Арктангенс и арккотангенс. Решение уравнений tgx = а, ctgx = a — Гипермаркет знаний

На этом уроке мы продолжим изучение арктангенса и решение уравнений вида tg x = a для любого а. В начале урока решим уравнение с табличным значением и проиллюстрируем решение на графике, а потом и на круге. Далее решим уравнение tgx = aв общем виде и выведем общую формулу ответа. Проиллюстрируем вычисления на графике и на круге и рассмотрим различные формы ответа. В конце урока решим несколько задач с иллюстрацией решений на графике и на круге.

Тема: Тригонометрические уравнения

Урок: Арктангенс и решение уравнения tgx=a (продолжение)

1. Тема урока, введение

На этом уроке мы рассмотрим решение уравнения для любого действительного

2. Решение уравнения tgx=√3

Задача 1. Решить уравнение

Найдем решение с помощью графиков функций (рис. 1).

Рассмотрим промежуток На этом промежутке функция монотонна, значит, достигается только при одном значении функции.

Ответ:

Решим это же уравнение с помощью числовой окружности (рис. 2).

Ответ:

3. Решение уравнения tgx=a в общем виде

Решим уравнение в общем виде (рис. 3).

На промежутке уравнение имеет единственное решение

Наименьший положительный период

Проиллюстрируем на числовой окружности (рис. 4).

4. Решение задач

Задача 2. Решить уравнение

Произведем замену переменной

Задача 3. Решить систему:

Решение (рис. 5):

В точке значение поэтому решением системы является только точка

Ответ:

Задача 4. Решить уравнение

Решим методом замены переменной:

Задача 5. Найти число решений уравнения на промежутке

Решим задачу с помощью графика (рис. 6).

Уравнение имеет три решения на заданном промежутке.

Проиллюстрируем на числовой окружности (рис. 7), хотя это не так наглядно, как на графике.

Ответ: Три решения.

5. Вывод, заключение

Мы решали уравнение для любого действительного используя понятие арктангенс. На следующем уроке мы познакомимся с понятием арккотангенс.

Список литературы

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

3. Виленкин Н. Я., Ивашев-Мусатов О. С., Шварцбурд С. И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М. Л., Мошкович М. М., Шварцбурд С. И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М. И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А. Г., Полонский В. Б., Якир М. С. Алгебраический тренажер.-К.: А. С.К., 1997.

7. Саакян С. М., Гольдман А. М., Денисов Д. В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А. П. Сборник задач по алгебре и началам анализа: учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

№№ 22.18, 22.21.

Дополнительные веб-ресурсы

1. Математика.

2. Интернет-портал Problems. ru .

3. Образовательный портал для подготовки к экзаменам.

Вы можете заказать подробное решение вашей задачи !!!

Равенство, содержащее неизвестную под знаком тригонометрической функции (`sin x, cos x, tg x` или `ctg x`), называется тригонометрическим уравнением, именно их формулы мы и рассмотрим дальше.

Простейшими называются уравнения `sin x=a, cos x=a, tg x=a, ctg x=a`, где `x` — угол, который нужно найти, `a` — любое число. Запишем для каждого из них формулы корней.

1. Уравнение `sin x=a`.

При `|a|>1` не имеет решений.

При `|a| \leq 1` имеет бесконечное число решений.

Формула корней: `x=(-1)^n arcsin a + \pi n, n \in Z`

2. Уравнение `cos x=a`

При `|a|>1` — как и в случае с синусом, решений среди действительных чисел не имеет.

При `|a| \leq 1` имеет бесконечное множество решений.

Формула корней: `x=\pm arccos a + 2\pi n, n \in Z`

Частные случаи для синуса и косинуса в графиках.

3. Уравнение `tg x=a`

Имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arctg a + \pi n, n \in Z`

4. Уравнение `ctg x=a`

Также имеет бесконечное множество решений при любых значениях `a`.

Формула корней: `x=arcctg a + \pi n, n \in Z`

Формулы корней тригонометрических уравнений в таблице

Для синуса:
Для косинуса:
Для тангенса и котангенса:
Формулы решения уравнений, содержащих обратные тригонометрические функции:

Методы решения тригонометрических уравнений

Решение любого тригонометрического уравнения состоит из двух этапов:

  • с помощью преобразовать его до простейшего;
  • решить полученное простейшее уравнение, используя выше написанные формулы корней и таблицы.

Рассмотрим на примерах основные методы решения.

Алгебраический метод.

В этом методе делается замена переменной и ее подстановка в равенство.

Пример. Решить уравнение: `2cos^2(x+\frac \pi 6)-3sin(\frac \pi 3 — x)+1=0`

`2cos^2(x+\frac \pi 6)-3cos(x+\frac \pi 6)+1=0`,

делаем замену: `cos(x+\frac \pi 6)=y`, тогда `2y^2-3y+1=0`,

находим корни: `y_1=1, y_2=1/2`, откуда следуют два случая:

1. `cos(x+\frac \pi 6)=1`, `x+\frac \pi 6=2\pi n`, `x_1=-\frac \pi 6+2\pi n`.

2. `cos(x+\frac \pi 6)=1/2`, `x+\frac \pi 6=\pm arccos 1/2+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Ответ: `x_1=-\frac \pi 6+2\pi n`, `x_2=\pm \frac \pi 3-\frac \pi 6+2\pi n`.

Разложение на множители.

Пример. Решить уравнение: `sin x+cos x=1`.

Решение. Перенесем влево все члены равенства: `sin x+cos x-1=0`. Используя , преобразуем и разложим на множители левую часть:

`sin x — 2sin^2 x/2=0`,

`2sin x/2 cos x/2-2sin^2 x/2=0`,

`2sin x/2 (cos x/2-sin x/2)=0`,

  1. `sin x/2 =0`, `x/2 =\pi n`, `x_1=2\pi n`.
  2. `cos x/2-sin x/2=0`, `tg x/2=1`, `x/2=arctg 1+ \pi n`, `x/2=\pi/4+ \pi n`, `x_2=\pi/2+ 2\pi n`.

Ответ: `x_1=2\pi n`, `x_2=\pi/2+ 2\pi n`.

Приведение к однородному уравнению

Вначале нужно данное тригонометрическое уравнение привести к одному из двух видов:

`a sin x+b cos x=0` (однородное уравнение первой степени) или `a sin^2 x + b sin x cos x +c cos^2 x=0` (однородное уравнение второй степени).

Потом разделить обе части на `cos x \ne 0` — для первого случая, и на `cos^2 x \ne 0` — для второго. Получим уравнения относительно `tg x`: `a tg x+b=0` и `a tg^2 x + b tg x +c =0`, которые нужно решить известными способами.

Пример. Решить уравнение: `2 sin^2 x+sin x cos x — cos^2 x=1`.

Решение. Запишем правую часть, как `1=sin^2 x+cos^2 x`:

`2 sin^2 x+sin x cos x — cos^2 x=` `sin^2 x+cos^2 x`,

`2 sin^2 x+sin x cos x — cos^2 x -` ` sin^2 x — cos^2 x=0`

`sin^2 x+sin x cos x — 2 cos^2 x=0`.

Это однородное тригонометрическое уравнение второй степени, разделим его левую и правую части на `cos^2 x \ne 0`, получим:

`\frac {sin^2 x}{cos^2 x}+\frac{sin x cos x}{cos^2 x} — \frac{2 cos^2 x}{cos^2 x}=0`

`tg^2 x+tg x — 2=0`. Введем замену `tg x=t`, в результате `t^2 + t — 2=0`. Корни этого уравнения: `t_1=-2` и `t_2=1`. Тогда:

  1. `tg x=-2`, `x_1=arctg (-2)+\pi n`, `n \in Z`
  2. `tg x=1`, `x=arctg 1+\pi n`, `x_2=\pi/4+\pi n`, ` n \in Z`.

Ответ. `x_1=arctg (-2)+\pi n`, `n \in Z`, `x_2=\pi/4+\pi n`, `n \in Z`.

Переход к половинному углу

Пример. Решить уравнение: `11 sin x — 2 cos x = 10`.

Решение. Применим формулы двойного угла, в результате: `22 sin (x/2) cos (x/2) -` `2 cos^2 x/2 + 2 sin^2 x/2=` `10 sin^2 x/2+10 cos^2 x/2`

`4 tg^2 x/2 — 11 tg x/2 +6=0`

Применив описанный выше алгебраический метод, получим:

  1. `tg x/2=2`, `x_1=2 arctg 2+2\pi n`, `n \in Z`,
  2. `tg x/2=3/4`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Ответ. `x_1=2 arctg 2+2\pi n, n \in Z`, `x_2=arctg 3/4+2\pi n`, `n \in Z`.

Введение вспомогательного угла

В тригонометрическом уравнении `a sin x + b cos x =c`, где a,b,c — коэффициенты, а x — переменная, разделим обе части на `sqrt {a^2+b^2}`:

`\frac a{sqrt {a^2+b^2}} sin x +` `\frac b{sqrt {a^2+b^2}} cos x =` `\frac c{sqrt {a^2+b^2}}`.

Коэффициенты в левой части имеют свойства синуса и косинуса, а именно сумма их квадратов равна 1 и их модули не больше 1. Обозначим их следующим образом: `\frac a{sqrt {a^2+b^2}}=cos \varphi`, ` \frac b{sqrt {a^2+b^2}} =sin \varphi`, `\frac c{sqrt {a^2+b^2}}=C`, тогда:

`cos \varphi sin x + sin \varphi cos x =C`.

Подробнее рассмотрим на следующем примере:

Пример. Решить уравнение: `3 sin x+4 cos x=2`.

Решение. Разделим обе части равенства на `sqrt {3^2+4^2}`, получим:

`\frac {3 sin x} {sqrt {3^2+4^2}}+` `\frac{4 cos x}{sqrt {3^2+4^2}}=` `\frac 2{sqrt {3^2+4^2}}`

`3/5 sin x+4/5 cos x=2/5`.

Обозначим `3/5 = cos \varphi` , `4/5=sin \varphi`. Так как `sin \varphi>0`, `cos \varphi>0`, то в качестве вспомогательного угла возьмем `\varphi=arcsin 4/5`. Тогда наше равенство запишем в виде:

`cos \varphi sin x+sin \varphi cos x=2/5`

Применив формулу суммы углов для синуса, запишем наше равенство в следующем виде:

`sin (x+\varphi)=2/5`,

`x+\varphi=(-1)^n arcsin 2/5+ \pi n`, `n \in Z`,

`x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Ответ. `x=(-1)^n arcsin 2/5-` `arcsin 4/5+ \pi n`, `n \in Z`.

Дробно-рациональные тригонометрические уравнения

Это равенства с дробями, в числителях и знаменателях которых есть тригонометрические функции.

Пример. Решить уравнение. `\frac {sin x}{1+cos x}=1-cos x`.

Решение. Умножим и разделим правую часть равенства на `(1+cos x)`. В результате получим:

`\frac {sin x}{1+cos x}=` `\frac {(1-cos x)(1+cos x)}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {1-cos^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}=` `\frac {sin^2 x}{1+cos x}`

`\frac {sin x}{1+cos x}-` `\frac {sin^2 x}{1+cos x}=0`

`\frac {sin x-sin^2 x}{1+cos x}=0`

Учитывая, что знаменатель равным быть нулю не может, получим `1+cos x \ne 0`, `cos x \ne -1`, ` x \ne \pi+2\pi n, n \in Z`.

Приравняем к нулю числитель дроби: `sin x-sin^2 x=0`, `sin x(1-sin x)=0`. Тогда `sin x=0` или `1-sin x=0`.

  1. `sin x=0`, `x=\pi n`, `n \in Z`
  2. `1-sin x=0`, `sin x=-1`, `x=\pi /2+2\pi n, n \in Z`.

Учитывая, что ` x \ne \pi+2\pi n, n \in Z`, решениями будут `x=2\pi n, n \in Z` и `x=\pi /2+2\pi n`, `n \in Z`.

Ответ. `x=2\pi n`, `n \in Z`, `x=\pi /2+2\pi n`, `n \in Z`.

Тригонометрия, и тригонометрические уравнения в частности, применяются почти во всех сферах геометрии, физики, инженерии. Начинается изучение в 10 классе, обязательно присутствуют задания на ЕГЭ, поэтому постарайтесь запомнить все формулы тригонометрических уравнений — они вам точно пригодятся!

Впрочем, даже запоминать их не нужно, главное понять суть, и уметь вывести. Это не так и сложно, как кажется. Убедитесь сами, просмотрев видео.

Чтобы успешно решать тригонометрические уравнения удобно пользоваться методом сведения к ранее решенным задачам. Давайте разберемся, в чем суть этого метода?

В любой предлагаемой задаче вам необходимо увидеть уже решенную ранее задачу, а затем с помощью последовательных равносильных преобразований попытаться свести данную вам задачу к более простой.

Так, при решении тригонометрических уравнений обычно составляют некоторую конечную последовательность равносильных уравнений, последним звеном которой является уравнение с очевидным решением. Только важно помнить, что если навыки решения простейших тригонометрических уравнений не сформированы, то решение более сложных уравнений будет затруднено и малоэффективно.

Кроме того, решая тригонометрические уравнения, никогда не стоит забывать о возможности существования нескольких способов решения.

Пример 1. Найти количество корней уравнения cos x = -1/2 на промежутке .

Решение:

I способ. Изобразим графики функций y = cos x и y = -1/2 и найдем количество их общих точек на промежутке (рис. 1).

Так как графики функций имеют две общие точки на промежутке , то уравнение содержит два корня на данном промежутке.

II способ. С помощью тригонометрического круга (рис. 2) выясним количество точек, принадлежащих промежутку , в которых cos x = -1/2. По рисунку видно, что уравнение имеет два корня.

III способ. Воспользовавшись формулой корней тригонометрического уравнения, решим уравнение cos x = -1/2.

x = ± arccos (-1/2) + 2πk, k – целое число (k € Z);

x = ± (π – arccos 1/2) + 2πk, k – целое число (k € Z);

x = ± (π – π/3) + 2πk, k – целое число (k € Z);

x = ± 2π/3 + 2πk, k – целое число (k € Z).

Промежутку принадлежат корни 2π/3 и -2π/3 + 2π, k – целое число. Таким образом, уравнение имеет два корня на заданном промежутке.

Ответ: 2 .

В дальнейшем тригонометрические уравнения будут решаться одним из предложенных способов, что во многих случаях не исключает применения и остальных способов.

Пример 2. Найти количество решений уравнения tg (x + π/4) = 1 на промежутке [-2π; 2π].

Решение:

Воспользовавшись формулой корней тригонометрического уравнения, получим:

x + π/4 = arctg 1 + πk, k – целое число (k € Z);

x + π/4 = π/4 + πk, k – целое число (k € Z);

x = πk, k – целое число (k € Z);

Промежутку [-2π; 2π] принадлежат числа -2π; -π; 0; π; 2π. Итак, уравнение имеет пять корней на заданном промежутке.

Ответ: 5.

Пример 3. Найти количество корней уравнения cos 2 x + sin x · cos x = 1 на промежутке [-π; π].

Решение:

Так как 1 = sin 2 x + cos 2 x (основное тригонометрическое тождество), то исходное уравнение принимает вид:

cos 2 x + sin x · cos x = sin 2 x + cos 2 x;

sin 2 x – sin x · cos x = 0;

sin x(sin x – cos x) = 0. Произведение равно нулю, а значит хотя бы один из множителей должен быть равен нулю, поэтому:

sin x = 0 или sin x – cos x = 0.

Так как значение переменной, при которых cos x = 0, не являются корнями второго уравнения (синус и косинус одного и того же числа не могут одновременно быть равными нулю), то разделим обе части второго уравнения на cos x:

sin x = 0 или sin x / cos x - 1 = 0.

Во втором уравнении воспользуемся тем, что tg x = sin x / cos x, тогда:

sin x = 0 или tg x = 1. С помощью формул имеем:

x = πk или x = π/4 + πk, k – целое число (k € Z).

Из первой серии корней промежутку [-π; π] принадлежат числа -π; 0; π. Из второй серии: (π/4 – π) и π/4.

Таким образом, пять корней исходного уравнения принадлежат промежутку [-π; π].

Ответ: 5.

Пример 4. Найти сумму корней уравнения tg 2 x + сtg 2 x + 3tg x + 3сtgx + 4 = 0 на промежутке [-π; 1,1π].

Решение:

Перепишем уравнение в следующем виде:

tg 2 x + сtg 2 x + 3(tg x + сtgx) + 4 = 0 и сделаем замену.

Пусть tg x + сtgx = a. Обе части равенства возведем в квадрат:

(tg x + сtg x) 2 = a 2 . Раскроем скобки:

tg 2 x + 2tg x · сtgx + сtg 2 x = a 2 .

Так как tg x · сtgx = 1, то tg 2 x + 2 + сtg 2 x = a 2 , а значит

tg 2 x + сtg 2 x = a 2 – 2.

Теперь исходное уравнение имеет вид:

a 2 – 2 + 3a + 4 = 0;

a 2 + 3a + 2 = 0. С помощью теоремы Виета получаем, что a = -1 или a = -2.

Сделаем обратную замену, имеем:

tg x + сtgx = -1 или tg x + сtgx = -2. Решим полученные уравнения.

tg x + 1/tgx = -1 или tg x + 1/tgx = -2.

По свойству двух взаимно обратных чисел определяем, что первое уравнение не имеет корней, а из второго уравнения имеем:

tg x = -1, т.е. x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-π; 1,1π] принадлежат корни: -π/4; -π/4 + π. Их сумма:

-π/4 + (-π/4 + π) = -π/2 + π = π/2.

Ответ: π/2.

Пример 5. Найти среднее арифметическое корней уравнения sin 3x + sin x = sin 2x на промежутке [-π; 0,5π].

Решение:

Воспользуемся формулой sin α + sin β = 2sin ((α + β)/2) · cos ((α – β)/2), тогда

sin 3x + sin x = 2sin ((3x + x)/2) · cos ((3x – x)/2) = 2sin 2x · cos x и уравнение принимает вид

2sin 2x · cos x = sin 2x;

2sin 2x · cos x – sin 2x = 0. Вынесем общий множитель sin 2x за скобки

sin 2x(2cos x – 1) = 0. Решим полученное уравнение:

sin 2x = 0 или 2cos x – 1 = 0;

sin 2x = 0 или cos x = 1/2;

2x = πk или x = ±π/3 + 2πk, k – целое число (k € Z).

Таким образом, имеем корни

x = πk/2, x = π/3 + 2πk, x = -π/3 + 2πk, k – целое число (k € Z).

Промежутку [-π; 0,5π] принадлежат корни -π; -π/2; 0; π/2 (из первой серии корней); π/3 (из второй серии); -π/3 (из третьей серии). Их среднее арифметическое равно:

(-π – π/2 + 0 + π/2 + π/3 – π/3)/6 = -π/6.

Ответ: -π/6.

Пример 6. Найти количество корней уравнения sin x + cos x = 0 на промежутке [-1,25π; 2π].

Решение:

Данное уравнение является однородным уравнением первой степени. Разделим обе его части на cosx (значение переменной, при которых cos x = 0, не являются корнями данного уравнения, так как синус и косинус одного и того же числа не могут одновременно быть равными нулю). Исходное уравнение имеет вид:

x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-1,25π; 2π] принадлежат корни -π/4; (-π/4 + π); и (-π/4 + 2π).

Таким образом, заданному промежутку принадлежат три корня уравнения.

Ответ: 3.

Научитесь делать самое главное – четко представлять план решения задачи, и тогда любое тригонометрическое уравнение будет вам по плечу.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Волновое уравнение, дифференциальное уравнение с частными производными, описывающее процесс распространения возмущений в некоторой среде Тихонов А. Н. и Самарский А. А., Уравнения математической физики, 3 изд., М., 1977. - с. 155....

Классификации гиперболических дифференциальных уравнений в частных производных

Уравнение теплопроводности - дифференциальное уравнение с частными производными параболического типа, описывающее процесс распространения теплоты в сплошной среде (газе...

Математические методы, применяемые в теории систем массового обслуживания

Вероятности состояний системы можно найти из системы дифференциальных уравнений Колмогорова, которые составлены по следующему правилу: В левой части каждого из них стоит производная вероятности i-го состояния...

Нестационарное уравнение Риккати

1.Общее уравнение Риккати имеет вид: , (1.1) где P, Q, R-непрерывные функции от xпри изменении x в интервале Уравнение (1.1) заключает в себе как частные случаи уже рассмотренные нами уравнения: при получаем линейное уравнение, при -уравнение Бернулли...

Основы научного исследования и планирование экспериментов на транспорте

Получим функциональную зависимость Y = f(X) (уравнение регрессии) с помощью метода наименьших квадратов (МНК). В качестве аппроксимирующих функций использовать линейную (Y = a0 + a1X) и квадратичную зависимости (Y = a0 + a1X + a2X2). Посредством МНК значения a0...

Поместим полюс полярной системы координат в начало прямоугольной системы координат, полярную ось совместим с положительной полуосью абсцисс (рис.3). Рис. 3 Возьмем уравнение прямой в нормальном виде: (3.1) - длина перпендикуляра...

Полярная система координат на плоскости

Составим уравнение в полярных координатах окружности, проходящей через полюс, с центром на полярной оси и радиусом R. Из прямоугольного треугольника OAA получаем OA= OA (рис. 4)...

Понятия выборочной теории. Ряды распределения. Корреляционный и регрессионный анализ

Изучить: а) понятие парной линейной регрессии; б) составление системы нормальных уравнений; в) свойства оценок по методу наименьших квадратов; г) методику нахождения уравнения линейной регрессии. Предположим...

Построение решений дифференциальных уравнений в виде степенных рядов

В качестве примера приложения построенной теории рассмотрим уравнение Бесселя: (6.1) Где. Особая точка z =0 является регулярной. Других особенностей в конечной части плоскости нет. В уравнении (6.1) , поэтому определяющее уравнение имеет вид, Т.е...

Решение матричных уравнений

Матричное уравнение ХА=В также можно решить двумя способами: 1. Вычисляется обратная матрица любым из известных способов. Тогда решение матричного уравнения будет иметь вид: 2...

Решение матричных уравнений

Для решения уравнений вида АХ=ХВ, АХ+ХВ=С описанные выше методы не подходят. Они не подходят также для решения уравнений, в которых хотя бы один из сомножителей при неизвестной матрице Х является вырожденной матрицей...

Решение матричных уравнений

Уравнения вида АХ=ХА решаются так же, как и в предыдущем случае, то есть поэлементно. Решение здесь сводится к нахождению перестановочной матрицы. Подробнее рассмотрим на примере. Пример. Найдите все матрицы...

Стационарное функционирование сети массового обслуживания с ромбовидным контуром

Из состояния может перейти в одно из следующих состояний: - за счет поступления заявки в очередь первого узла с интенсивностью; - за счет поступления из первого узла обработанной в нем заявки в очередь третьего узла с интенсивностью при...

Тригонометрические функции

Арктангенсом числа называется такое число, синус которого равен а: , если и. Все корни уравнения можно находить по формуле:...

Численные методы решения математических задач

Ранее по программе учащиеся получили представление о решении тригонометрических уравнений, ознакомились с понятиями арккосинуса и арксинуса, примерами решений уравнений cos t = a и sin t = a. В этом видеоуроке рассмотрим решение уравнений tg x = a и ctg x = a.

В начале изучения данной темы рассмотрим уравнения tg x = 3 и tg x = - 3. Если уравнение tg x = 3 будем решать с помощью графика, то увидим, что пересечение графиков функций y = tg x и y = 3 имеет бесконечное множество решений, где x = x 1 + πk. Значение x 1 - это координата x точки пересечения графиков функций y = tg x и y = 3. Автор вводит понятие арктангенса: arctg 3 это число, tg которого равен 3, и это число принадлежит интервалу от -π/2 до π/2. Используя понятие арктангенса, решение уравнения tg x = 3 можно записать в виде x = arctg 3 + πk.

По аналогии решается уравнение tg x = - 3. По построенным графикам функций y = tg x и y = - 3 видно, что точки пересечения графиков, а следовательно, и решениями уравнений, будет x = x 2 + πk. С помощью арктангенса решение можно записать как x = arctg (- 3) + πk. На следующем рисунке увидим, что arctg (- 3) = - arctg 3.

Общее определение арктангенса выглядит следующим образом: арктангенсом а называется такое число из промежутка от -π/2 до π/2, тангенс которого равен а. Тогда решением уравнения tg x = a является x = arctg a + πk.

Автор приводит пример 1. Найти решение выражения arctg.Введем обозначения: арктангенс числа равен x, тогда tg x будет равен данному числу, где x принадлежит отрезку от -π/2 до π/2. Как в примерах в предыдущих темах, воспользуемся таблицей значений. По этой таблице тангенсу данного числа соответствует значение x = π/3. Запишем решение уравнения арктангенс заданного числа равен π/3, π/3 принадлежит и интервалу от -π/2 до π/2.

Пример 2 - вычислить арктангенс отрицательного числа. Используя равенство arctg (- a) = - arctg a, введем значение x. Аналогично примеру 2 запишем значение x, которое принадлежит отрезку от -π/2 до π/2. По таблице значений найдем, что x = π/3, следовательно, -- tg x = - π/3. Ответом уравнения будет - π/3.

Рассмотрим пример 3. Решим уравнение tg x = 1. Запишем, что x = arctg 1 + πk. В таблице значению tg 1 соответствует значение x = π/4, следовательно, arctg 1 = π/4. Подставим это значение в исходную формулу x и запишем ответ x = π/4 + πk.

Пример 4: вычислить tg x = - 4,1. В данном случае x = arctg (- 4,1) + πk. Т.к. найти значение arctg в данном случае нет возможности, ответ будет выглядеть как x = arctg (- 4,1) + πk.

В примере 5 рассматривается решение неравенства tg x > 1. Для решения построим графики функций y = tg x и y = 1. Как видно на рисунке, эти графики пересекаются в точках x = π/4 + πk. Т.к. в данном случае tg x > 1, на графике выделим область тангенсоиды, которая находится выше графика y = 1, где x принадлежит интервалу от π/4 до π/2. Ответ запишем как π/4 + πk < x < π/2 + πk.

Далее рассмотрим уравнение ctg x = a. На рисунке изображены графики функций у = ctg x, y = a, y = - a, которые имеют множество точек пересечения. Решения можно записать как x = x 1 + πk, где x 1 = arcctg a и x = x 2 + πk, где x 2 = arcctg (- a). Отмечено, что x 2 = π - x 1 . Из этого следует равенство arcctg (- a) = π - arcctg a. Далее дается определение арккотангенса: арккотангенсом а называется такое число из промежутка от 0 до π, котангенс которого равен а. Решение уравнения сtg x = a записывается в виде: x = arcctg a + πk.

В конце видеоурока делается еще один важный вывод - выражение ctg x = a можно записать в виде tg x = 1/a, при условии, что a не равно нулю.

ТЕКСТОВАЯ РАСШИФРОВКА:

Рассмотрим решение уравнений tg х = 3 и tg х= - 3. Решая первое уравнение графически, мы видим, что графики функций у = tg х и у = 3 имеют бесконечно много точек пересечения, абсциссы которых запишем в виде

х = х 1 + πk, где х 1 - это абсцисса точки пересечения прямой у = 3 с главной ветвью тангенсоиды (рис.1), для которой было придумано обозначение

arctg 3 (арктангенс трех).

Как же понимать arctg 3?

Это число, тангенс которого равен 3 и это число принадлежит интервалу (- ;). Тогда все корни уравнения tg х = 3 можно записать формулой х = arctg 3+πk.

Аналогично решение уравнения tg х = - 3 можно записать в виде х = х 2 + πk, где х 2 - это абсцисса точки пересечения прямой у = - 3 с главной ветвью тангенсоиды (рис.1), для которой было придумано обозначение arctg(-3) (арктангенс минус трех). Тогда все корни уравнения можно записать формулой: х = arctg(-3)+ πk. По рисунку видно, что arctg(- 3)= - arctg 3.

Сформулируем определение арктангенса. Арктангенсом а называется такое число из промежутка (-;), тангенс которого равен а.

Часто используют равенство: arctg(-а) = -arctg а, которое справедливо для любого а.

Зная определение арктангенса, сделаем общий вывод о решении уравнения

tg х= a: уравнение tg х = a имеет решение х = arctg а + πk.

Рассмотрим примеры.

ПРИМЕР 1.Вычислить arctg.

Решение. Пусть arctg = х, тогда tgх = и хϵ (- ;). Показать таблицу значений Следовательно, х =, так как tg = и ϵ (- ;).

Итак, arctg =.

ПРИМЕР 2. Вычислить arctg (-).

Решение. Используя равенство arctg(- а) = - arctg а, запишем:

arctg(-) = - arctg . Пусть - arctg = х, тогда - tgх = и хϵ (- ;). Следовательно, х =, так как tg = и ϵ (- ;). Показать таблицу значений

Значит - arctg=- tgх= - .

ПРИМЕР 3. Решить уравнение tgх = 1.

1. Запишем формулу решений: х = arctg 1 + πk.

2. Найдем значение арктангенса

так как tg = . Показать таблицу значений

Значит arctg1= .

3. Поставим найденное значение в формулу решений:

ПРИМЕР 4. Решить уравнение tgх = - 4,1(тангенс икс равно минус четыре целые одна десятая).

Решение. Запишем формулу решений: х = arctg (- 4,1) + πk.

Вычислить значение арктангенса мы не можем, поэтому решение уравнения оставим в полученном виде.

ПРИМЕР 5. Решить неравенство tgх 1.

Решение. Будем решать графически.

  1. Построим тангенсоиду

у= tgх и прямую у = 1(рис.2). Они пересекаются в точках вида х = + πk.

2. Выделим промежуток оси икс, на котором главная ветвь тангенсоиды расположена выше прямой у = 1, так как по условию tgх 1. Это интервал (;).

3. Используем периодичность функции.

Своийство 2. у=tg х - периодическая функция с основным периодом π.

Учитывая периодичность функции у= tgх, запишем ответ:

(;). Ответ можно записать в виде двойного неравенства:

Перейдем к уравнению ctg х = a. Представим графическую иллюстрацию решения уравнения для положительного и отрицательного а (рис.3).

Графики функций у= ctg х и у =а а также

у= ctg х и у=-а

имеют бесконечно много общих точек, абсциссы которых имеют вид:

х = х 1 + , где х 1 - это абсцисса точки пересечения прямой у =а с главной ветвью тангенсоиды и

х 1 = arcсtg а;

х = х 2 + , где х 2 - это абсцисса точки пересечения прямой

у = - а с главной ветвью тангенсоиды и х 2 = arcсtg (- а).

Заметим, что х 2 = π - х 1 . Значит, запишем важное равенство:

arcсtg (-а) = π - arcсtg а.

Сформулируем определение: арккотангенсом а называется такое число из интервала (0;π), котангенс которого равен а.

Решение уравнения ctg х = a записываются в виде: х = arcсtg а + .

Обратим внимание, что уравнение ctg х = a можно преобразовать к виду

tg х = , за исключение, когда а = 0.

Похожие статьи

© 2024 liveps.ru. Домашние задания и готовые задачи по химии и биологии.