают в школах. Однако умение делить многочлены друг на друга очень поможет вам при решении уравнений высших степеней, а также всевозможных задач «повышенной трудности». Без данного приема вам придется раскладывать многочлены на множители, подбирать коэффициенты — и результат при этом отнюдь не гарантирован. Однако многочлены можно делить и уголком — так же, как и обычные числа! К сожалению, данный прием не изучают в школах. Многие учителя считают, что деление многочленов уголком — это что-то безумно сложное, из области высшей математики. Спешу вас заверить: это не так. Более того, делить многочлены даже проще, чем обычные числа! Посмотрите урок — и убедитесь в этом сами.:) В общем, обязательно возьмите этот прием на вооружение. Умение делить многочлены друг на друга очень пригодится вам при решении уравнений высших степеней и в других нестандартных задачах.

Я надеюсь, этот ролик поможет тем, кто работает с полиномами, особенно высших степеней. Это относится и к старшеклассникам, и к студентам университетов. А у меня на этом все. До встречи!

В данной статье будут рассмотрены рациональные дроби, ее выделения целых частей. Дроби бывают правильными и неправильными. Когда в дроби числитель меньше знаменателя – это правильная дробь, а неправильная наоборот.

Рассмотрим примеры правильных дробей: 1 2 , 9 29 , 8 17 , неправильных: 16 3 , 21 20 , 301 24 .

Будем вычислять дроби, которые могут сократиться, то есть 12 16 - это 3 4 , 21 14 - это 3 2 .

При выделении целой части производится процесс деления числителя на знаменатель. Тогда такая дробь может быть представлена как сумма целой и дробной части, где дробная считается отношением остатка от деления и знаменателя.

Пример 1

Найти остаток при делении 27 на 4 .

Решение

Необходимо произвести деление столбиком, тогда получим, что

Значит, 27 4 = ц е л а я ч а с т ь + о с т а т о к з н а м е н а т е л ь = 6 + 3 4

Ответ: остаток 3 .

Пример 2

Произвести выделение целых частей 331 12 и 41 57 .

Решение

Производим деление знаменателя на числитель при помощи уголка:

Поэтому имеем, что 331 12 = 27 + 7 12 .

Вторая дробь является правильной, значит, целая часть равняется нулю.

Ответ: целые части 27 и 0 .

Рассмотрим классификацию многочленов, иначе говоря, дробно-рациональную функцию. Ее считают правильной, когда степень числителя меньше степени знаменателя, иначе ее считают неправильной.

Определение 1

Деление многочлена на многочлен происходит по принципу деления углом, а представление функции как сумма целой и дробной частей.

Чтобы разделить многочлен на линейный двучлен, используется схема Горнера.

Пример 3

Произвести деление x 9 + 7 x 7 - 3 2 x 3 - 2 на одночлен 2 x 2 .

Решение

Воспользовавшись свойством деления, запишем, что

x 9 + 7 x 7 - 3 2 x 3 - 2 2 x 2 = x 9 2 x 2 + 7 x 7 2 x 2 - 3 2 x 3 2 x 2 + x 2 2 x 2 - 2 2 x 2 = = 1 2 x 7 + 7 2 x 5 - 3 4 x + 1 2 - 2 2 x - 2 .

Зачастую такого вида преобразования выполняются при взятии интегралов.

Пример 4

Произвести деление многочлена на многочлен: 2 x 3 + 3 на x 3 + x .

Решение

Знак деления можно записать в виде дроби вида 2 x 3 + 3 x 3 + x . Теперь необходимо выделить целую часть. Производим это при помощи деления столбиком. Получаем, что

Значит, получаем, что целая часть имеет значение - 2 x + 3 , тогда все выражение записывается как 2 x 3 + 3 x 3 + x = 2 + - 2 x + 3 x 3 + x

Пример 5

Разделить и найти остаток от деления 2 x 6 - x 5 + 12 x 3 - 72 x 2 + 3 на x 3 + 2 x 2 - 1 .

Решение

Зафиксируем дробь вида 2 x 6 - x 5 + 12 x 3 - 72 x 2 + 3 x 3 + 2 x 2 - 1 .

Степень числителя больше, чем у знаменателя, значит, что у нас имеется неправильная дробь. При помощи деления столбиком выдели целую часть. Получаем, что

Произведем деление еще раз и получим:

Отсюда имеем, что остаток равняется - 65 x 2 + 10 x - 3 , отсюда следует:

2 x 6 - x 5 + 12 x 3 - 72 x 2 + 3 x 3 + 2 x 2 - 1 = 2 x 3 - 5 x 2 + 10 x - 6 + - 65 x 2 + 10 x - 3 x 3 + 2 x 2 - 1

Существуют случаи, где необходимо дополнительно выполнять преобразование дроби для того, чтобы можно было выявить остаток при делении. Это выглядит следующим образом:

3 x 5 + 2 x 4 - 12 x 2 - 4 x 3 - 3 = 3 x 2 x 3 - 3 - 3 x 2 x 3 - 3 + 3 x 5 + 2 x 4 - 12 x 2 - 4 x 3 - 3 = = 3 x 2 x 3 - 3 + 2 x 4 - 3 x 2 - 4 x 3 - 3 = 3 x 2 + 2 x 4 - 3 x 2 - 4 x 3 - 3 = = 3 x 2 + 2 x x 3 - 3 - 2 x x 3 - 3 + 2 x 4 - 3 x 2 - 4 x 3 - 3 = = 3 x 2 + 2 x (x 3 - 3) - 3 x 2 + 6 x - 4 x 3 - 3 = 3 x 2 + 2 x + - 3 x 2 + 6 x - 4 x 3 - 3

Значит, что остаток при делении 3 x 5 + 2 x 4 - 12 x 2 - 4 на x 3 - 3 дает значение - 3 x 2 + 6 x - 4 . Для быстрого нахождения результата применяют формулы сокращенного умножения.

Пример 6

Произвести деление 8 x 3 + 36 x 2 + 54 x + 27 на 2 x + 3 .

Решение

Запишем деление в виде дроби. Получим, что 8 x 3 + 36 x 2 + 54 x + 27 2 x + 3 . Заметим, что в числителе выражение можно сложить по формуле куба суммы. Имеем, что

8 x 3 + 36 x 2 + 54 x + 27 2 x + 3 = (2 x + 3) 3 2 x + 3 = (2 x + 3) 2 = 4 x 2 + 12 x + 9

Заданный многочлен делится без остатка.

Для решения используется более удобный метод решения, причем деление многочлена на многочлен считается максимально универсальным, поэтому часто используемым при выделении целой части. Итоговая запись должна содержать полученный многочлен от деления.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Пусть требуется

(2x 3 – 7x 2 + x + 1) ÷ (2x – 1).

Здесь дано произведение (2x 3 – 7x 2 + x + 1) и один множитель (2x – 1), – надо найти другой множитель. В данном примере сразу ясно (но вообще этого установить нельзя), что и другой, искомый, множитель, или частное, есть многочлен. Это ясно потому, что данное произведение имеет 4 члена, а данный множитель лишь 2. Однако, сказать заранее, сколько членов у искомого множителя – нельзя: может быть 2 члена, 3 члена и т. д. Вспоминая, что старший член произведения всегда получается от умножения старшего члена одного множителя на старший член другого (см. умножение многочлена на многочлен) и что членов, подобных этому, быть не может, мы уверены, что 2x 3 (старший член данного произведения) получится от умножения 2x (старший член данного множителя) на неизвестный старший член искомого множителя. Чтобы найти последний, придется, следовательно, разделить 2x 3 на 2x – получим x 2 . Это и есть старший член частного.

Вспомним затем, что при умножении многочлена на многочлен приходится каждый член одного многочлена умножать на каждый член другого. Поэтому данное произведение (2x 3 – 7x 2 + x + 1) представляет собою произведение делителя (2x – 1) на все члены частного. Но мы можем теперь найти произведение делителя на первый (старший) член частного, т. е. (2x – 1) ∙ x 2 ; получим 2x 3 – x 2 . Зная произведение делителя на все члены частного (оно = 2x 3 – 7x 2 + x + 1) и зная произведение делителя на 1-ый член частного (оно = 2x 3 – x 2), вычитанием мы можем найти произведение делителя на все остальные, кроме 1-го, члены частного. Получим

(2x 3 – 7x 2 + x + 1) – (2x 3 – x 2) = 2x 3 – 7x 2 + x + 1 – 2x 3 + x 2 = –6x 2 + x + 1.

Старший член (–6x 2) этого оставшегося произведения должен представлять собою произведение старшего члена делителя (2x) на старший член остального (кроме 1-го члена) частного. Отсюда найдем старший член остального частного. Надо –6x 2 ÷ 2x, получим –3x. Это и есть второй член искомого частного. Мы можем опять найти произведение делителя (2x – 1) на второй, только что найденный, член частного, т. е. на –3x.

Получим (2x – 1) ∙ (–3x) = –6x 2 + 3x. Из всего данного произведения мы уже вычли произведение делителя на 1-ый член частного и получили остаток –6x 2 + x + 1, представляющий собою произведение делителя на остальные, кроме 1-го, члены частного. Вычитая из него только что найденное произведение –6x 2 + 3x, получим остаток, представляющий собою произведение делителя на все остальные, кроме 1-го и 2-го, члены частного:

–6x 2 + x + 1 – (–6x 2 + 3x) = –6x 2 + x + 1 + 6x 2 – 3x = –2x + 1.

Разделив старший член этого оставшегося произведения (–2x) на старший член делителя (2x), получим старший член остального частного, или его третий член, (–2x) ÷ 2x = –1, – это и есть 3-й член частного.

Умножив на него делителя, получим

(2x – 1) ∙ (–1) = –2x + 1.

Вычтя это произведение делителя на 3-й член частного из всего оставшегося до сих пор произведения, т. е.

(–2x + 1) – (–2x + 1) = –2x + 1 + 2x – 1 = 0,

мы увидим, что в нашем примере произведение делится на остальные, кроме 1-го, 2-го и 3-го, члены частного = 0, откуда заключаем, что у частного больше членов нет, т. е.

(2x 3 – 7x 2 + x + 1) ÷ (2x – 1) = x 2 – 3x – 1.

Из предыдущего мы видим: 1) удобно располагать члены делимого и делителя по нисходящим степеням, 2) необходимо установить какой-либо порядок для выполнения вычислений. Таким удобным порядком можно считать тот, который употребляется в арифметике при делении многозначных чисел. Следуя ему, все предыдущие вычисления расположим так (сбоку даны еще краткие пояснения):

Те вычитания, какие здесь нужны, выполняются переменою знаков у членов вычитаемого, причем эти переменные знаки пишутся сверху.

Так, написано

Это значит: вычитаемое было 2x 3 – x 2 , а после перемены знаков получили –2x 3 + x 2 .

Благодаря принятому расположению вычислений, благодаря тому, что члены делимого и делителя расположены по нисходящим степеням и благодаря тому, что степени буквы x в обоих многочленах идут, понижаясь всякий раз на 1, оказалось, что подобные члены приходятся написанными друг под другом (напр.: –7x 2 и +x 2), почему легко выполнить их приведение. Можно подметить, что не все члены делимого нужны во всякий момент вычисления. Напр., член +1 не нужен в тот момент, где был найден 2-й член частного, и эту часть вычислений можно упростить.


Еще примеры:

1. (2a 4 – 3ab 3 – b 4 – 3a 2 b 2) ÷ (b 2 + a 2 + ab).

Расположим по нисходящим степеням буквы a и делимое и делитель:


(Заметим, что здесь, благодаря отсутствию в делимом члена с a 3 , в первом вычитании оказалось, что подписаны друг под другом не подобные члены –a 2 b 2 и –2a 3 b. Конечно, они не могут быть приведены в один член и написаны под чертою оба по старшинству).


В обоих примерах надо внимательнее относиться к подобным членам: 1) друг под другом часто оказываются написанными не подобные члены и 2) иногда (как, напр., в последнем примере, члены –4a n и –a n при первом вычитании) подобные члены выходят написанными не друг под другом.

Возможно выполнять деление многочленов в ином порядке, а именно: всякий раз разыскивать младший член или всего или остающегося частного. Удобно в этом случае располагать данные многочлены по восходящим степеням какой-либо буквы. Напр.:


Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.