Биосинтез липидов биохимия. Биохимия липиды

Промежуточные продукты процессов дыхания служат источником углеродных скелетов для синтеза липидов – жироподобных веществ входящих в состав всех живых клеток и играющих важную роль в жизненных процессах. Липиды выступают и как запасные вещества и как компоненты мембран, окружающих цитоплазму и все клеточные органеллы.

Липиды мембран отличаются от обычных жиров, тем, что у них в молекуле одна из трех жирных кислот заменена на фосфорилированный серин или холин.

Жиры присутствуют в любых растительных клетках, а так как жиры нерастворимы в воде, они не могут перемещаться в растениях. Поэтому биосинтез жиров должен происходить во всех органах и тканях растений из растворенных веществ поступающих в эти органы. Таким растворимыми веществами являются углеводы, поступающие в семена из ассимилирующих *. Наилучшим объектом для изучения биосинтеза жиров являются плоды масличных растений, в начале развития масличных семян главными составными частями семян являются вода, белки, небелковые азотистые соединения и нерастворимые сахара. При созревании происходит с одной стороны синтез белков из небелковых азотистых соединений, а с другой превращение углеводов в жиры.

Мы уделим внимание превращению углеводов в жиры. Начнем с простого. Из состава жиров. Жиры состоят из глицерина и жирных кислот. Очевидно, что при биосинтезе жиров должны образовываться эти компоненты – глицерин и жирные кислоты, входящие в состав жира. При биосинтезе жира было обнаружено, что жирные кислоты соединяются не со связанным глицерином, а с его фосфорилированным * - глицерол-3фосфатом. Исходным веществом для образования глицерол-3фосфата являются 3-фосфоглицериновый альдегид и фосфодиоксиацетон, которые представляют собой промежуточные продукты фотосинтеза и анаэробного распада углеводов

Восстановление фосфодиоксиацетона до глицерола -3фосфата катализируется ферментом глицеролфосфатдегидрогеназой, активной группой которого является никотинамидаденин-динуклеотид. Синтез жирных кислот идет более сложными путями. Мы видели, что большинство растительных жирных кислот имеют четное число углеродных атомов С 16 или С 18 . Этот факт давно обращал на себя внимание многих исследователей. Неоднократно высказывались предположения, что жирные кислоты могут образовываться в результате свободной конденсации уксусной кислоты или уксусного альдегида, т.е. из соединений имеющих два атома углерода С 2 . работами нашего времени было установлено, что в биосинтезе жирных кислот принимает участие не свободная уксусная кислота, а связанная с коферментом А – ацетилкофермент А. В настоящее время схему синтеза жирных кислот модно изобразить следующим образом. Исходным соединением для синтеза жирных кислот является ацетилкоферментА, который является главным продуктом анаэробного распада углеводов. Кофермент А может принимать участие в синтезе самых разнообразных жирных кислот. Первой * этих процессов является активирование кислот под действием АТФ. На первом этапе из уксусной кислоты под действием фермента ацетилкоферментаА * и затрат энергии АТФ образуется ацетилкофермент А и затем * т.е. происходит карбоксилирование ацетил коА и образование 3-х углеродных соединения. На последующих этапах происходит конденсация молекулы ацетилкофермента А.**************

Синтез жирных кислот происходит путем связывания молекулы ацетилкофермента А. Это первая стадия собственно синтеза жирных кислот.

Общий путь образования жиров из углеводов можно представить в виде схемы:

глицерол-3фосфат

Углеводы

Ацетилкофермент А жирные кислоты жиры

Как мы уже знаем жиры нем могут передвигаться из одних растительных тканей в другие и они синтезируются непосредственно в местах накопления. Возникает вопрос, в каких частях клетки, в каких клеточных структурах они синтезируются? В растительных тканях биосинтез жиров почти полностью локализован в митохондриях, сферосомах. Скорость синтеза жиров в клетках тесно связана с интенсивностью окислительных процессов, которые являются основными источниками энергии. Иными словами биосинтез жиров тесно связан с дыханием.

Распад жиров наиболее интенсивно происходит при прорастании семян масличных растений. Семена масличных культур содержат мало углеводов и основными запасными веществами в них являются жиры. Жиры отличаются от углеводов и белков не только тем, что при их окислении освобождается значительно больше энергии, но также и тем, что при окислении жиров выделяется повышенное количество воды. Если при окислении 1г белков образуется 0,41 г воды, при окислении 1 г углеводов 0,55 г, то при окислении 1 г жира 1,07 г воды. Это имеет большое значение для развивающегося зародыша, особенно при прорастании семян в засушливых условиях.

В работах связанных с изучением распада жиров доказано, что в прорастающих семенах наряду с убылью жиров накапливаются углеводы. Какими же путями могут синтезироваться углеводы из жиров? В общей форме этот процесс модно представить следующим образом. Жиры под действием липазы с участием воды расщепляются на глицерин и жирные кислоты. Глицерин фосфорилируется, затем окисляется и превращается в 3-фосфоглицериновый альдегид. 3-фосфоглицериновый альдегид изомеризуется и дает фосфодиоксиацетон. Далее под действием * и 3-фосфоглицеринового альдегида и фосфодиоксиацетона синтезируется фруктозо-1.6дифосфат. образовавший фруктозо-1.6дифосфат как мы уже знаем превращается в самые разнообразные углеводы, служащие для построения клеток и тканей растений.

Каков же путь превращений жирных кислот отщепляющихся при действии липазы на жиры?. На первом этапе жирная кислота в результате реакции с коферментом А и АТФ активируется и образуется ацетилкофермент А

R CН 2 СН 2 СООН+НS-КоА+АТФRСН 2 СН 2 С- S – КоА

Активированная жирная кислота – ацетилкоферментА обладает большей реакционной способностью, чем свободная жирная кислота. В последующих реакциях вся углеродная цепочка жирной кислоты расщепляется на двууглеродные фрагменты ацетилкофермента А. Общую схему распада жиров в упрощенном виде можно представить следующим образом.

Заключение по синтезу распада жиров. И при распаде и при синтезе жирных кислот основная роль принадлежит ацетилкоферменту А. Ацетилкофермент А образовавшийся в результате распада жирных кислот может подвергаться далее различным превращениям. Основной путь его превращений – полное окисление через цикл трикарбоновых кислот до СО 2 и Н 2 О с выделением большого количества энергии. Часть же ацетилкофермента А может использоваться для синтеза углеводов. Такие превращения ацетилкофермента А могут происходить при прорастании семян масличных культур, когда в результате аминокислотного распада жирных кислот образуется значительное количество уксусной кислоты. При биосинтезе углеводов из ацетилкофермента А ОН, т.е. ацетилкофермент А включается в так называемый глиоксилатный цикл или цикл глиоксиновой кислоты. В глиоксилатном цикле изолимонная кислота расщепляется на янтарную и глиоксиновую кислоты. Янтарная кислота может принимать участие в реакции цикла трикарбоновых кислот и через * образовывать яблочную, а затем щавелево-уксусную кислоты. Глиоксиновая кислота вступает в соединения СО второй молекулой ацетилкофермента А и в результате этого также образуется яблочная кислота. В последующих реакциях яблочная кислота превращается в щавелево-уксусную – фосфоэнолпировиноградную – фосфоглицериновую и даже углеводы. Таким образом, образовавшаяся при распаде энергия кислот молекулы ацетата превращается в углеводы. Какова же биологическая роль глиоксилатного цикла? В реакциях этого цикла синтезируется глиоксиловая кислота, которая слуджит исходным соединением для образования аминокислоты глицина. Главная же роль благодаря существованию глиоксилатного цикла молекулы ацетата образующиеся при распаде жирных кислот превращаются в углеводы. Таким образом, углеводы могут образовываться не только из глицерина, но и из жирных кислот. Синтез конечных фотосинтетических продуктов ассимиляции, углеводов, сахарозы и крахмала в фотосинтетической клетке осуществляется разобщено: сахароза синтезируется в цитоплазме, крахмал образуется в хлоропластах.

Заключение. Сахара могут ферментативным путем переходить один в другой обычно при участии АТФ. Углеводы чрез сложную цепь биохимических реакций превращаются в жиры. Из продуктов распада жиров могут синтезироваться углеводы. Углеводы могут синтезироваться как из глицерина, так и из жирных кислот.

Профилактика атеросклероза, как и терапия заболевания, напрямую связаны с контролем уровня липидных структур в организме. Особое внимание уделяется холестерину (ХС), молекула которого представляет собой липофильный спирт. Отсюда происходит непривычное на бытовом уровне, но химически корректное название вещества – холестерол. Именно окисление неиспользованных организмом липидов свободными радикалами – первый этап в последовательности формирования атеросклеротических бляшек. С другой стороны, соединения липидных структур с протеинами, создают биологические комплексы, способные очищать сосуды. Это липопротеины высокой плотности – ЛПВП. Таким образом, синтез и биосинтез липидов важен применительно к общему здоровью человека. Процесс непосредственно влияет на уровень холестерина в организме.

Что включает класс липидов

Категория объединяет жиры и подобные им вещества. На молекулярном уровне, липид формируется на двух базовых элементах: спирт и жирная кислота. Также допускается вхождение дополнительных компонентов. Подобные структуры относят к классу сложных липидов. Наибольший интерес, с точки зрения профилактики атеросклероза, привлекают следующие представители этого класса:

  1. Жирные спирты, а именно холестерин.
  2. Триглицериды.

Определенного внимания заслуживали бы жирные кислоты (ЖК), в частности полиненасыщенные – Омега-3. Вещество способствует снижению ХС. Однако организмом человека их синтез не осуществляется.

Общий принцип биосинтеза липидов

Образование ЖК и их производных начинается с цитоплазмы. Вторая часть биосинтеза – удлинение молекулярной цепи также продолжается в клетке, однако «производственная мастерская смещается» внутрь митохондрии. На каждом этапе, соединение обогащается двумя атомами C, что напоминает процесс бета-окисления, только в его обратной интерпретации.

Говоря более развернуто, в цитоплазме непосредственно и происходит синтез, например пальмитиновой кислоты. Митохондрии же, используют уже готовый «полуфабрикат», для производства полноценных жирных кислот, состоящих из 18-и и более атомов углерода. Выполнить весь биосинтез самостоятельно от «А» до «Я», митохондрии не в состоянии. Причина банальна – «низкий уровень квалификации». Возвращаясь к технической терминологии, митохондрии обладают очень низкой способностью включать меченые уксусные кислоты в длинную цепь липидных структур.

Хитрый трюк или как метаболит преодолевает митохондриальный барьер

Базовый внемитохондриальный биосинтез ЖК, напротив, не имеет общих пересечений с процессом их окисления. Его механизм, требует трех компонент:

  • ацетил-КоА – первичный метаболит;
  • CO2 – тут без комментариев, вещество общеизвестное;
  • ионов бикарбоната – HCO3-.

Метаболит представляет собой строительный фундамент. Изначально ацетил-КоА образуется именно в митохондрии. Его синтез – следствие процесса окислительного декарбоксилирования. Просочиться напрямую в цитоплазму, соединение не может в силу непроницаемости для него митохондриальной мембраны. Удается осуществить проникновение путем обходного маневра:

  1. Митохондриальный метаболит производит цитрат, посредством взаимодействия с оксалоацетатом.
  2. Для синтезированного цитрата митохондриальная мембрана прозрачна. Поэтому его молекулы с легкостью пробиваются в цитоплазму.
  3. Далее происходит обратная трансформация. Едва преодолев мембрану, цитрат расщепляется на исходные компоненты – ацетил-КоА и оксалоацетат.

Таким образом, метаболит передается от митохондрии. В цитоплазме непосредственного получения соединения не происходит. Альтернативный вариант переноса ацетил-КоА возможен при участии карнитина. Однако, в процессе синтеза ЖК, – это своеобразный «бронепоезд, стоящий на запасном пути». Данный канал используется значительно реже.

Заключительный этап биосинтеза

Оказавшись в цитоплазме метаболит готов к производству прекурсора ЖК – малонил-КоА. Для этого ацетил-КоА и требуется двуокись углерода. Катализатором процесс выступает фермент ацетил-КоА-карбоксилазы. Биосинтез распределяется на два периода:

  1. Карбоксилирование биотин-энзима. Протекает в присутствии CO2 и АТФ.
  2. Перенос карбоксильной группы на метаболит.

Результирующий малонил-КоА в дальнейшем быстро трансформируется в ЖК. Процесс происходит с участием определенной ферментной системы. Фактически, это комплекс взаимосвязанных ферментов. Он именуется синтетаза жирных кислот, имеет 6 различных ферментов и связующий элемент – ацилпереносящий белок (осуществляют роль, аналогичную КоА).

Разобравшись с биосинтезом липидов на общем уровне, самое время перейти к конкретным примерам.

Биосинтез триглицеридов

Фундаментальными кирпичиками процесса выступают глицерин и ЖК. Изначально формируется промежуточный продукт – глицерол-3-фосфат. Это характерно для процессов биосинтеза, происходящих в почках и стенках кишечника. Клетки органов отличаются гиперактивностью фермента глицеролкиназы, чего нельзя сказать о мышечной и жировой ткани. Тут вещество формируется при помощи гликолиза – окисления глюкозы.

Биосинтез холестерина

Ферментативный процесс образования ХС – достаточно сложная «многоходовая комбинация», насчитывающая более 35 энзиматических реакций. Очевидно, что охватить подобный объем преобразований не под силу даже Остапу Бендеру. Поэтому проще рассмотреть базовые стадии биосинтеза холестерола:

  1. Получение мевалоновой кислоты. Происходит в эукариоте – домене живых организмов. Требует три молекулы активного ацетата.
  2. Формирование сквалена. Прекурсором выступает ранее произведенная мевалоновая кислота. Изначально соединение трансформируется в активный изопреноид, из 6 молекул которого и образуется сквален.
  3. Синтез холестерина. Процесс осуществляется циклизацией сквалена. Синтезируется своеобразный прекурсор – ланостерин, переход которого в ХС все еще находится под изучением.

Первоначально биосинтез инициируется формированием ацетоацетил-КоА. Далее, структура подвергается конденсации с 3-ей молекулой активного ацетата. Полученное производное вещество вступает в реакцию восстановления, что и приводит к формированию мевалоната.

Биосинтез липидов

Триацилглицеролы – наиболее компактная форма запасания энергии организмом. Их синтез осуществляется, главным образом, из углеводов, поступающих в организм в избыточном количестве и не используемые для пополнения запаса гликогена.

Липиды могут образовываться и из углеродного скелета аминокислот. Способствует образованию жирных кислот, а в последующем триацилглицеролов и избыток пищи.

Биосинтез жирных кислот

В процессе окисления жирные кислоты превращаются в ацетил-КоА. Избыточное потребление с пищей углеводов также сопровождается распадом глюкозы до пирувата, который затем превращается в ацетил-КоА. Эта последняя реакция, катализируемая пируватдегидрогеназой, необратима. Ацетил – КоА из матрикса митохондрий в цитозоль транспортируется в составе цитрата (рис 15).

Матрикс митохондрий Цитозоль

Рис 15. Схема переноса ацетил – КоА и образование восстановленного НАДФН в процессе синтеза жирной кислоты.

Стереохимически весь процесс синтеза жирной кислоты можно представить следующим образом:

Ацетил-КоА + 7 Малонил-КоА + 14 НАДФН∙ + 7Н + 

Пальмитиновая кислота (С 16:0) + 7 СО 2 + 14 НАДФ + 8 НSКоА + 6 Н 2 О,

при этом 7 молекул малонил-КоА образуются из ацетил-КоА:

7 Ацетил-КоА + 7 СО 2 + 7 АТФ  7 Малонил-КоА + 7 АДФ + 7 Н 3 РО 4 + 7 Н +

Образование малонил-КоА является очень важной реакцией в синтезе жирной кислоты. Малонил-КоА образуется в реакции карбоксилирования ацетил-КоА при участии ацетил-КоА карбоксилазы, содержащей в качестве простетической группы биотин. Этот фермент не входит в состав мультиферментоного комплекса синтазы жирной кислоты. Ацетиткарбоксилаза является полимером (молекулярная масса от 4 до 810 6 Да), состоящим из протомеров с молекулярной массой 230кДа. Это мультифункциональный аллостерический белок, содержащий связанный биотин, биотинкарбоксилазу, транскарбоксилазу и аллостерический центр, активной формой которого является полимер, а 230-кДа протомеры неактивны. Поэтому активность образования малонил-КоА определяется соотношением между двумя этими формами:

Неактивные протомеры  активный полимер

Пальмитоил-КоА – конечный продукт биосинтеза сдвигает соотношение в сторону неактивной формы, а цитрат, являясь аллостерическим активатором, сдвигает это соотношение в сторону активного полимера.

Рис 16. Механизм синтеза малонил-КоА

На первом этапе в реакци карбоксилирования бикарбонат активируется и образуется N-карбоксибиотин. На втором этапе происходит нуклеофильная атака N-карбоксибиотина карбонильной группой ацетил-КоА и в реакции транскарбоксилирования образуется малонил-КоА (рис. 16).

Синтез жирной кислоты у млекопитающих связан с мультиферментным комплексом, названным синтазой жирной кислоты. Этот комплекс представлен двумя идентичными мультифункциональными полипептидами. В каждом полипептиде выделено три домена, которые расположены в определенной последовательности (рис.). Первый домен отвечает за связывание ацетил-КоА и малонил-КоА и соединение этих двух веществ. Этот домен включает ферменты: ацетилтрансферазу, малонилтрансферазу и ацетил-малонилсвязывающий фермент, который называют -кетоацилсинтаза. Второй домен , преимущественно, отвечает за восстановление промежуточного соединения, полученного в первом домене и содержит ацилпереносящий белок (АПБ), -кетоацилредуктазу и дегидратазу и еноил-АПБ-редуктазу. В третьем домене присутствует фермент тиоэстераза, которая освобождает образовавшуюся пальмитиновую кислоту, состоящую из 16 углеродных атомов.

Рис. 17. Структура пальмитатсинтазного комплекса. Цифрами обозначены домены.

Механизм синтеза жирной кислоты

На первом этапе синтеза жирной кислоты происходит присоединение ацетил-КоА к остатку серина ацетилтрансферазы (рис…). В сходной реакции образуется промежуточный интермедиат между малонил-КоА и остатком серина малонилтрансферазы. Затем ацетильная группа от ацетилтрансферазы переносится на SH-группу ацилпереносящего белка (АПБ). На следующем этапе происходит перенос ацетильного остатка на SH-группу цистеина -кетоацилсинтазы (конденсирующего фермента). Свободная SH-группа ацилпереносящего белка атакует малонилтрансферазу и связывает малонильный остаток. Затем происходит конденсация малонильного и ацетильного остатков при участии -кетоацилсинтазы с отщеплеием карбонильной группы от малонила. Результатом реакции является образование -кетоацила, связанного с АПБ.

Рис. Ракции синтеза 3-кетоацилАПБ в пальмитатсинтазном комплексе

Затем ферменты второго домена участвуют в реакциях восстановления и дегидратации интермедианта -кетоацил-АПБ, которые заканчиваются образованием (бутирил-АПБ) ацил-АПБ.

Ацетоацетил-АПБ (-кетоацил-АПБ)

-кетоацил-АПБ-редуктаза

-гидроксибутирил-АПБ

-гидроксиацил-АПБ-дегидратаза

Еноил-АПБ-редуктаза

Бутирил-АПБ

После 7 циклов реакций

Н 2 О пальмитоилтиоэстераза

Затем бутирильная группа переносится от АПБ к остатку цис-SH -кетоацилсинтазы. Дальнейшее удлинение на два углерода происходит путем присоединения малонил-КоА к остатку серина малонилтрансферазы, затем реакции конденсации и восстановления повторяются. Весь цикл повторяется 7 раз и заканчивается образованием пальмитоил-АПБ. В третьем домене пальмитоилэстераза гидролизует тиоэфирную связь в пальмитоил-АПБ и освобождается свободная пальмитиновая кислота выходит из пальмитатсинтазного комплекса.

Регуляция биосинтеза жирной кислоты

Контроль и регуляция синтеза жирных кислот, в известной мере, похожи на регуляцию реакций гликолиза, цитратного цикла, β-окисления жирных кислот. Основным метаболитом, участвующим в регуляции биосинтеза жирных кислот, является ацетил-КоА, поступающий из матрикса митохондрий в составе цитрата. Образующаяся из ацетил-КоА молекула малонил-КоА, ингибирует карнитинацилтрансферазу I и β-окисление жирной кислоты становится невозможным. С другой стороны, цитрат является аллостерическим активатором ацетил-КоАкарбоксилазы,а пальмитоил-КоА, стеаторил-КоА и арахидонил-КоА основными ингибиторами этого фермента.

ЛИПИДЫ.БИОЛ.РОЛЬ.КЛАССИФИКАЦИЯ.

Липиды -большая группа веществ биологического происхождения, хорошо растворимых в органических растворителях, таких, как метанол, ацетон, хлороформ и бензол. Липиды - наиболее важный из всех питательных веществ источник энергии. Ряд липидов принимает участие в образовании клеточных мембран.Некоторые липиды выполняют в организме специальные функции. Стероиды,эйкозаноиды и некоторые метаболиты фосфолипидов выполняют сигнальные функции. Они служат в качестве гормонов, медиаторов и вторичных переносчиков. Липиды подразделяются на омыляемые и неомыляемые. Омыляемые липиды.

Омыляемые липиды включают три группывеществ: сложные эфиры, фосфолипиды и гликолипиды. В группу сложных эфиров входят нейтральные жиры, воски и эфиры стеринов.Группа фосфолипидов включает фосфатидовые кислоты, фосфатиды и сфинголипиды.К группе гликолипидов относятся цереброзиды и ганглиозиды).

Группа неомыляемых липидов включает предельные углеводороды и каротиноиды, а также спирты. В первую очередь это спирты с длинной алифатической цепью, циклические стерины (холестерин) и стероиды(эстрадиол, тестостерон и др.). Важнейшую группу липидов образуют жирные кислоты. К этой группе относятся также эйкозаноиды, которые можно рассматривать как производные жирных кислот.

Переваривание липидов и всасывание продуктов переваривания липидов.

В полости рта жиры не подвергаются никаким изменениям, т.к. в слюне не содержится ферментов, расщепляющие жиры. Хотя в желудке взрослого человека не происходит заметного переваривания жиров пищи, все же в желудке отмечается частичное разрушение липопротеидных комплексов мембран клеток пищи, что делает жиры более доступными для последующего воздействия на них липазы панкреатического сока. Расщепление жиров, входящих в состав пищи, происходит у человека и млекопитающих преимущественно в верхних отделах тонкого кишечника, где имеются весьма благоприятные условия для эмульгирования жиров. После того как химус попадает в двенадцатиперстную кишку, здесь прежде всего происходит нейтрализация соляной кислоты желудочного сока. Жирные кислоты с короткой углеродной цепью и глицерин, будучи хорошо растворимыми в воде, свободно всасываются в кишечнике и поступают в кровь воротной вены, оттуда - в печень, минуя какие-либо превращения в кишечной стенке. Жирные кислоты с длиннои угл. цепью всасываются сложнее. С помощью желчи, солеи желчных кислот, фосфолипидов и холестерина образ. Мицеллы, которые свободно всасываются в кишечнике.

3.Гидролиз триацилглицеридов. Ресинтез жиров. Триацилглицериды – самые распространенные липиды в природе. Их принято делить на жиры и масла. При гидролизе триацилглицеринов образуются глицерин и жирные кислоты. Полный гидролиз триглицеридов происходит постадийно: сначала быстро гидролизуются связи 1 и 3, а потом уже медленно идет гидролиз 2-моноглицерида.. (гидролиз) . Ресинтез жиров в стенке кишечника. В стенке кишечника синтезируются жиры, в значительной степени специфичные для данного вида животного и отличающиеся по своей природе от пищевого жира. Механизм ресинтеза триглицеридов в клетках стенки кишечника в общих чертах сводится к следующему: первоначально из жирных кислот образуется их активная форма - ацил-КоА, после чего происходит ацилирование моноглицеридов с образованием сначала диглицеридов, а затем триглицеридов:

4.Желчные кислоты.строение, биол.роль. В печени из холестерина образуются желчные кислоты. Эти стероидные соединения с 24 атомами углерода являются производные холановой кислоты, имеющими от одной до трех α-гидроксильных групп и боковую цепь из 5 атомов углерода с карбоксильной группой на конце цепи. В организме человека наиболее важна холевая кислота. Желчные кислоты обеспечивают растворимость холестерина в желчи и способствуют перевариванию липидов.

Биосинтез липидов и их компонентов.

Сами липиды и некоторые их структурные компоненты поступают в организм человека в основном вместе с пищей. При недостаточном поступлении липидов извне организм способен частично ликвидировать дефицит липидных компонентов путем их биосинтеза. Так, некоторые предельные кислоты могут быть синтезированы в организме ферментативным путем. Приведенная ниже схема отражает суммарный итог процесса образования пальмитиновой кислоты из уксусной:

CH3COOH + 7HOOC - CH2 - COOH + 28[H]

C15H31COOH + 7CO2 + 14H2O

Этот процесс осуществляется при помощи кофермента А, который превращает кислоты в тиоэфиры и активирует их участие в реакциях нуклеофильного замещения:

Некоторые ненасыщенные кислоты (например, олеиновая и пальмитолеиновая) могут синтезироваться в организме человека путем дегидрирования насыщенных кислот. Линолевая и линоленовая кислоты не синтезируются в организме человека и поступают только извне. Основным источником этих кислот служит растительная пища. Линолевая кислота служит источником для биосинтеза арахидоновой кислоты. Она является одной из важнейших кислот, входящих в состав фосфолипидов.Триацилглицерины и фосфатидовые кислоты синтезируются на основе глицеро-3-фосфата, который образуется из глицерина путем его переэтерификации с АТФ. Из общего количества холестерина, содержащегося в организме, только 20% его поступает вместе с пищей. Основное количество холестерина синтезируется в организме с участием кофермента ацетил-КоА.

Липиды в клетке прокариот представлены химическими соединениями различной природы (триглицериды, фосфолипиды, гликолипиды, воска), выполняющими разные функции. Они входят в состав клеточных мембран, являются компонентами пигментных систем и транспорта электронов, выполняют роль запасных веществ. Исходными продуктами для биосинткза липидов служат жирные кислоты, спирты, углеводы, фосфаты. Пути биосинтеза липидов сложны и протекают с затратой значительного количества энергии при участии многочисленных ферментов. Наиболее важны для жизнедеятельности клетки триглицериды и фосфолипиды.

Биосинтез жирных кислот с четным числом атомов углерода происходит в результате последовательного присоединения к молекуле ацетил-КоА двууглеродного остатка от малонил-КоА. Так, при биосинтезе пальмитиновой кислоты 1 молекула ацетил-КоА конденсируется с 7 молекулами малонил-КоА:

Ацетил-КоА + 7 малонил-КоА + 14 НАД(Ф)Н 2

СН 3 (СН 2) 14 СООН +7 СО 2 + 8КоА + 14НАД(Ф) + +6Н 2 О

Важную роль в реакциях биосинтеза жирных кислот играет ацилпереносящий белок (АПБ) – переносчик ацильных групп. Последовательное наращивание двууглеродных остатков через ряд промежуточных продуктов приводит к образованию С 16 -С 18 -соединений. В клетках прокариот компонентами липидов могут являться ненасыщенные жирные кислоты, содержащие одну двойную связь. Образование двойной связи у аэробных микроорганизмов происходит при участии кислорода и специфического фермента десатуразы. Например, пальмитоолеиновая кислота образуется из пальмитил-КоА:

Пальмитил-КоА + ½ О 2 + НАД(Ф)Н 2 пальмитоолеил-КоА + Н 2 О +НАД(Ф) +

У анаэробных микроорганизмов образование двойной связи происходит на ранней стадии биосинтеза молекулы жирной кислоты в результате реакции дегидратации.

Исходным субстратом для синтеза фосфолипидов служит фосфодиоксиацетон – промежуточное соединение гликолитического цикла. Восстановление его приводит к образованию 3-фосфоглицерина, который, соединяясь с двумя остатками жирных кислот, продуцирует фосфатидную кислоту. Присоединение к ее фосфатной группе серина, инозина, этаноламина, холина заканчивается синтезом фосфатидилсерина, фосфатидилинозита, фосфатидилхолина, фосфатидилэтаноламина.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.